
CDM
Automatic Structures and FOL

Klaus Sutner

Carnegie Mellon University

1 Discretizing the World

2 Elementary Cellular Automata

3 Model Checking ECA

Disclaimer 2

Recall that we want to use automatic structures as an example for model
checking.

Alas, real world applications are quite messy, so we will avoid them like the
plague and instead apply our machinery to simple systems from discrete
dynamics, so-called one-dimensional cellular automata. And, we will only deal
with first-order logic (though many applications in CS require e.g. temporal
logic).

These have the advantage that they are very easy to explain and lead to
manageable problems: one can actually understand the finite state machines
that pop up in the decision algorithm.

And they are quite interesting as an independent subject of study, sitting at the
intersection of symbolic dynamics, computability and automata theory.

The Real World 3

J. Harrison.
Handbook of Practical Logic and Automated Reasoning.
Cambridge University Press, 2009.

E. Clarke, O. Grumberg, and D. Peled.
Model Checking.
MIT Press, 2000.

D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Patter-
son, and W.P. Thurston.
Word Processing in Groups.
Jones and Bartlett, Burlington, 1992.

The Classical World 4

Calculus Crash Course 5

That’s all, folks.

Dynamical Systems 6

Variables (bunch of real numbers)

Equations of motion (typically (partial) differential equations)

Get phase space: describes evolution over time.

Good systems are “integrable,” smooth, very tame and well-behaved. This is
an example of computational compressibility: one can figure out what happens
later without having to run the system.

Hugely successful enterprise, (almost) all of 20th century physics, including
relativity theory and quantum physics, depends on this.

Pathologies 7

Smooth functions are obviously important to describe reality, but in a way they
are really bizarre exceptions: they form a set of measure zero in the right
setting.

So if you pick a continuous function at random, with probability 1, it will be
nowhere differentiable. Calculus will be entirely useless to analyze this function.

Some would say that these functions, like their discoverers, are just
pathological; other than some deranged pure mathematicians and logicians, no
one wastes any time thinking about this nonsense.

H. Poincaré 8

Formerly, when one invented a new function, it was to
further some practical purpose; today one invents them
in order to make incorrect the reasoning of our fathers,
and nothing more will ever be accomplished by these
inventions.

Ouch.
Poincaré was not very fond of the emerging fields of set theory and logic. And,
of course, he was brilliant.

Lorenz 9

Here is a system that was discovered by E. Lorenz in 1963, in an attempt to
model atmospheric convection. His stripped-down equations are embarrassingly
simple (σ, ρ and β are parameters; these are plain ODEs):

x′ = σ(y − x)
y′ = x(ρ − z) − y

z′ = xy − βz

Someone with experience in computability theory might be a bit cautious: even
extremely simple systems can behave in a very complicated fashion under
iteration (computationally universal).

Chaos and Fractals 10

Don’t Pretend 11

Any sensible theory of physics must respect these limi-
tations, and should not invoke calculative routines that
in fact cannot be carried out.

R. Landauer (1927-1999)

The Lunatic Fringe 12

M. Tegmark.
Our Mathematical Universe.
Alfred A. Knopf, 2014.

Tegmark very much enjoys making controversial statements and getting people
all riled up; unfortunately, this particular book overshoots by a few lightyears.

The central claim: all mathematical structures correspond to physical reality.
Of course, Tegmark is a physicist, so his idea of a mathematical structure is
heavily biased – but still.

Automatic Structures 13

Recall that a relational structure is a FO structure of the form

C = ⟨A; R1, R2, . . . , Rk⟩

where the Ri are all relations (there are no functions).

Definition
A automatic structure is a relational structure where the carrier set A ⊆ Σ⋆ is
regular and all the relations Ri are automatic (aka synchronous).

Automatic is Easy 14

Theorem
Model checking for automatic structures and first-order logic is decidable.

An automatic structure C is given by

an acceptor A that recognizes A, and
synchronous transducers Ai for Ri (so really just acceptors over the padded
alphabet).

So, all we have is a list of finite state machines, a perfectly good data structure.

Discrete Phase Space 15

How do we squeeze an automatic structure out of dynamics?

Here are a few radical assumptions that bring the study of dynamical systems
into the computationally harmless realm of automata theory:

Time is discrete.

Space is discrete and one-dimensional.

Properties are discrete.

This conforms nicely to the idea that a finite amount of information should be
enough to describe a bounded region of spacetime.

The Standard Model 16

We think of space as a grid of discrete locations, which locations are often
called cells. If we assume static topology, we get something like C = Zd or
C = Nd or C = [n]d.

Time is discrete, something like Z or N or [n].

