
CDM K. Sutner

1 Priority Arguments and Post’s Problem

Recall that A′ is the Turing jump of A:

A′ = { e | {e}A (e) ↓ }

As we have seen, the jump produces a set of strictly higher Turing degree. Iterating the
jump operation generates a sequence of sets of strictly increasing Turing degree. In fact, we
can extend this operation to transfinite levels:

∅ <T ∅′ <T ∅′′ <T ∅(3) <T . . . <T ∅(ω) <T ∅(ω+1) <T . . .

Here ∅(ω) = { 〈n, x〉 | x ∈ ∅(n) } is the disjoint union of all the finite jumps ∅(n), ∅(ω+1) = (∅(ω))′
and so forth. Thus ∅(n) <T ∅(ω) for all n ≥ 0. Considering this chain of increasing Turing
degrees, one might suspect that the Turing degrees form a linear order: given any two sets
A and B either A contains at least as much information as B or the other way round.

We will see shortly that the actual picture is quite a bit more complicated: there are incom-
parable degrees. In other words, there are sets A and B such that neither one can be used
as an oracle to decide membership in the other. Moreover, one can construct such sets of
relatively low complexity: both can be made to be recursively enumerable:

there exist A,B r.e. : A 6≤T B and B 6≤T A

This result is quite surprising in a way. Experience shows that r.e. sets that appear in
“nature,” meaning in other areas of mathematics, always turn out to be either decidable
or complete; there appears to be a 0/1-law. For example, the collection of theorems of an
axiomatizable theory is always r.e. and for all standard examples in, say, algebra they turn
out to be decidable or complete. Or consider a natural r.e. set like the collection of all
solvable Diophantine equations:

D = {P (~x) ∈ Z[~x] | ∃ ~xP (~x) = 0 }

By Matiyasevic’s theorem, D is complete. The proofs may be very difficult, but in the end
the complexity settles down at one end of the spectrum or the other. Alas, with enough effort
one can construct r.e. sets that are incomparable and thus in particular neither decidable
nor complete. The question of whether there are natural examples for this phenomenon is
open (and, of course, difficult since a solution would require a precised definition of what is
meant by a problem being natural).

The first proof below gives a weaker result and outlines the technique used in the construc-
tion. The idea is to build the incomparable sets in stages. At each stage, some elements may

1



be added to A or B subject to constraints, so-called requirements. The requirements make
sure that neither set can be computed using the other as an oracle.

A refinement of this technique then yields a second, stronger result: there are two incompa-
rable recursively enumerable degrees. Note that this settles the question of whether there
are any intermediate degrees, i.e., whether there is a set A such that ∅ <T A <T ∅′. The
simple set S constructed earlier is of no help here: it turns out to be Turing complete.

1.1 The Use Principle

It is convenient to identify a set A ⊆ N and its characteristic function χA : N→ {0, 1} : thus
we write A(x) = χA(x) ∈ {0, 1}. Since any convergent computation using A as an oracle can
perform only finitely many queries to A, we can replace the oracle for a specific computation
by a finite approximation to A (essentially a bit-vector) of sufficient length. This idea is
captured in the next definition.

For a finite Boolean function F : {0, . . . , s− 1} → {0, 1} write F < A to indicate that F
agrees with A on its domain:

F < A ⇐⇒ ∀x < s
(
F (x) = A(x)

)
.

We write s = lh(f) for the length of this segment. For any F as above define {e}F (x) ' y
iff {e}A (x) ' y for some set A such that F < A and all queries to the oracle A in the
computation are less than lh(F ). Since every convergent computation can include only
boundedly many queries to the oracle we have

{e}A (x) ' y ⇐⇒ ∃F < A
(
{e}F (x) ' y

)
.

For the construction below it will be convenient to have a notation for the size of the initial
segment of A we have to know in order to compute the eth recursive function on input x
with oracle A. Let

use(e, x, A) ' min
(
lh(F ) | F < A ∧ {e}F (x) ↓

)
.

Thus use is a function that is partial recursive in A. The corresponding recursive approxi-
mation is

use(e, x, A, σ) ' min
(
lh(F ) | F < A ∧ {e}Fσ (x) ↓

)
and limσ use(e, x, A, σ) = use(e, x, A) in the discrete topology.

1.2 Two Incomparable Sets below ∅′

As a warm-up exercise we will build two incomparable sets that narrowly miss being recur-
sively enumerable. The two sets are constructed in stages σ < ω. At each stage, simple

2



rules determine which elements should be added to A or B. No elements are ever removed
from either set. The construction rules are simple, but fail to be recursive, so the resulting
sets are not quite recursively enumerable. During the construction, we have to satisfy the
following requirements:

(Re) A 6= {e}B insure A 6≤T B

(R′
e) B 6= {e}A insure B 6≤T A

If all requirements are indeed satisfied, then neither set can be used to compute the other
one. The principal problem in the construction is that we have to deal with infinitely many
requirements, and the individual requirements may well clash with each other. For example,
we may wish to add some element x to A at stage σ to make sure that requirement Re is
satisfied: adding x would cause A(x) = 1 6= 0 = {e}B (x). But adding x to A might change
the value of some computation {g}A (y), and thereby affect the requirement R′

e. We resolve
these clashes by dealing with the requirements in order, and preserving computations by
changing the oracles only outside of a fixed initial segment (Use Principle).

