
Model Checking and Rational Relations

Klaus Sutner

Carnegie Mellon University
Spring 2023

1 Proof Theory

2 Model Checking

3 Rational Relations

Truth 2

Recall our notion of validity: φ is valid iff A |= φ for all structures A of the
right signature. In other words, we can interpret the meaning of the non-logical
symbols any which way we like. The meaning of the logical symbols is fixed,
however, ∧ means and, basta.

Very often, one is instead interested in truth over a single structure. For
example, in arithmetic one wants to know whether N |= φ.

Is this a bug or a feature for first-order logic?

Proofs 3

We are not going to get involved with technical details, but one of the great
features of first-order logic is that it has a very nice proof theory.

One can set up a few proof rules that encapsulate the kind of reasoning that is
used (in an informal manner) in all mathematical proofs. For example, here are
some possible rules for propositional logic:

expansion φ

ψ ∨ φ

contraction φ ∨ φ

φ

modus ponens φ φ ⇒ ψ

ψ

Note that this is really just so much wordprocessing.

Quantification 4

To handle quantifiers, one needs rules along the lines of

ϕ(t)
∃xϕ(x)

(∃i)
∃xϕ(x)
ϕ(c)

(∃e)

ϕ(c)
∀xϕ(x)

(∀i)
∀xϕ(x)
ϕ(t)

(∀e)

where x is a variable, c a constant, and t a term.

Warning: While these rules are correct in spirit, as stated they are not sound.
We need some additional technical conditions, take a look at any basic
textbook (a fairly painless one is A Mathematical Introduction to Logic by
H.B. Enderton).

Provability 5

At any rate, using a collection of proof rules we can define a notion of
provability or derivability, written Γ ⊢ φ, meaning:

φ can be derived from the standard axioms of logic and Γ ,
using only a few given proof rules.

This is also called syntactic entailment. It turns out to be an accurate
representation of what mathematicians mean by “proof.” Of course, this is not
how proofs are written by the “working mathematician,” but it seems that they
could† be rephrased this way.

†Formalizing published proofs requires a substantial amount of qualified manpower; support
systems are getting better but are still a bit raw.

Proof and Computability 6

A single step in a proof φ ⊢1 ψ is brutally simple, easily primitive recursive.
Suppose we have a decidable set of axioms Γ , and define the theory of Γ to be
the set of theorems provable from Γ :

Th(Γ) = {φ | Γ ⊢ φ }

Then Th(Γ) is semidecidable. This is easiest to see from the perspective a
recursively enumerability: we can systematically generate all possible proofs in
some natural order.

Alas, that’s where it ends: for many Γ the theory is not decidable.

For example, the standard group axioms produce an undecidable theory.
On the other hand, Abelian groups produce a decidable theory.

Axioms 7

In pure mathematical logic, it is perfectly fine to consider sets of axioms Γ that
are arbitrarily complicated: undecidable or even uncountable (using an
uncountable language).

But in the computational universe we will insist that any reasonable set of
axioms is decidable: otherwise we cannot check whether a given argument is a
correct proof. All standard axiom systems of math are easily decidable. So the
theories are semidecidable.

Note we still get a semidecidable theory even when Γ is only semidecidable,
but that’s already pushing things a bit. Civilized axioms should not be based
on the Halting problem.

Semantic Entailment 8

On the side of structures and models, we have already seen a detailed definition
of the notion of semantic entailment or semantic consequence, in symbols
Γ |= φ, meaning that for all structures A:

A |= Γ implies A |= φ.

For example, if Γ are the standard group axioms, then the formula

φ ≡
(
(x ∗ y)−1 = y−1 ∗ x−1)

is a consequence of Γ . In this case, it is not hard to see that indeed Γ ⊢ φ (in
fact, this does not even require FOL, a less complicated equational logic is
good enough).

Example 9

Let

(inj) ≡ ∀x, y
(
f(x) = f(y) ⇒ x = y

)
(surj) ≡ ∀x ∃ y

(
f(y) = x

)
Then for all n

(inj),Cnt=n |= (surj)

(surj),Cnt=n |= (inj)

(inj),¬(surj) |= ¬Cnt=n

The Miracle 10

So proofs are relatively simple syntactic objects. Semantic entailment, on the
other hand, inevitably involves set theory and seems very complicated: we have
to deal with all FO structures of some signature. How are we supposed to know
what these look like?

Theorem (Completeness Theorem, Gödel 1930)
First-order logic is sound and complete:

Γ ⊢ φ ⇐⇒ Γ |= φ

This looked like a huge step forward in Hilbert’s dream: all questions about
structures can be solved by looking at (strictly finitary, syntactic) proofs.

