
CDM

Presburger Arithmetic

K. Sutner

Carnegie Mellon University
Spring 2025



1 Prelude

2 Presburger Arithmetic

3 Quantifier Elimination



Pentium FDIV Bug 2



Floating Point Error 3

4195835.0/3145727.0 = 1.3338204491362410025 correct
4195835.0/3145727.0 = 1.3337390689020375894 pentium

Alternatively

4195835.0 − 3145727.0 ∗ (4195835.0/3145727.0) = 0 correct
4195835.0 − 3145727.0 ∗ (4195835.0/3145727.0) = 256 pentium

This fatal bug was discovered in October 1994 by number theorist Thomas
R. Nicely, doing research in pure math. Intel did not respond well, and lost
around $500 mill.

Incidentally, this is a software problem at heart.



Turing Award 2007 4

If applied, Clarke’s model checking methods would have found the bug.
More importantly, they were powerful enough to prove that the patch Intel
concocted was indeed correct.



Ariane V 5



The Disaster 6

On June 4, 1996, the maiden flight of the European Ariane 5 rocket crashed
about 40 seconds after takeoff. The direct financial loss was about half a
billion dollars, all uninsured. An investigation showed that the explosion was
the result of a software error.

Particularly annoying is the fact that the problem came from a piece of the
software that was not needed during the crash, the Inertial Reference System.
Before lift-off certain computations are performed to align the IRS. Normally
they should be stopped at −9 seconds. However, a hold in the countdown
would require a reset of the IRS taking several hours.



The Cause 7

To avoid this nuisance, the computation was allowed to continue even after the
system had switched to flight mode.

In the Ariane 5, this caused an uncaught exception due to a floating-point
error: a conversion from a 64-bit integer (which should have been less than
215) to a 16-bit signed integer was erroneously applied to a greater number:
the “horizontal bias” of the flight depends much on the size of rocket–and
Ariane 5 was larger than its predecessors.

There was no explicit exception handler (since it presumably was not needed),
so the entire software crashed and the launcher with it.



A Verification Problem 8

Suppose you are implementing a dynamic programming algorithm that has to
fill out an n× n array X. The algorithm

initializes the first row and the first column,

then fills in the whole array according to

X[i, j] = func(X[i− 1, j], X[i, j − 1])

lastly, reads off the result in X[n− 1, n− 1].

We would like to check that all the array access operations are safe, and that
the result is properly computed.
And, we want to do so automatically.



Filling In 9

One of the problems is that the recurrence can be implemented in several ways:
// column by column
for i = 1 .. n-1 do
for j = 1 .. n-1 do

X[i,j] = func( X[i-1,j], X[i,j-1] )

// row by row
for j = 1 .. n-1 do
for i = 1 .. n-1 do

X[i,j] = func( X[i-1,j], X[i,j-1] )

// by diagonal
for d = 1 .. 2n-3 do
for i = 1 .. d do

X[i,d-i+1] = func( X[i-1,d-i+1], X[i,d-i] )



Correctness 10

For a human, it is easy to see that the row-by-row and column-by-column
methods are correct.

The diagonal approach already requires a bit of thought: why 2n− 3?

The good news is that the index arithmetic involved in the algorithms is quite
simple, essentially all we need is addition and order. That is very fortunate,
since arithmetic in general is a tough nut to crack.

Question:
Can we get away with some decidable “baby arithmetic”?



1 Prelude

2 Presburger Arithmetic

3 Quantifier Elimination



The Obstruction 12

Theorem (Y. Matiyasevic, 1970)
It is undecidable whether a Diophantine equation has a solution in the integers.

Suppose we wanted to build a reasoning system for ordinary Dedekind-Peano
Arithmetic (DPA). So we are trying to axiomatize the structure

N = ⟨N,+, ∗, 0, 1;<⟩

Dedekind and Peano figured out how to do this in 1888/1889, respectively.
Similar axiomatizations can be found for Z.

The main idea is that both addition and multiplication come down to induction
(recursion) applied to the successor function x 7→ x+ 1.



Existential Theory 13

But there is a problem: the terms in (DPA) are essentially multivariate
polynomials with integral coefficients:

t(x) =
∑

e

ce xe

where xe = xe1
1 x

e2
2 . . . x

ek
k .