Theorem 1.1 There exist two incomparable Turing degrees below ∅′: there are sets A,
B ≤T ∅′ such that neither A ≤T B nor B ≤T A.

Proof. To construct A and B in stages we will use finite functions of the form Aσ, Bσ :
{0, . . . , s − 1} → {0, 1} as approximations to A and B: Aσ < A, Bσ < B and A = limAσ,
B = limBσ. We let A<σ be the part of A constructed prior to stage σ (and likewise for B).

The Construction

Stage σ = 0: Let A0 = B0 = ∅.

Stage σ = 2e:

We work on requirement (Re): A 6= {e}B. Let n = lh(A<σ), n′ = lh(B<σ) be the lengths of
the parts of the sets constructed so far. At stage σ, we will determine whether n and n′ are
placed into A and B, respectively. Our actions will depend on whether some finite extension
of B<σ produces a computation of {e} on n, the least number for which membership in A
is as yet undetermined, with a Boolean value. Note that if no such extension exists, then
the requirement is satisfied no matter whether we place n into A or not: {e}B cannot be a
characteristic function. In this case we simply set Aσ(n) = 0, Bσ(n′) = 0. So suppose that

∃F, t
(
n′ < lh(F ) ∧B<σ < F ∧ {e}Ft (n) ∈ {0, 1}

)
Pick F and t minimal such and set Bσ = F , Aσ(n) = 1− {e}Ft (n).

Stage σ = 2e+ 1
Exchange A, B, (Re) and (R′

e).

3



Note that by construction A = limAσ, B = limBσ are indeed total, so that membership is
settled for each natural number.

Claim: Every requirement is satisfied.

Let us consider only (Re), the other case is entirely similar. Suppose for the sake of a
contradiction that A = {e}B. Note that the function {e}B is then necessarily total and
Boolean. Then at stage σ = 2e the condition in the construction must have been satisfied:
there is a finite extension that satisfies the condition above.

But then our construction makes sure that {e}B (n) = {e}Bσ (n): the part of B below lh(Bσ)
will not be changed. It follows from the Use Principle that

n ∈ A⇔ 0 = {e}Bσt (n) = {e}B (n) = A(n)⇔ n /∈ A,

a contradiction.

Also note that to determine the existence of F and t requires no more than a ∅′ (or any other
complete recursively enumerable set) as an oracle: we can find F and t by using unbounded
search with a primitive recursive predicate. 2

Since the construction uses ∅′ as an oracle, the two incomparable sets unfortunately fail to
be recursively enumerable. However, they are not far removed from being r.e. either.

Lemma 1.1 A ≤T ∅′ iff A is ∆2-definable.

Proof. Suppose that A = {e}K for some index e where K is a complete recursively enu-
merable set. Then x ∈ A⇔ A(x) = 1⇔ {e}K = 1⇔ ∃σ, F < K

(
{e}Fσ (x) ' 1

)
.

The predicate {e}Fσ (x) ' 0 is primitive recursive and therefore certainly ∆1-definable.

Now F < K ⇔ ∀x < lh(F )
(
x ∈ F ⇒ x ∈ K

)
∧ ∀x < lh(F )

(
x ∈ K ⇒ x ∈ F

)
.

Replacing K by a Σ1 definition we see that F < K is ∆2-definable and so A is Σ2-definable.
But the same argument also holds for N− A, thus A is ∆2-definable.

On the other hand suppose A is ∆2-definable, say x ∈ A ⇔ ∃s∀tφ(x, s, t). Then there is a
∅′-computable function f such that

f(x, s) =

{
0 if ∀tφ(x, s, t),
1 otherwise.

For f(x, s) = 1 ⇔ ∃t¬φ(x, s, t) which is a r.e. question and thus trivial for oracle ∅′. But
then A is r.e. in K: Aσ = {x | ∃s < σ(fσ(x, s) = 0) }. 2

4



1.3 Two Incomparable r.e. Sets

Now for the main goal in this section: the construction of incomparable sets that are still
recursively enumerable. The construction is quite similar to the previous one, but this time
we cannot afford to assume knowledge about the existence of the finite extension F in the
last proof. Instead, at stage σ, we only consider computations of length at most σ using
whatever part of the oracle has already been constructed: {e}B<σσ (x) is all the information
we have available. For small values of σ this computation will not converge, and we have
no resulting value, but for sufficiently large values of σ we will obtain a value (provided the
computation converges at all). Accordingly we can then either place x into A, or try to
prevent x from entering A so as to guarantee A(x) 6= {e}B (x).