The Catastrophe 11

But if we consider particular structures, such as N, then this connection
collapses.

For example, Dedekind-Peano Arithmetic, the standard axiom system for
elementary arithmetic, cannot prove all sentences φ such that N |= φ.

Worse, Gödel showed that in his famous Incompleteness Theorem that
Dedekind and Peano did not just make a mistake: any attempt at axiomatizing
arithmetic similarly fails: there are always true statements of arithmetic that
are not provable in a particular FOL axiom system.

Again: we can’t do
Γ = all φ true in N

since this set of “axioms” is highly undecidable.

Compactness 12

Gödel’s completeness theorem has a slightly unnerving consequence:

Theorem (Compactness Theorem, Gödel 1930)
Γ has a model if, and only, if every finite Γ0 ⊆ Γ has a model.

This is positively wild, intuitively one would expect to be able to exploit
infinitely many axioms (say, with infinitely many constants) to construct weird
conditions, when every finite subset is perfectly harmless.

Alas, it is only the finite subsets that matter as far as the existence of a model
is concerned.

Application: Finite Structures 13

Lemma
The class of all finite structures (of some signature) is not axiomatizable.

For assume that Γ is some axiom system that characterizes finite structures.
Hence Γ has arbitrarily large finite models. But then Γ already must have an
infinite model.

To see this, add new constants ci, i ∈ N, to the language and add new axioms

ci ̸= cj for i < j

to Γ to obtain an extension Γ ′.

Every finite subset of Γ ′ has a model; by compactness Γ ′ has a model which
must be infinite by choice of the additional axioms.

Application: Infinite Structures 14

Lemma
The class of all infinite structures (of some signature) is not finitely
axiomatizable.

For otherwise the class of finite structures would also be axiomatizable: a finite
set of axioms is like a single formula: just take the conjunction of all the
axioms. That single formula can be negated.

But note that the class of infinite structures is FO definable: we can use
infinitely many sentences of the form “there are at least n elements”.

Cnt≥n ≡ ∃x1, . . . , xn (x1 ̸= x2 ∧ x1 ̸= x3 ∧ . . . ∧ xn−1 ̸= xn)

Aside: Nonstandard Models 15

Gödel’s completeness theorem is perfectly correct, so why does Dedekind-Peano
arithmetic fail? It seems to describe the properties of N very nicely.

But: we can use the construction from slide 13 to show that there are strange
models of the Dedekind-Peano axioms that look very different from N: they
contain “infinitely large natural numbers.” These are called non-standard
models and give rise to non-standard arithmetic.

The weird-but-true assertions that Peano arithmetic cannot prove fail in these
weird, unintended models. In a sense, first-order logic simply fails at the task of
pinning down arithmetic.

FOL is much better at describing whole classes of structures. For example, the
class of all groups is no problem.

Nonstandard Naturals 16

N . . .Z . . .Z . . .Z . . .︸ ︷︷ ︸
Q

With a little effort one can show that a nonstandard model starts with a copy
of the ordinary naturals, followed by Q-many copies of the ordinary integers.
You’re welcome.

Nonstandard Models are Great 17

One can also produce non-standard models of real arithmetic, often written R⋆.

Now suppose N ∈ R⋆ is a “natural number” that has the property that

1+1+ . . .+1+1︸ ︷︷ ︸
n

< N

for all actual natural numbers n. The compactness argument used to construct
R⋆ produces these things automatically.

Then δ = 1/N is a perfectly good infinitesimal, realizing Leibniz’s dream—just
300 years too late.

Exercises 18

Exercise
Try to axiomatize fields, finite fields, fields of characteristic p or 0, ordered
fields, algebraically closed fields. Try the reals.

Exercise
Use similar arguments as on slide 13 to show that there is an infinite field of
characteristic 2. By contrast, give an algebraic construction of such a field.

Exercise
Fill in the details in the proof on slide 14. Why is it critical that the axiom
system is finite?

1 Proof Theory

2 Model Checking

3 Rational Relations

First-order Theories 20

Model checking is CS terminology and fairly recent, in standard mathematical
logic one usually speaks about the Suppose C is some first-order structure of
signature Σ. The first-order theory†or complete diagram of C is defined to be

Th(C) = {φ sentence | C |= φ }

Here φ is any sentence (formula without free variables) of signature Σ. So the
theory is nothing but the view of C through the lens of first-order logic,
everything we can express about C in this framework.

Th(C) can easily be coded as natural numbers or strings, so a FO theory might
well be decidable.

†Not great terminology, since “theory” is also used in connection with axioms and derivations.

The Dream 21

ϕ





no

yes

The big problem: the formula is a finite, discrete structure and can be input for
an algorithm. But the structure C lives in set theory la-la-land, so how are we
going to turn it into input?