So a decision algorithm would have to deal in particular with sentences of the
form

∃ x
(
t(x) = 0

)
Matiyasevic’s celebrated theorem shows that this is already undecidable. Even
the existential part of arithmetic is undecidable, never mind assertions with
multiple quantifiers.



And Worse 14

Never mind more complicated assertions with alternating quantifiers and the
like:

∀x∃u, v
(
even(x) ∧ x ≥ 4 ⇒ x = u+ v ∧ prime(u) ∧ prime(v)

)
∀x∃ y

(
x < y ∧ prime(y) ∧ prime(y + 2)

)
even(x) ⇔ ∃u

(
x = u+ u

)
prime(x) ⇔ 2 ≤ x ∧ ∀u, v

(
x = u ∗ v ⇒ u = 1 ∨ v = 1

)

If we want to decide sentences in arithmetic, we need to use something weaker
than Dedekind-Peano arithmetic. Here is a radical proposal: let’s just forget
about multiplication.



Presburger Arithmetic 15

Here is a radical proposal: let’s just forget about multiplication. More precisely,
we restrict ourselves to the structure

N− = ⟨N,+, 0, 1;<⟩

As far as first-order logic is concerned, this structure is actually a bit overly
verbose, we could get away with just ⟨N,+⟩. To see why, note that we can
define all the rest:

x = 0 ∀ z (x+ z = z)
x ≤ y ∃ z (x+ z = y)
x < y x ≤ y ∧ x ̸= y

x = 1 0 < x ∧ ∀ z (0 < z ⇒ x ≤ z)
x = y + 1 y < x ∧ ∀ z (y < z ⇒ x ≤ z)



Admissible Operations 16

Full multiplication is absent, but multiplication by a constant is available; for
example

y = 3 ∗ x ⇐⇒ y = x+ x+ x

We can also do modular arithmetic with fixed modulus:

y = x mod 3 ⇐⇒ ∃ z (x = 3 ∗ z + y ∧ y < 3)
y = x div 3 ⇐⇒ ∃ z (x = 3 ∗ y + z ∧ z < 3)

This may seem pretty feeble and it does turn out to be the case that sets of
numbers definable in Presburger arithmetic are fairly simple. Alas, finding a
decision algorithm is not so easy.



Terms 17

The terms in this language are pretty weak, no more than affine combinations:

t(x) = c+
∑

cixi

where all the c, ci are constant, c, ci ∈ N.

This is easy to check by induction on terms.

In particular, we have lost multivariate polynomials–which is a good thing,
since otherwise Matiyasevic’s theorem would automatically doom any attempt
at finding a decision algorithm.



Semilinear Sets 18

Definition
A set A ⊆ N is linear if A = { c+

∑
cixi | xi ≥ 0 }.

Here c is the constant and the ci are the periods.
A set A ⊆ N is semilinear if it is the finite union of linear sets.

Intuitively, the semilinear sets are the ultimately periodic subsets of N.

Actually, this is just the one-dimensional case; one can generalize easily to
subsets of Nd by letting c, ci ∈ Nd.

Note that every finite set is semilinear.



Boolean Algebra 19

Lemma
Semilinear sets are closed under union, intersection and complement.

The main idea is that A = { c+
∑

cixi | xi ≥ 0 } can be rewritten in the form

A = F ∪ { c+ d x | x ≥ 0 }

where d = gcd(c1, . . . , cn).

The complement of A is then clearly semilinear.

Exercise
Figure out the details.



Definability 20

Clearly, semilinear sets are definable in Presburger Arithmetic:

z ∈ A ⇐⇒ ∃ x
(
t1(x) = z ∨ t2(x) = z ∨ . . . ∨ tk(x) = z

)

Theorem (Ginsburg, Spanier 1964)
The sets definable in Presburger Arithmetic are exactly the semilinear sets.

This is rather surprising: the formula above is purely existential; your intuition
might tell you that more complicated quantifier structures would produce more
complicated sets.



Digression: Tally Languages 21

Suppose we code natural numbers in unary: n 7→ an.

Then every set A ⊆ N corresponds to a tally language LA ⊆ {a}⋆.