At each moment in time each cell is associated with one of a finite set Σ of
possible values that describes the local conditions at this point in spacetime. A
configuration at time t is a map C → Σ.

Lastly, there is an evolution operator � that determines the configuration at
time t + 1, given the configuration at time t.

Back to First-Order 17

So we can model a discrete phase space as a FO structure

C = ⟨C, �⟩

where we think of the evolution operator as a binary relation: x � y means
that configuration x evolves to configuration y in one step.
We will focus on the case where � is deterministic (functional), and, more
importantly, the space is one-dimensional.

The Key Idea:
The space of configurations C is a regular set of words
and � is a synchronous relation on C.

Some Typical Dynamical Systems Questions 18

The following questions are all quite natural:

Is the system reversible?

Does every state have a predecessor?

Does every state have exactly k predecessors?

Does every state have exactly k successors?

Do all orbits end in a fixed point?

Is there a limit cycle of length k?

Can a set of states B (B as in bad) be reached from some given initial
state p?

A Good Framework 19

We are only dealing with first-order logic, so some of these questions are
off-limits. In fact, they turn out to be undecidable, even if � is synchronous.
But others can be handled nicely (at least ignoring computational complexity
for the time being).

For example
∀ y ∃ x (x � y)

means that every state has a predecessor state.
And

∀ x ∃ y (x � y ∧ y � y)

means that every configuration evolves to a fixed point in (at most) one step.

More Examples 20

Assuming � is functional, no point is a fixed point:

∀ x ∃ y (x � y ∧ y ̸= x)

The system is reversible (� is injective):

∀ x, y, z (x � z ∧ y � z ⇒ x = y)

Every point has exactly two distinct predecessors:

∀ x ∃ y, z
(
y � x ∧ z � x ∧ y ̸= z ∧ ∀ u (u � x ⇒ u = y ∨ u = z)

)

1 Discretizing the World

2 Elementary Cellular Automata

3 Model Checking ECA

Elementary Cellular Automata 22

Here is the kind of discrete dynamical system we are going to analyze:
one-dimensional, binary, continuous global behavior.

For the grid of cells we have the basic options

C = Z biinfinite
C = N one-way infinite
C = [n] finite

The first two are studied the classical setting, but simulations always work with
finite configurations.

The Laws 23

Definition
A local map or local rule is a function

ρ : 23 −→ 2

Thus, a local map is just a ternary Boolean function. Note that a local map
can be specified by 8 bits, one for each 3-bit input.

So, there are exactly 223
= 256 local maps.

This is a good number: one can easily check them all out, but there might just
be enough of them for something interesting to happen.

Global Maps 24

Definition
Let 2∞ = Z → 2 denote the collection of all (biinfinite) configurations.
We can extend any local map ρ to a global map

Gρ : 2∞ −→ 2∞

by setting

Gρ(X)(i) = ρ(X(i − 1), X(i), X(i + 1))

Note that 2∞ is a wildly uncountable space, though it has lots of interesting
properties (compact, zero-dimensional, totally disconnected Hausdorff space).

Boundaries 25

Alas, this does not work for C = N: there is a cell that does not have a left
neighbor, so our definition makes no sense there. This is easy to fix:

Fixed boundary conditions: assume a phantom cell clamped in state 0.

A similar problem occurs for C = [n], now 2 cells have missing neighbors. This
time there are two solutions:

Fixed boundary conditions: assume two phantom cells clamped in state 0.

Cyclic boundary conditions: assume the grid wraps around (circle of cells).

As it turns out, the two types of boundary conditions usually lead to very
similar behavior.

Experimental Evidence 26

We would like to understand the global map Gρ induced by each of the 256
local rules ρ.

An excellent way to get a first impression is to compute a (small initial
segment) of the orbit of some configuration X under Gρ.

Of course, we can only do this in the finite case. But that is quite alright, the
dynamics on infinite configurations are well reflected in the finite scenario.

Orbits and Pictures 27

Applying Gρ t times to x we get a sequence of bit-vectors of length n.
We can get a simple picture by stacking the bit-vectors to a Boolean matrix of
dimension (t + 1) × n. Nothing is easier to plot than a Boolean matrix.
For example, local rule ρ(x, y, z) = x ⊕ z on a 1-point seed configuration
produces

ECA 28

Live demo.

1 Discretizing the World

2 Elementary Cellular Automata

3 Model Checking ECA

A Relational Structure 30

So we are looking at a structure

C = ⟨C, �⟩

where � is just Gρ, but interpreted as a binary relation.

We need to fix boundary conditions once and for all. Say, we only consider
fixed boundary conditions.