Finite Structures 22

For finite structures C, there is a straightforward solution: we can write down
lookup tables for all the functions and relations. To check validity of a sentence
over a finite structure, we can essentially just implement Tarski’s definition of
truth (recursion over the buildup of the formula).

Testing truth of the matrix of a formula, given bindings for all the quantified
variables, really comes down to repeated table lookup. To deal with quantifiers
we use loops ranging over the finite universe. So the algorithm is certainly
primitive recursive.

The RealWorldTM 23

While finite structures are amenable in principle, efficiency is a major issue. A
closer look shows that PSPACE is already enough to handle finite model
checking (we can easily set up all the necessary loops in polynomial space).
Somewhat reassuring, but cold comfort in the end.

In fact, even when A = {0, 1} and we only have the standard Boolean
operations, validity checking for FOL formula is PSPACE-complete (this
problem is essentially QBF: quantified Boolean formulae).

Another problem is that a finite structure may be very large so that
maintaining lookup table is not possible in practice. One may have to resort to
succinct presentations that complicate matters greatly at the complexity level
(just think about an Intel chip).

Computable Structures 24

One major step towards infinite structures is to consider computable structures
where the carrier set is N (or a subset thereof) and all the functions and
relations are computable.

The representation of C would then be a collection of computable functions,
each given by a program. This setup rules out uncountable structures and a
great many countable ones, too.

A restriction to computable structures may seem entirely reasonable; after all,
if we cannot, say, determine whether a particular relation holds of two
elements, how could we possibly come up with a model checking algorithm?

The Mother of all Computable Structures 25

The prime example for a computable structure is the natural numbers with the
usual operations of arithmetic:

N = ⟨N; +, ·, 0, 1, <⟩

Incidentally, this is the only computable model of the Dedekind-Peano axioms:
none of the non-standard models provided by the compactness theorem can be
computable.

Theorem
The theory of N is undecidable.

Horribly, terribly, hopelessly undecidable, in fact. Even single quantifiers wreak
havoc.

☠☠☠☠☠

Presburger Arithmetic 26

So is this all this truth checking business just a pipedream?

No, we just need to simplify matters more. Presburger arithmetic uses the
language L(+,−, 0, 1;<) of signature (2, 2, 0, 0; 2), informally this is arithmetic
without multiplication.

Theorem (M. Presburger, 1929)
Presburger arithmetic is decidable.

We’ll give a complete proof based on finite state machines. Unsurprisingly,
Presburger’s algorithm is triple exponential: even for quantifier-free formulae
the problem is NP-hard.

Better Numbers 27

Interestingly, replacing integers by rationals in full arithmetic does not help:

Theorem (J. Robinson, 1948)
The theory of the rationals with addition and multiplication is undecidable.

Somewhat counterintuitively, replacing the rationals by the reals (an
uncountable structure, no less) makes things easier: now the theory is
decidable by a famous result by Tarski.

Theorem (A. Tarski, 1948)
The theory of the reals with addition and multiplication is decidable.

But note: the structure here is fixed once and for all, we don’t have to worry
about how it could be somehow transmogrified into suitable input.

Quantifier Elimination 28

As a consequence, basic geometry is decidable. This is interesting e.g. for
robotics.

The theorem is proved by a very interesting technique that provides a direct
decision algorithm: quantifier elimination, meaning that a quantified formula is
transformed into an equivalent one without the quantifier:

∃xφ(x) ⇝ φ̂

The transformation is easily computable.

Tarski’s original method was highly inefficient, though (not bounded by a stack
of exponentials). There are better methods now, but the complexity is provably
doubly exponential.

The CS Angle 29

Deciding truth over some structure is a central topic in theoretical CS. One big
difference is that the “structures” in question here are a bit more general:
classical FO structures, protocols, software, hardware. And usually one needs
query languages beyond just FOL.

So it makes sense to have special terminology, one speaks of model checking.
Here is the version limited to just first-order.

Problem: Model Checking
Instance: A FO structure C and a FO sentence φ.
Question: Is φ valid over C?

MC Variant: Fixed Structure 30

Clearly, it can be very interesting to solve the model checking problem even
when the structure C is fixed. For fixed structures one often speaks of
expression model checking.

Problem: Expression Model Checking (for C)
Instance: A FO sentence φ.
Question: Is φ valid over C?

EMC for N is undecidable, but for Presburger arithmetic there is a decision
algorithm.

MC Variant: Fixed Formula 31

Here is another variant of model checking that may seem slightly less natural:
the formula is fixed and the structure varies.