Theorem
A set A ⊆ N is semilinear if, and only if, LA is regular.

This follows directly from the fact that DFAs over a one-letter alphabet all
have the shape of a lasso.

It also provides a proof that semilinear sets form a Boolean algebra.

This is one example where a characterization in terms of finite state machines
is (mildly) useful.



How Bad Can It Be? 22

The previous results suggest that Presburger arithmetic should be fairly simple.
So one might be tempted to take on the following challenge:

Find a decision algorithm for Presburger arithmetic.

Here is a fairly simple formula in Presburger arithmetic:

Φ ≡ ∃u ∀ v
(
u < v ⇒ ∃x, y (3x+ 5y = v)

)
How would a decision algorithm tackle this formula?

A human having suffered through 21128/15151 knows the answer is: true,
since 3 and 5 are coprime, but the proof requires a bit of basic number theory.



Really Bad 23

Worse, the problem naturally generalizes to several multipliers. One wants to
compute the largest number v such that

v = a ◦ x = a1x1 + a2x2 + . . .+ adxd

has no solution x ∈ Nd.

This is often written as the Frobenius function g(a1, . . . , ad).

We can easily define the Frobenius function in Presburger arithmetic:

g(a) = b ⇐⇒ ¬∃ x (b = a ◦ x) ∧ ∀ z > b ∃ x (z = a ◦ x)



So What? 24

The only easy proposition about the Frobenius function is the 2-dimensional
case:

g(a1, a2) = a1a2 − a1 − a2

The general case is notoriously hard. E.g., it is NP-hard to compute g(a).
There is a polynomial time algorithm when d is fixed, though.

Here is the rub: Any general decision algorithm would provide at least some
sort of insight into to the Frobenius function. So, there is really no hope that
such an algorithm could be simple.



1 Prelude

2 Presburger Arithmetic

3 Quantifier Elimination



Presburger’s Approach 26

Presburger used an important method called quantifier elimination: by
transforming a formula into another, equivalent one that has one fewer
quantifiers. Ultimately, we can get rid of all quantifiers.

The remaining quantifier-free formula is equivalent to the original one, and is
easily tested for validity.

So a single step takes us from

Φ = ∃x1 ∀x2 . . . Qn xn ∃ z︸︷︷︸
kill

φ(z,x)

to an equivalent formula

Φ′ = ∃x1 ∀x2 . . . Qn xn φ
′(x)

where the elimination variable z is no longer present.

Universal quantifiers are handled via ∀x ≡ ¬ ∃x ¬.



Example 27

Suppose we want to eliminate ∃ z in

2x+ 4y − 3z < 7 ∧ 3x− y + 2z < −4

Rearrange to get an interval

2x+ 4y − 7 < 3z ∧ 2z < −3x+ y − 4

Scale the z terms

4x+ 8y − 14 < 6z ∧ 6z < −9x+ 3y − 12

Over Q, this is equivalent to

0 < −13x− 5y + 2

Unfortunately, the last step, while correct over Q, does not work over Z.
There we have to make sure that there is a number divisible by 6 in the interval.



Boosting the Language 28

To handle this problem, we enlarge our domain from N to Z: this is fine, we
can recover the naturals by adding constraints 0 ≤ x.

Next we expand our language slightly (this is critical, QE fails for the original
language).

Add a constant c for each integer.

Add the subtraction operation x− y.

Add a multiplication function x 7→ c ∗ x for each integer c.

Add a divisibility predicate c | x for each integer c.

We won’t introduce special symbols for the new multiplication function and
divisibility predicate.



Nothing New 29

The key point is that these extensions do not change the expressiveness of our
system, we can always translate back into the original Presburger language.

x− y = z x = y + z

3 ∗ x = z x+ x+ x = z

3 | x ∃ z (3 ∗ z = x)

Note the hidden existential quantifier in the divisibility relation. As a
consequence, we can recursively remove quantifiers in the new language.

Note that all terms in the extended language are still linear multinomials.



The Main Idea 30

We would like to construct suitable terms ti that do not contain z such that

∃ z φ(z,x) ⇐⇒ φ(t1,x) ∨ φ(t2,x) ∨ . . . ∨ φ(tk,x)

Since an existential quantifier is a kind of disjunction, this is not entirely
perplexing. Of course, we need a finite disjunction even when the domain is
infinite.

