
Some Annoying Transducers

Klaus Sutner

Carnegie Mellon University

1 Alphabetic Transducers

2 The Orbit Relation

Transducers 2

A transducer is a finite state machine that generates output: the transitions are
labeled by two letters:

p
a/b−→ q

Interpretation: in state p, reading letter a, the device moves to state q and
outputs b.

It is often convenient to allow whole words for b.
We only consider input deterministic transducers: if we ignore the output
labels, the resulting machine is deterministic (otherwise implementation
becomes tricky).

A Famous Transducer 3

1 2 3

4 5 6

1/0

0/ε 0/1
1/0

a/a 0/0

1/1

0/0

1/0

0/1

1/1

A Better Version 4

1/1 0/0

0/0 0/1

1/0 1/1

a/a

0/ε

1/0

This computes the Collatz 3x + 1 function: input is x00 where x is in reverse
binary.

Input/Output Deterministic Transitions 5

Input and output alphabet is always 2 = {0, 1}.

We are interested in the special case where the transitions out of state p are of
the form

p
0/0−→ q p

1/1−→ q′

or

p
0/1−→ q p

1/0−→ q′

We call p an identity or flip state, respectively.

IODAs 6

Definition
A IODA has the form T = ⟨Q, τ, q0⟩ where Q is a finite set of states, q0 the
initial state and τ ⊆ Q × 2 × 2 × Q a set of transitions as above.

The transducer defines a transduction (also denoted by τ)

τ : 2⋆ → 2⋆

in the obvious way (start at q0, follow transitions according to input labels,
return output labels).
We write τ⋆ for the iterated map

τ⋆ : 2⋆ → P(2⋆)

Note that τ⋆(x) is always finite (cardinality at most 2|x|).

Preserving Length Only 7

Length-preserving transducers are much more powerful than IODAs. E.g., an
iterated length-preserving transducer can reverse a string.

The Reachability Problem (can v be obtained from u by repeated application
of the transduction) here is trivial in a sense: we only need to check finitely
many steps.

Theorem (Latteux, Simplot, Terlutte)
Let τ be a length-preserving transduction and L a regular language. It is
undecidable whether τ⋆(L) is regular.

Arbitrary Transducers 8

Of course, Reachability in the general case is undecidable: we can simulate
computationally universal devices such as Turing machines with a general
transducer.

What is surprising, though, is that even fairly simple transducers lead to very
messy problems when iterated.

Length and Reversibility 9

For any IODA, the output function τ has special properties:

τ is trivially length-preserving

τ is injective

In fact, getting the inverse transducer is simple: switch

p
0/1−→ q p

1/0−→ q′

to

p
0/1−→ q′ p

1/0−→ q

At any rate, τ is just a permutation of 2⋆ and the components of its diagram
are all cycles, each contained in 2k for some k.

Analyzing the Diagram 10

How many cycles are there?

How long are these cycles?

How hard is it to test membership in a cycle?

How hard is it to compute the least element?

Note well: We want computational answers.

The components involve only configurations of the same length k, so k is the
key parameter.

Splitting/Doubling Cycles 11

Suppose

u0, u1, . . . , un−1

is a cycle. Then either there are two cycles

u00, u1b1, . . . , un−1bn−1 u01, u1b1, . . . , un−1bn−1

or there is a single cycle

u00, u1b1, . . . , un−1bn−1, u01, u1b1, . . . , un−1bn−1.

Hence we can organize the cycles into a binary tree.

Transducer 3820 12

p

qr

0/1

1/0

a/a

a/a

An Orbit 13

The Cycle Tree 14

The root corresponds to the fixed point ε.

Cycle Tree, cum Cycles 15

Cycle Tree, cum Roots 16

For any orbit, define its root to be the lexicographically least word on the orbit.
For a word u define root(u) to be the root of the orbit of u.

Counting Cycles 17

Lemma
There are 2⌊k/2⌋ cycles on words of length k.
The length of each cycle is 2⌈k/2⌉.

In fact, given the regularity of the cycle tree it is easy to show that the number
of cycles of length 2y on words of length x is given by the generating function

xy + 1
1 − 2x2y

Done, up to Isomorphism 18

Up to isomorphism the generating function describes the diagram of #3820
completely.

But how about the actual points? How about computational answers?

Specifically: How hard is it to test if u and v lie on the same cycle?

An obvious upper bound for words of length 2k is

O(k 2k)

Can we do better than this?

Intrinsic Coordinates 19

Suppose u has length 2k, write elements in the cycle of u as the shuffle of two
words a and b of length k:

v = a ∥ b = a1b1a2b3 . . . akbk

For each orbit, all possible a-words occur exactly once. Hence, for any
a ∈ 2k, there is a unique b such that a ∥ b lies on the orbit.

The lexicographically smallest element on the orbit has a = 0.

A Crazy Permutation 20

Again, fix some orbit in 22k.
Then for each a ∈ 2k there is a unique b ∈ 2k such that a ∥ b lies on the orbit.

If we interpret a and b as binary expansions of some integer we get a map

{0, 1, . . . , 2k − 1} −→ {0, 1, . . . , 2k − 1}

What would this map look like?