Problem: Data Model Checking
Instance: A FO structure C.
Question: Is φ valid over C?

Usually the class of structures under consideration is fairly narrow: one can
think of this as a classification problem. For example, one might want to know
whether a cellular automaton is reversible (see below).

In CS one often speaks of data complexity in connection with this variant.

Battleplan 32

We will work with structures that are very easily computable, using only finite
state machines to describe the carrier set, the functions and the relations.

As concrete examples, we use

Cellular Automata
This is the fun-and-games part, plus it is really easy to see how basic deci-
sion procedures work in this setting.

Presburger Arithmetic
This is where real applications live, there are more technicalities here.

Cellular Automata 33

Cellular automata were invented by the universal 20th century genius John von
Neumann. He was interested in the idea of settling Mars and realized that
there is no realistic way to send huge amounts of equipment and large numbers
of humans to another planet.

His solution: send a few machines and have them do all the preparatory work.
For this to work, the machines have to be capable of self-replication: first, they
make multiple copies of themselves, then they perform the actual work (like
producing large amounts of oxygen).

Following a suggestion by Ulam, von Neumann came up with a solution based
on a two-dimensional cellular automaton with 29 states. By comparison,
Conway’s infamous Game-of-Life CA has only 2 states.

Implementation 34

Dimension One 35

Unfortunately, two-dimensional cellular automata are already too complicated.
We will use one-dimensional CA as a cheap source of examples.

Definition (Elementary Cellular Automaton (ECA))
A ternary Boolean function f : 23 → 2 is called an (elementary) local map or
local rule. The corresponding global map or global rule Gf : 2Z −→ 2Z is
defined by

Gf (x)(i) = f(xi−1, xi, xi+1)

The elements of 2Z are configurations.

We may also write Gf on occasion to avoid confusion.

Hence there are 256 ECA and they can by indexed naturally as 0 ≤ e < 256.

General Case 36

ECA are already amazingly and unexpectedly complicated. Things get even
more interesting when we generalize a bit: We can allow more than 2 states,
and we can look at neighbors the are further away. Local maps then look like

f : Σ2r+1 → Σ

and the global maps are ΣZ −→ ΣZ (r is the radius of the CA and k = |Σ|).

Note that there are kk2r+1
such general cellular automata. For k = 3 and

r = 2 this produces

871896424859609582029110705858607716969640724047317500855252194379
90967093723439943475549906831683116791055225665627 ≈ 8.72 × 10115

For k = 8, r = 2 the number increases to 2.84 × 1029592 As far as search is
concerned, these numbers might as well be infinite.

Physics-Like Models of Computation 37

One can think of a CA as a discrete-time, discrete-space model of physics
where the local rule encapsulates the kind of physics at work in the particular
CA. Of course, for most local maps the physics makes little sense, but one can
custom design rules that model, say, fluid dynamics. Given massively parallel
hardware like the Connection Machine, this approach once held great hope for
efficient physics simulations.

It should be intuitively clear that a 1-dim CA can simulate a Turing machine,
so questions about the long-term evolution of a configuration are bound to be
undecidable.

But questions that are more “local” might be manageable in general, and
“simple” local rules might also be workable.

https://en.wikipedia.org/wiki/Connection_Machine

Feynman 38

It bothers me that, according to the laws as we understand them
today, it takes a computing machine an infinite number of logical
operations to figure out what goes on in no matter how tiny a
region of space, and no matter how tiny a region of time. How
can all that be going on in that tiny space? Why should it take
an infinite amount of logic to figure out what a tiny piece of
space-time is going to do?
So I have often made the hypothesis that ultimately physics
will not require a mathematical statement, that in the end the
machinery will be revealed and the laws will turn out to be simple,
like the checker board with all its apparent complexities.

R. Feynman, 1965

Digital Mechanics 39

One can push this idea to the point of trying to develop a purely digital model
of physics, a program carried out be Ed Fredkin†.

Space has been chopped up into discrete cells, each cell requires only one a few
bits of information to describe its current state. Time is also discrete, and this
system evolves according to a simple local map that is uniform and
synchronized throughout the space. There is no spooky action at a distance.

Admittedly, this makes much more sense for 2- and 3-dimensional cellular
automata.

†Incidentally, Feynman did not agree with Fredkin’s ideas in general.

Cellular 40

With a view towards the physics angle, one thinks of locations x ∈ Z of a
configuration as cells, with each cell carrying a particular state (which is chosen
from a finite set of possible states.

In many wasy, a biinfinite one-dimensional grid is the most natural setting, but
one can also consider one-way infinitude configurations so that the global map
takes the form

Gf : 2N −→ 2N

Lastly, for actual computational simulations one needs to go one step further
and work with finite configurations and global maps of the form

Gf : 2n −→ 2n

Note that there is a problem, though: some of the cells do not have two
neighbors, as required by our definition.