Note that ⇐ holds automatically, but ⇒ requires work.

This trick is often used in quantifier elimination.



Cleanup 31

We want our formulae to have a simple, uniform syntactic structure. To this
end, we eliminate equalities, non-equalities and non-divisibility assertions.

t1 = t2 ; t1 < t2 + 1 ∧ t2 < t1 + 1

t1 ̸= t2 ; t1 < t2 ∨ t2 < t1

¬(t1 < t2) ; t2 < t1 + 1

¬(c | t) ;

c−1∨
i=1

c | t+ i

Logically these rewrite steps are quite straightforward, but note that the size of
the formula increases. E.g., the first rule more or less doubles the size.



Using Normal Forms 32

We may safely assume that φ is in disjunctive normal form. Since

∃ z
(
φ1(z) ∨ φ2(z)

)
⇐⇒ ∃ z φ1(z) ∨ ∃ z φ2(z)

it suffices to remove the quantifier from each of the conjuncts
ψ = ψ1 ∧ ψ2 ∧ . . . ∧ ψk. Note that all the ψi are just atomic formulae.

We may also assume that z actually occurs in ψi since

∃ z
(
ψ1(z,x) ∧ ψ2(x)

)
⇐⇒ ∃ z ψ1(z,x) ∧ ψ2(x)

So we are left with a conjunction of atomic formulae that all contain z, plus
some other variables x.



The Key Problem 33

We can rearrange things a bit to get a formula that looks like

Ψ(z) =
∧

ri < aiz ∧
∧

biz < sj ∧
∧

ck |
(
dkz + tk

)
where the ri, si and ti are all terms (usually containing x), but the the ai, bi,
ci and di are constants.

So we have lower bounds, upper bounds and divisibility constraints, and we
have to determine whether there is an integer z that fits the bill.



Massaging Ψ 34

Here is a strange trick to further simplify the bound-divisibility formula.

Inane Observation:

s < t ⇐⇒ ks < kt c | t ⇐⇒ kc | kt

for all positive k.

Now let µ be the least common multiple of all the ai, bi and ci. By multiplying
each of the bound-divisibility terms, we can make sure that the coefficient of z
everywhere is ±µ.

Hence we can substitute a new variable Z for µ z and we get the temporary
equivalent formula

∃Z
(
Ψ0(Z) ∧ µ | Z

)



Exposing The Variable 35

It may look like we have made things worse in Φ, but note that the coefficients
of Z are now ±1.

Hence, we can rearrange the terms in Ψ0 one more time to get

Ψ ′(z) =
∧

ri < z ∧
∧

z < sj ∧
∧

ck | (z + tk)

We can add the divisibility constraint µ | Z to the last conjunction, so Ψ ′

already is equivalent to our temporary expression.

If we ignore the divisibility constraints, then this is equivalent to∧
ij

ri + 1 < sj

and we have successfully eliminated z.



Finale Furioso 36

Assume there is at least one lower bound. Then the following z-free formula Φ
is equivalent to ∃ z Ψ(z):

Φ =
∨

i

∨
k

Ψ ′(ri + k)

where the index k is supposed to range up to C, the least common multiple of
all the divisors ci in Ψ ′.

If there are no lower bounds on z, we can ignore the upper bounds, too.
Divisibility can still be handled by

Φ =
∨

k

Ψ ′(k)



Example: Frobenius 37

Φ = ∃u ∀ v ∃x, y
(
u < v ⇒ 3x+ 5y = v

)
Ψ(z) = u < v ⇒ 3x+ 5z = v

≡ ¬(u < v) ∨
(
v < 3x+ 5z + 1 ∧ 3x+ 5z < v + 1

)
Rearrange for upper/lower bounds, drop z-free part(

v − 3x− 1 < 5z ∧ 5z < v − 3x+ 1
)

Expose and rescale the variable(
v − 3x− 1 < z ∧ z < v − 3x+ 1 ∧ 5 | z

)
There is one lower/upper bound and one divisibility constraint.