Bouncing Around 21

50 100 150 200 250

50

100

150

200

250

Computing Points on a Cycle 22

Fix an orbit and some anchor point u of length k.

Lemma
The tth point on the cycle of a such that u can be computed in time O(k3).

Lemma
Given orbit element v and some a, the unique x such that v = a ∥ x can be
computed in time O(k3).

In particular the root can be computed in time O(k3).

A Wacko Factoid 23

The claims above are all “obvious” from a bit of experimental computation.

But the proofs are annoyingly difficult. E.g., the following counting function
seems to play a role in the argument:

1
5

(
2k/2 (

1 +
√

2 − (−1)k
(
−1 +

√
2
))

+

ik (3 cos (kπ/4) + sin (kπ/4))
(
cos (kπ/2) + i

√
2 sin (kπ/2)

))

1 Alphabetic Transducers

2 The Orbit Relation

Rational Relations 25

As we have seen, finite state machines can be used to decide certain simple
relations such as lexicographic order.
How about Reachability for IODAs?

As usual, we exploit the convolution of words to produce input for our
machines (padding is not necessary here):

x:y = x1 x2 x3 . . . xk−1 xk

y1 y2 y3 . . . yk−1 yk

Orbit Language 26

We can think of a IODA T as a recognizer over 2 × 2. Hence the following
language is regular:

L(T) = { x:y | y = τ(x) }

But how about

L(T ⋆) = { x:y | x, y on same cycle }

Roots 27

The regularity of the orbit relation is closely connected to the root function.

Lemma
The orbit relation is regular if, and only if, the root function can be computed
by a transducer.

The Root Language 28

The root language root(2⋆) is connected to the cycle tree.

Lemma
The cycle tree is regular if, and only if, the root language is regular.

Orbits versus Trees 29

If the root function is a transduction then the root language is regular, so we
have:

Theorem
If an IODA transducer has a regular orbit language then its cycle tree is also
regular.

Conjecture (as of 6 months ago)
The opposite implication is false.
Specifically, #3820 has regular cycle tree but the orbit relation is irregular.

Alas . . . 30

As it turns out, #3820 has regular orbit relation. The minimal recognizer has
35 states:

0011 01 10

0011

00
11

00
110011

01

10

00
11

01

10

00

11

0110

00
11

01

10

01

10

0011

00
11

00

11
01 10

0011

01

10

0011

01

10

00
11

01

10

01

10

01

10

01

10

00
11

0011

01

10

0011

01

10

0011

01

10

01

10
01

10

00
11

01

10

001101

10

01

10

01

10

00
11

0110

00

11

01

10

0011

0011

0011

initial state

Root Transducer 31

Here is the corresponding root transducer:

0010

00 1100 11

00 1010 00

0011 01

10

01

10

00 10

00

10

00

10

10 00

00 11
01

10

1001

10

01

00 11

10

00

00

10

0011

00
11

But the root language is simply (02)⋆(0 + ε).

WTF? 32

How can a 3-state transducer produce a 35-state recognizer for the orbit
relation?

The 35-state recognizer was found by trying to approximate the allegedly
infinite recognizer for L(T ⋆): the longer the words, the bigger the diagram
should be.

True, but it turned out to be periodic after a while. Rewiring the periodic part
and minimizing produces the 35-state machine.

A More Systematic Way 33

We can associate three transductions P , Q and R with T3820 by moving the
initial state around.

Claim
The functions P , Q and R commute. Moreover P 2QR2 = I.

As a consequence, the monoid generated by P , Q and R is a commutative
group.

This is enough to show that the number of quotients of L(T ⋆) is finite.

Example Regular and Regular 34

Here is an example of another transducer that has regular orbit relation and
hence a regular cycle tree.

01 10

01

10

00

11

Cycle Tree 35

Cycle Count Function 36

0 1 2 3 4 5 6 7 8
1 0 1
2 0 2
3 0 2 1
4 0 0 4
5 0 0 2 3
6 0 0 0 4 2
7 0 0 0 2 3 2
8 0 0 0 0 4 2 2
9 0 0 0 0 2 3 2 2

10 0 0 0 0 0 4 2 2 2

Example Irregular and Irregular 37

An example of a transducer that has an irregular cycle tree and hence an
irregular orbit relation.

0:1 1:0

0:0

1:1

0:1

1:0

0:0

1:1

1 2 3 4

Cycle Tree 38

Cycle Count Function 39

0 1 2 3 4 5 6 7 8 9 10
1 0 1
2 0 0 1
3 0 0 2
4 0 0 0 2
5 0 0 0 2 1
6 0 0 0 2 3
7 0 0 0 2 5 1
8 0 0 0 0 6 3 1
9 0 0 0 0 4 6 2 1

10 0 0 0 0 2 9 3 2 1
11 0 0 0 0 2 11 6 2 2 1
12 0 0 0 0 0 6 13 4 2 2 1

Hard Questions 40

Does regular cycle tree imply regular orbit relation?

Is it decidable whether the cycle tree (orbit relation) is
regular?

Is there any hope to get some insights into the Collatz
problem via transducers?

	Alphabetic Transducers
	The Orbit Relation