Boundary Conditions 41

There are two standard solutions to this. In particular for finite configurations
we have

Cyclic Think of x ∈ 2n as being cyclic, so x0 is adjacent to xn−1.

Fixed Apply the local map to the blocks of 0w 0.

The fixed boundary approach also works in the one-way infinite case.

Warning: One-way infinite and finite configurations are actually harder to deal
with than the clean biinfinite ones. Trust me.

Exercise
Explain what cyclic boundary conditions have to do with biinfinite
configurations.

Why ECA? 42

Cellular automata have been fashionable for a while (in particular since
Conway’s Game-of-Life), but they do work well in our situation:

There is a fairly well developed theory (stemming from the venerable area
of symbolic dynamics).

They produce beautiful pictures. More generally, geometry can help greatly
in understanding their basic properties.

There are only 256 ECA, so one can conveniently explore them all without
too much effort.

Lastly, and unexpectedly, even our exceedingly simple ECA display amaz-
ingly complex behavior, against all intuition.

Rule 90 43

Here is local map for ECA 90, f(x, y, z) = x⊕ z.

And here are the first few steps when iterating Gf on the configuration
. . . 0001000

It’s A Fractal 44

Computational Reducibility 45

Suppose we have an initial configuration X ∈ 2n. It is natural to ask whether
one can easily compute the configuration at time t

Y = Gt
f (X)

Of course, we can just iterate Gf on X and be done with it.

The real question is this: can we compute Y without computing all t
configurations in the orbit. For example, can we get away with O(log t)
configurations?

Exercise
Consider ECA 90, local map f(x, y, z) = x⊕ z.
Show that a log t shortcut exists for this ECA.

Some ECA Behaviors 46

Types of CA 47

Somewhat surprisingly, elementary cellular automata seem to display roughly 4
types of behavior.

All configurations become stable after a while.
All configurations become periodic after a while.
Orbits are chaotic and seemingly random.
Orbits produce complex persistent structures.

These are called Wolfram classes.

The ECA on the bottom right is ECA 110, and has been proven to be
computationally universal (in a certain technical sense).

Note, though, that Wolfram’s classification is entirely heuristic, it seems
hopeless to formalize it in terms of computability theory: one can construct
cellular automata that mix up the four classes as shown by Baldwin and Shelah.

ECA 110 48

A Wild CA (k = 8, r = 2) 49

Symbolic Dynamics 50

The definition of a global map may seem a bit ad hoc, but they are actually
quite natural.

Theorem (Curtis-Hedlund-Lyndon 1969)
A map ΣZ −→ ΣZ is a global map iff it is continuous and shift invariant.

Shift invariant means that the map commutes with σ : ΣZ → ΣZ defined by
σ(X)(i) = X(i+ 1). In other words, we want to get rid of the coordinate
system imposed by Z.

There has been a huge amount of research on cellular automata since the CHL
theorem.

A FO Structure 51

We can think of an elementary cellular automaton as a FO structure of the form

C = ⟨2Z; f⟩

where f : 2Z → 2Z is the global map. So we are dealing with an uncountable
space (a zero-dimensional compact Hausdorff space), but f is completely
defined by the corresponding local map, a bit-vector of length 8.

We would like to understand the properties of C.

Amazingly, if we limit ourselves to propositions in first-order logic, then we can
check them automatically. Model checking works just fine in this case.

The Truth: FOL here is not terribly strong, e.g., we cannot say anything about
orbits in general.

Reversibility 52

One of the basic questions about dynamical systems is reversibility: is the map
f injective?

Theorem (KS 1991)
There is a quadratic time algorithm to test reversibility.
Essentially the same algorithm also tests surjectivity and openness.

It is known that for the global maps of cellular automata, reversible implies
open implies surjective (but not the other way around). This is obvious from
the algorithm that checks for increasingly restrictive properties of a certain
graph associated with the CA.

Better Mousetrap 53

Reversibility of a cellular automaton can be expressed in first-order:

∀x, y
(
f(x) = f(y) ⇒ x = y

)
For technical reasons, it is better to think of the function f as a binary relation
_. Then the formula looks like so:

∀x, y, z
(
x _ z ∧ y _ z ⇒ x = y

)
So, if we can model check structures C = ⟨2Z; _⟩, we can decide reversibility.

The algorithm in the paper was lovingly handcrafted. Sadly, it turns out that it
can be extracted with very little effort from the workings of the model checking
method we will discuss.