The first problem is to deal with atomic formulae, in particular

x � y

We need a transducer A� that checks that x evolves to y in one step under �.
given words u and v. Note that � is trivially length-preserving, so we don’t
have to bother with endmarkers.

The de Bruijn Automaton 31

00

01

11

10

000

001

010

011

100

101

110

111

The main idea is easy: move a window of width 2 across x. Each time the
window advances we have full information about a 3-bit block in x, here
written as edge labels.

The Basic Transducer 32

00

01

11

10

0/ρ(000)

1/ρ(001)

0/ρ(010)

1/ρ(011)

0/ρ(100)

1/ρ(101)

0/ρ(110)

1/ρ(111)

If we replace the edge labels xyz by xyz/ρ(xyz) we get a transducer that
simulates the cellular automaton. All states are initial and final, we are
interested in biinfinite runs.
Note that we ultimately want a synchronous transducer.

Wait a Moment 33

OK, so we are cheating a little bit: this idea works perfectly well if we are
dealing with the classical scenario of

2∞ = Z → 2

as carrier set.

Alas, we don’t yet have a framework for automata on infinite words, we really
need to deal with the finite case.

Because of boundary conditions, things get slightly more complicate. For the
time being, assume fixed boundary conditions.

The Finite Case 34

Here is the central problem. We are scanning two words

u:v = u1 u2 . . . un

v1 v2 . . . vn

But a synchronous transducer must read the letters in pairs, both read heads
move in lockstep.

We need to check whether v1 = ρ(0, u1, u2), and we do not know u2 after
scanning just the first bit pair.

It seems that some kind of look-ahead is required, but synchronous automata
don’t do look-ahead, they live in the here-and-now. Looks like we are sunk.

Elgot/Mezei to the Rescue 35

If we drop the synchronicity condition, there is no problem: it easy to see that
� is rational. And � is clearly length-preserving.
But remember the theorem by Elgot and Mezei:

Rational and length-preserving implies synchronous.

So our relation must be synchronous. Of course, that’s not enough: we need to
be able to construct the right transducer, not wax poetically about its
existence.

Exercise
Show that � is rational.

A Synchronous Transducer 36

Nondeterminism saves the day: we can guess what x2 is and then verify in the
next step.
Automaton A� uses state set Q = {⊥, ⊤} ∪ 23.
⊥ is the initial state, ⊤ the final state and the transitions are given by

⊥ a/e−−→ 0ab e = ρ(0, a, b)

abc
c/e−−→ bcd e = ρ(b, c, d)

abc
c/e−−→ ⊤ e = ρ(b, c, 0)

Exercises 37

Exercise
Prove that the automaton from the last slide really works.

Exercise
Build some of the transducers A� and minimize them.

Exercise
Show how to define the analogous transducer when periodic boundary
conditions are used. Prove that your construction works.

Atomic 38

In terms of a FOL formula, we now can deal with the atomic cases

x1 = x2

x1 � x2.

using two synchronous transducers A= and A�.

Since our structures are purely relational, we do not have to worry about
general terms, there is no such thing as R(f(x), y).

From Atomic to Quantifier-Free 39

Suppose we have a quantifier-free formula

φ(x1, x2, . . . , xk)

with all variables as shown. We construct a k-track machine by induction on
the subformulae of φ.

The atomic pieces read from two appropriate tracks and check � or =.

More precisely, we use variants A�,i,j and A=,i,j of the machines from above
that check that track i evolves to track j in one step or check equality.

Everything else is just Boolean combinations and we wind up with a composite
automaton Aφ

L(Aφ) = { u1:u2: . . . :uk ∈ (2k)n | C |= φ(u1, u2, . . . , uk) }

Dealing with Quantifiers 40

It is well-known that every FO formula can be written in prenex normal-form:
all quantifiers are up front, something like

∃ x1 ∃ x2 ∀ x3 ∃ x4 ∀ x5 . . . φ(x, z)

where φ is quantifier-free, x denotes the quantified variables and z stands for
the free variables. Indeed, there is a simple algorithm to convert an arbitrary
formula to PNF.

So we start with an automaton, constructed from the basic ones by Boolean
combinations, with |x| + |z| tracks. Then we eliminate all the quantified
tracks, dealing with universal quantifiers via ∀ ≡ ¬∃ ¬ and with existential
ones by projection.
This is admissible, since projection does not affect automaticity.
But note that for universal quantifiers this may require determinization to deal
with complements.