Round 1 38

Eliminate the variable via a disjunction:∧
ℓ∈[5]

(
v−3x−1 < v−3x−1+ℓ∧v−3x−1+ℓ < v−3x+1∧5 | v−3x−1+ℓ

)
With very basic simplifications of inequalities this turns into∧

ℓ∈[5]

(
⊤ ∧ ℓ < 2 ∧ 5 | v − 3x− 1 + ℓ

)
and then to 5 | v − 3x.

This leaves the equivalent formula

Φ = ∃u ∀ v ∃x
(
u < v ⇒ 5 | v − 3x

)



Round 2 39

This time we work on

Ψ(z) = 5 | v − 3z
≡ 5 | v − z ∧ 3 | z

≡
∨

ℓ∈[15]

(
3 | ℓ ∧ 5 | v − ℓ

)
Again we need some minor simplification mechanism to simplify this to∨

ℓ∈D

(
5 | v − ℓ

)
D = {3, 6, 9, 12, 15}

This leaves the equivalent formula

Φ = ∃u ∀ v
(
u < v ⇒

∨
ℓ∈D

(
5 | v − ℓ

))



Round 3 40

This time we have deal with a universal quantifier, so we need to convert to an
existential one plus two negations.

Φ = ∃u¬∃ v
(
u < v ∧

∧
ℓ∈D

(
5 ̸ | v − ℓ

))
We have to remove the negation in front of divisibility.

Φ = ∃u¬∃ v
(
u < v ∧

∧
ℓ∈D

∨
i∈[4]

(
5 | v − ℓ+ i

))
The matrix is now in CNF but we need DNF.

In this case, this comes down to “multiplying out” and produces a much longer
formula: a priori there are 45 = 1024 terms in the DNF.



Round 3.5 and 4 41

Again, we resort to algebraic simplification to avoid insanely large expressions.

The condition really reads ∧
ℓ∈D

∨
i∈[4]

(
v = ℓ− i mod 5

)
But D mod 5 = {3, 1, 4, 2, 0}, so for every v there is some ℓ ∈ D such that
v − ℓ = 0 mod 5. Hence the whole formula simplifies to ⊥.

The second negation turns this into ⊤ and the last quantifier falls by the
wayside: the formula is true.



Bad Coefficients 42

How about the formula

Φ = ∃u∀ v ∃x, y
(
u < v ⇒ 6x+ 10y = v

)
The algorithm works along the same lines as in the last example, except that
this time wind up with

D = {6, 12, 18, 24, 30}

and the critical assertion

∃ v
(
u < v ∧

∧
ℓ∈D

∨
i∈[9]

(
10 | v − ℓ+ i

))
turns out to be true (in fact D = {6, 12} would suffice). Negation turns this
into false, and the whole formula is invalid.



History 43

In 1929, Presburger showed that Dedekind-Peano arithmetic without mul-
tiplication (Presburger arithmetic) is decidable.

In 1930, Skolem proved that Dedekind-Peano arithmetic without addition
(Skolem arithmetic) is decidable.

In 1931, Gödel showed that full Dedekind-Peano arithmetic (actually: any
reasonable arithmetic) is incomplete and hence necessarily undecidable.

In 1948, Tarski showed that real arithmetic is decidable.

In 1970, Matiyasevic showed that Diophantine equations are undecidable.



Complexity 44

Once decidability is established, the next question is efficiency: can the
algorithm be used for potential applications?

It should be clear from the quantifier elimination process given here that an
implementation is somewhat messy: the number of rounds is the same as the
number of variables, but the formulae grow substantially.

As stated, the algorithm is not elementary (no fixed-size stack of 2s will do):
e.g., the conversion from CNF to DNF could blow up exponentially in earch
round.



Better Algorithms 45

The good news is that, with more effort, one can get the worst-case running
time down to “just” triple-exponential

O
(
222cn )

On the other hand, it turns out that there is no algorithm, regardless of the
approach it might be based on, that is better than doubly exponential. Of
course, the lower bounds are based on somewhat artificially constructed inputs.

Ω
(
22cn)

So the real challenge is to find an algorithm that works reasonably well on
inputs that actually appear in applications such as theorem proving and
program verification.


	Prelude
	Presburger Arithmetic
	Quantifier Elimination