Finite CA 54

It is tempting to avoid infinite configurations and focus on finite ECA:

Cn = ⟨2n; _⟩

We can think of Cn as directed graph and will also refer to these structures as
the phase space of the ECA (for size n configurations).

To specify a phase space, we only need 8 bits for the local map, plust logn bits
for the size of the configurations.

As one might suspect, the properties of Cn can depend quite strongly on n,
there typically is not a single uniform answer that works for all n.

Spectra 55

It is natural to ask for which values of the parameter n a certain proposition
holds (this is data model checking, in essence):

specφ = {n ∈ N | Cn |= φ }

This set of “good” grid sizes is called the spectrum of φ.

For example, we might want to know for which n a fixed local rule produces a
reversible global rule on 2n, say, under cyclic boundary conditions.

We’ll see how to compute the spectrum of a first-order formula.

ECA 90, Phase Space n = 5, . . . , 10 56

ECA 90, Phase Space n = 8 57

ECA 90, Phase Space n = 10 Isomorphs 58

Counts: 1, 5, 40.

ECA 150, Phase Space n = 5, . . . , 10 59

ECA 150, Phase Space n = 10 Isomorphs 60

Counts: 4, 20, 160.

1 Proof Theory

2 Model Checking

3 Rational Relations

Specifying Structures 62

Time to get real. For the general model checking problem we need, as part of
the input, structures of the form

A = ⟨A; f1, f2, . . . , R1, R2, . . .⟩

So we have to specify the carrier set as well as a collection of functions and
relations on this set.

In set theory, this is a total non-issue; just write down the definitions of all
these sets. Unfortunately, in the computational universe, this is usually quite
meaningless.

Instead, we need a finite data structure that represents A.

Crazy Idea 63

Recall our crazy idea from a while ago:

How about structures that can be described by finite state machines?

The carrier set would be a regular set of words. This may sound awful, but it is
not too bad: the words in the language are names for the elements. For
example, we could use binary strings to describe natural numbers.

But for the functions and relations we need to do a bit of groundwork first.
Recall: our finite state machine can deal with languages, but not with functions
and relations.

Actually, we will get around functions by simply assuming there are no function
symbols in our language. This is not a big restriction, we can always translate a
function into its graph, a relation.

Relational Structures 64

A relational structure is a FO structure of the form

C = ⟨A;R1, R2, . . . , Rk⟩

In other words, we simply do not allow any functions in our signature. No harm
at all, we can always fake functions as relations:

x _ y ⇐⇒ f(x) = y

Here _ is just a binary relation with certain special properties (total and
single-valued).

White Lie 65

Note that this switch to relations changes our formulae a bit.

For example, consider the simple atomic formula f(f(x)) = y. Utterly standard
notation, but it actually hides a quantifier:

∃ z (f(x) = z ∧ f(z) = y)

Just to be clear, the notation is perfectly good, but any decision algorithm has
to cope with this invisible quantifier, one way or another.

In a purely relational structure everything is clearly visible, we have to write
something like

∃ z (x _ z ∧ z _ y)

This can make life slightly easier for the decision algorithm.

A Word Structure 66

So the structures we are interested in have the restricted form

C = ⟨A;R1, R2, . . . , Rk⟩

where

A ⊆ Σ⋆ is a recognizable language, and

Ri ⊆ Aℓi is a recognizable relation on words of arity ℓi.

We already know how to handle the carrier set, but we do not have anything
like a “recognizable relation” at this point.

Rain Check 67

You might object at this point that the spaces ΣZ and ΣN from our cellular
automata example are not recognizable languages according to our (entirely
reasonable) definitions.

Entirely true, but we will soon generalize finite state machines to languages of
infinite strings. It will turn out that ΣZ and ΣN are trivially recognizable given
the right definitions.

For the time being we will stick with finite strings, though.

Wisdom 68

The author (along with many other people) has come recently
to the conclusion that the functions computed by the various
machines are more important–or at least more basic–than the
sets accepted by these devices.

Dana Scott, Some Definitional Suggestions for Automata Theory, 1967

From Languages to Relations 69

So the next project is to generalize recognizable languages to some reasonable
class of recognizable relations, which are called rational relations.

We have two basic options to tackle this problem:

Invent some kind of memoryless machine that takes k-tuples of words as
input, rather than just single words.

Exploit Kleene’s algebraic characterization of regular languages and some-
how lift it to “regular relations.”

We’ll start with the machine model and then develop the corresponding
algebraic approach. As it turns out, they agree entirely (just like general
models of computation agree).

Transductions 70

A transduction is a relation of the form

ρ ⊆ Σ⋆ × Γ ⋆

In other words, ρ is a binary relation on words (or, alternatively, a language of
2-track words).