Finale Furioso 41

If φ has free variables z1, . . . , zℓ we wind up with an ℓ-track automaton Aφ

that accepts precisely those ℓ-track words that satisfy the formula:

L(Aφ) = { u1:u2: . . . :uℓ ∈ Γ ⋆
k | C |= φ(u1, u2, . . . , uℓ) }

In particular, if φ is a sentence (ℓ = 0), we get an unlabeled transition system
that has a path from I to F iff the sentence is valid.

So in the end, it all comes down to path existence and the last test is linear. Of
course, there is a bit of work to get there . . .

Efficiency 42

∨ and ∃ are linear if we allow nondeterminism.

∧ is at most quadratic via a product machine construction.

¬ is potentially exponential since we need to determinize first.
Note that universal quantifiers produce two negations.

So this is a bit disappointing: we may run out of computational steam even
when the formula is not terribly large.

A huge amount of work has gone into streamlining this and similar algorithms
to deal with instances that are of practical relevance.

Spectra 43

It should not be a surprise that the behavior of the restricted map

Gρ : 2n → 2n

in general depends on n.

This suggests a version of data model checking: we fix a specification φ and
determine all n for which φ holds. This is called the spectrum of φ.

spec(φ) = { n ∈ N | Cn |= φ }

Here Cn = ⟨2n, �⟩ is the automatic structure built from all bit-vectors of
length n only.

Written in unary, the spectrum is a regular language and thus ultimately
periodic (or semi-linear, if you prefer algebraic language).

3-Cycles 44

As an example how this might work, consider the question of whether there is a
3-cycle under Gρ on 2n. The brute-force version of the sentence φ looks like

∃ x, y, z (x � y ∧ y � z ∧ z � x ∧ x ̸= y ∧ x ̸= z ∧ y ̸= z)

But note that checking for each inequality doubles the size of the machine, so
we get something 8 times larger than the machine for the raw 3-cycle. It is
much better to realize that the last formula is equivalent to

∃ x, y, z (x � y ∧ y � z ∧ z � x ∧ x ̸= y)

Exercise
Figure out how to deal with n-cycles for arbitrary n.

The 3-Cycle Transducer 45

So, based on the better formula, we use the 3-track alphabet Σ = 2 × 2 × 2.

Given A� we concoct a product machine for the conjunctions:

C3 = A�,1,2 × A�,2,3 × A�,3,1 × U1,2

where A�,i,j tests if the word in track i evolves to the word in track j.

Machine Ui,j tests if the word in track i is different from the word in track j
and consists essentially of two copies of A�,1,2 × A�,2,3 × A�,3,1.

Projecting 46

So we get a machine C3 that is roughly cubic in the size of A� (disregarding
possible savings for accessibility).

Once C3 is built, we erase all the labels and are left with a digraph (since φ has
no free variables everything is projected away).

This digraph has a path of length n from an initial state to a final state if, and
only if, there is a 3-cycle under Gρ on 2n.

Note, though, how the machines grow if we want to test for longer cycles: the
size of Ck is bounded only by mk, where m is the size of A�, so this will not
work for long cycles.

Disclaimer I 47

Note that cellular automata exist in arbitrary dimensions d ≥ 1.

Unfortunately, this machinery applies exclusively to dimension 1: there is no
d-dimensional analogue of a finite state machine (more precisely, these
analogues don’t have the right properties).

It is known that even injectivity and surjectivity of Gρ is undecidable for
2-dimensional cellular automata, never mind the full first-order theory.

Disclaimer II 48

The machinery we just discussed for the finite case also applies, mutatis
mutandis, to the two infinite scenarios: the carrier sets are uncountable, but
the first-order theory is still decidable.

But: for this to work we have to generalize finite state machines to operate on
infinite words, and that takes a bit of effort.

In particular determinization of these generalized machines is a major
nightmare.

Tricks 49

Again, the machines produced by our algorithm tend to be very large, so one
has to be careful to deal with state-complexity.

One way of getting smaller machines is to rewrite the formula under
consideration by hand as in the 3-cycle example. A logically equivalent formula
may produce significantly smaller machines. Unfortunately, it can be quite
difficult to find better ways to express a first-order property.

If the outermost block of quantifiers is universal, the last check can be more
naturally phrased in terms of Universality rather than Emptiness. In this case
one should try to use Universality testing algorithms without complementation.

More Tricks 50

We can easily augment our decision machinery by adding additional predicates
so long as these predicates are themselves synchronous.

This can be useful as a shortcut: instead of having a formula that defines some
property (which then is translated into an automaton), we just build the
automaton directly and in an optimal way.

Interestingly, this trick can also work for properties that are not even definable
in FOL. We can extend the expressibility of our language and get smaller
machines for the logic part that way.

	Discretizing the World
	Elementary Cellular Automata
	Model Checking ECA