The crucial problem is that the value of the computation may well change since other re-
quirements will place elements into B at later stages. But since we are trying to construct
recursively enumerable sets, we cannot remove x from A in order to respond to a changed
value: once an element has entered the set, it has to stay forever. The construction below
resolves this conflict by linearly ordering the requirements and giving preference to require-
ments of higher priority. As it turns out, each requirement will ultimately be satisfied after
finitely many steps, so that requirements of lower priority also have a chance to be satisfied.

Theorem 1.2 Friedberg-Muchnik

There exist two incomparable r.e. Turing degrees: there are two r.e. sets A, B such that
neither A ≤T B nor B ≤T A.

Proof. Again we try to satisfy the requirements

(R2e) A 6= {e}B

(R2e+1) B 6= {e}A.

By symmetry, it suffices to consider the even-numbered requirements. To satisfy (R2e) we
will try to find a witness x such that A(x) = 1 but {e}B (x) ' 0.

The case where {e}Bσσ (x) 6' 0 for all stages σ is easy: R2e is satisfied as long as we keep x
out of A.

Now suppose at some stage σ we find out that {e}B<σσ (x) ' 0. Then we throw x into Aσ
and try to preserve the part of B that is used in the computation of {e}B<σσ (x) ' 0 so as to
make sure that the value of the computation does not change in the future. This is done by
means of a restraint function:

r(2e, σ) = use(e, x, σ;B<σ) + 1

If we succeed in keeping elements from entering this part of B we are done since A(x) = 1 6=
0 = {e}Bττ (x) = {e}B (x), for all τ ≥ σ.

5



Note that we have to find a way to work on all requirements simultaneously. We will say
that (Ri) has higher priority than (Rj) iff i < j. Working on a requirement of higher priority
may destroy a witness of a requirement of lower priority, hence we may have to change the
witness on occasion. To this end we will pick a witness for (R2e) in a special, reserved set of
potential witnesses: Ne = { 〈x, e〉 | x ≥ 0 }. Let x(e, σ) be the witness for (Re) at (the end
of) stage σ. Note that a witness 〈x, e〉 is put into A only in an attempt to satisfy R2e.

(R2e) is said to require attention at stage σ iff

{e}B<σσ (x(2e,<σ)) ' 0 and r(2e,<σ) = 0.

Construction

Stage 0:
Let A0 = B0 = ∅, x(e, 0) = 〈0, e〉, r(e, σ) = 0.

Stage σ > 0:
Pick the requirement of highest priority that requires attention, say, (R2e).

Set x = x(2e, σ) = x(2e,<σ) and put x into Aσ,

Define r(2e, σ) = use(e, x,B<σ, σ).

For i < 2e set x(i, σ) = x(i, <σ) and r(i, σ) = r(i, <σ).

For i > 2e set x(i, σ) = min
(
x ∈ Ni | x /∈ Aσ ∪Bσ ∧ x > max

(
r(j, σ) | j ≤ 2e

) )
and r(i, σ) =

0.

If no such requirement exists do nothing.

The requirement (R2e) as above is said to receive attention at stage σ. Note that the witnesses
and restraints of all requirements of higher priority are preserved, but all requirements of
lower priority are clobbered: a new potential witness is selected, and the restraint function
is set to 0.

Claim: Every requirement receives attention at most finitely often. Furthermore, all re-
quirements are eventually satisfied.

Proof. By induction on e′. By IH we may pick a stage σ such that no requirement (Ri),
i < e′, receives attention at τ ≥ σ. Let us assume e′ = 2e.

Case 1: R2e never receives attention after stage σ.

Since all higher order requirements are already satisfied, that can happen only because R2e

never requires attention after σ. Then x = x(2e, σ) = x(2e, τ), τ ≥ σ, is not in A: since the
sets Ni are all disjoint, only R2e could put x into A, and only if R2e received attention. But
{e}Bτ (x) 6' 1, done.

6



Case 2: R2e receives attention at some stage τ ≥ σ.

Then x(2e, τ) is put into A and a restraint is established for B at the maximum number
queried in {e}B<ττ (x(2e,<τ)) ' 0. But no requirements of priority i ≤ 2e ever become active

after τ , hence x = x(2e, τ) = x(2e, τ ′), τ ′ ≥ τ , and {e}Bτ ′ (x) ' 0 6= A(x) = 1 for all τ ′ ≥ τ .
Hence R2e is satisfied and we are done. 2

The construction of the last theorem is called a finite-injury argument, since each of the re-
quirements is violated at most finitely often (because a requirement of higher priority receives
attention). There are analogous infinite-injury arguments that can be used to establish more
complicated results.

For example, there is a density theorem that says that between any two r.e. sets there is a
third:

∀A,B r.e., A <T B ∃C r.e. (A <T C <T B).

Also, for all intermediate r.e. sets one can find an incomparable one:

∀A r.e., ∅ <T A <T ∅′ ∃B r.e. (A,B incomparable ).

Note that the construction in the theorem depends heavily on a universal Turing machine.
In fact, Soare has shown that the disjoint sum A⊕B is complete, so the lack of completeness
of A really comes from hiding B. In an intuitive sense the whole construction process is still
complete; it is really because of information hiding that we are able to produce incomplete
sets.

7