It often very useful to think of such a relation as a map

ρ : Σ⋆ −→ P(Γ ⋆)

where ρ(x) = { y | ρ(x, y) }. We are given x as input, and want to compute y
as output (but note that transductions are nondeterministic in general, they are
not single-valued).

Higher Arities 71

Our definition nicely generalizes to k-ary relations for k > 2. Instead of single
words over an alphabet we have k-tuples of words, possibly over different
alphabets:

u ∈ Σ⋆
1 ×Σ⋆

2 × . . .×Σ⋆
k

To emphasize that we still have word-specific operations such as concatenation
on these objects we will refer to them as k-track words or multi-words.

To display the component words we usually write

u = u1:u2: . . . :uk

The most important case is when k = 2, u = x:y. This is just a pair of words,
but, as we will see, there is algebra hiding in the background, so it’s better to
have distinctive notation.

Machines for Relations 72

What would a finite state machine A describing a transduction look like? We
will stick with the binary case for simplicity.

We have a collection R ⊆ Σ⋆ × Γ ⋆ of 2-track words. and we need to build an
acceptor for such a language. This is quite straightforward: we simply change
the transition labels from ordinary words to 2-track words:

τ ⊆ Q×Σ⋆ × Γ ⋆ ×Q

Since we already have some experience with FSMs we can now try to copy over
all the old definitions from the language case.

Lifting 73

As for ordinary transition systems, define the trace or label of a run π

π = p0
u1:v1−→ p1

u2:v2−→ p2 . . . pn−1
un:vn−→ pn

in the diagram as the product of the respective labels in the monoid:

lab(π) = u:v = (u1u2 . . . un , v1v2 . . . vn) ∈ Σ⋆ × Γ ⋆.

As usual, we are interested in runs from I to F .

Transducers 74

Definition
A transducer is an automaton T = ⟨S; I, F ⟩ where S is a finite transition
system over Σ⋆ × Γ ⋆; the acceptance condition is given by I, F ⊆ Q.
The transduction associated with T is the relation

L(T) = { lab(π) | π run from I to F } ⊆ Σ⋆ × Γ ⋆

A transduction is rational if it is accepted by some transducer.

One also speaks about the behavior of T , written JT K, and we can say that T
recognizes L(T).

Transition Splitting 75

Note that by transition-splitting it suffices to consider labels of the form

a:b and a:ε and ε:b.

A transducer is alphabetic if all labels are of the form

a:b where a, b ∈ Σ

These transductions are length-preserving and are much easier to handle than
the general ones.

For example, iterating a length-preserving transducer only produces finite orbits.

Two-Tape Machines 76

A fairly good intuitive way to think about an acceptor of 2-track words is to
modify our old finite state machines:

Keep the finite state control.
Allow 2 separate input tapes with separate read-only heads.

The read heads are still one-way, but they can move independently from each
other; in particular, one head can get arbitrarily far ahead of another by using
a:ε or ε:b transitions.

When both heads have consumed all of their input, acceptance depends on
whether the machine is in a final states.

Two-Tape FSM 77

Y

N

ℳ

a b c a a b

b b
a a b a c a

Wurzelbrunft’s Wisdom 78

After careful and detailed study of the last definition, and all the earlier CDM
notes, Wurzelbrunft has come to the following profound conclusion:

All the results from the language scenario carry over to the trans-
duction scenario, with essentially the exact same proofs.

He has asked one of his grad students to write a little macro in Microsoft Word
that performs the necessary adjustments.

Rational Examples 79

The identity relation on Σ⋆ x = y is rational: do a letter by letter comparison.

The unequal relation x ̸= y is rational: see below.

The prefix relation x is a prefix of y is rational: do a letter by letter comparison
until x ends, then skip over the rest of y.

Similarly we can check that x is a suffix or a factor of y: nondeterministically
skip to the right place in y, then do a letter by letter comparison.

BTW, it is often helpful to attach a special endmarker (typically #) to the end
of all words. The machines are a little cleaner this way.

Un-Equal 80

Here is a transducer whose behavior is the relation x ̸= y.

a/b

a/ε

ε/a

a/a

∗

a/ε

ε/a

In the diagram, a and b are supposed to range over Σ, and a ̸= b.
∗ means eternal bliss.

Substitution 81

A transducer that (essentially) replaces the first occurrence of abbb by baaa.

0 1 2 3 4 5
a/ε

b/b

b/ε

a/a

b/ε

a/ab

b/ε

a/abb

ε/baaa

s/s

Exercise
Why does this transducer not quite work? Fix the problem. Then change the
machine so that all occurrences are replaced.

Partial Functions 82

As already mentioned, we can also think of a transition p u:v−→ q as indicating
that input u is transformed into output v†.

Some authors also write p u/v−→ q, in analogy to the usual way of expressing
substitutions.

Warning: We explicitly allow for a single input to be associated with many
outputs (or perhaps with none at all).

As we will see shortly, for transducers (as opposed to ordinary acceptors) this
sort of nondeterminism is absolutely critical, there is no general method to get
rid of it.

†This is only a question of intuition and psychology, not some new insight.

Sanity Check: Kleene’s Theorem 83

Here is a more algebraic approach towards a definition of “regular relation.”
Recall Kleene’s theorem on regular languages.

Theorem (Kleene 1956)
Every regular language over Σ can be constructed from ∅ and singletons {a},
a ∈ Σ, using only the operations union, concatenation and Kleene star.

It follows that there is a convenient notation system (regular expressions) for
regular languages that is radically different from finite state machines: we can
use an algebra (albeit a slightly weird one) to concoct regular languages.

One direction is easy, given the closure properties of regular languages we
already have: every regular expression denotes a regular language.

Algebra to the Rescue 84

The opposite direction is handled by dynamic programming. Unfortunately, the
regular expressions involved grow exponentially, so the algorithm is not
practical.

Still, one very nice feature of Kleene’s characterization is that a good definition
often generalizes. In this case, the monoid Σ⋆ is perhaps the most natural
setting, but there are other plausible choices.

In particular we could use the product monoid Σ⋆ ×Σ⋆ instead: since we are
dealing with sets of pairs of strings we naturally obtain binary relations this
way.

The relevant algebraic structures are called Kleene algebras. We will not study
them in any detail and just pull out the pieces that we need for our project.

More GANS 85

Suppose ⟨M, ·, 1⟩ is a monoid. Here is a general way to construct a Kleene
algebra on top of M . The carrier set is P(M) and the operations are

set theoretic union,
pointwise multiplication, and
Kleene star.

More precisely, define

K · L = {x · y | x ∈ K, y ∈ L }

K0 = {1}, Kn+1 = K ·Kn

K⋆ =
⋃
n≥0

Kn

K⋆ always exists by set theory. Define K+ = KK⋆.

Rational Relations 86

Definition
A k-ary Kleene rational relation is a relation R ⊆ M where

M = Σ⋆
1 ×Σ⋆

2 × . . .×Σ⋆
k

and R is generated in the Kleene algebra over M from elements

ε: . . . :ε:a:ε: . . . :ε

Strictly speaking, the last multi-word should be a singleton set, but in this
context it is best not to distinguish between z and {z}. Trust me.

In the special case k = 1 we get back ordinary regular languages.

Notation System 87

We will mostly deal with the case k = 2 and consider the monoid

M = Σ⋆ × Γ ⋆

x:y · u:v = xu:yv

The neutral element is ε:ε. In algebraic terms, this is just a product monoid.

As in the language case, the key importance of Kleene’s theorem is that it
provides a convenient notation system, we do not need to bother with
machines to communicate a recognizable language or a rational relation.

Using the generators and customary operation symbols +, · (often implicit) and
⋆ we obtain rational expressions that provide a notation system for rational
relations.

For applications, this little fact is quintessential.

Still . . . 88

Writing rational expressions here can be a bit confusing, In particular in the
case k = 2 it may be better to use vector notation as in

(
x
y

)
rather than x:y.

This corresponds directly to the idea of having two tracks with one word in
each track.

Using the 2-track notation we could write the monoid multiplication like so:(
x
y

)
·
(

u
v

)
=

(
xu
yv

)

More Examples 89

Let Σ = {a, b} and M = Σ⋆ ×Σ⋆.

The universal relation on Σ⋆ is given by((
ε
a

)
+

(
ε
b

)
+

(
a
ε

)
+

(
b
ε

))∗ = {
(

x
y

)
| x, y ∈ Σ⋆ }

The identity relation on Σ⋆ is given by((
a
a

)
+

(
b
b

))∗ = {
(

x
x

)
| x ∈ Σ⋆ }

The un-equal relation is given by((
a
a

)∗
((

a
b

)
M +

(
a
ε

)(
Σ
ε

)∗+
(

ε
b

)(
ε
Σ

)∗
)

Kleene’s Theorem on Steroids 90

Theorem
A relation is Kleene rational if, and only if, it is the behavior of a (finite)
transducer.

The proof is an exact re-run of the argument for regular languages.
A careful inspection of the argument shows that all one needs is labels chosen
from a monoid; the fact that the monoid in the language case is the free
monoid Σ⋆ plays no role.

Exercise
Write out a detailed proof of the theorem.

	Proof Theory
	Model Checking
	Rational Relations

