
CDM

Decimation and Kernels

Klaus Sutner

Carnegie Mellon University
Fall 2025



Battleplan 1

We will now turn to the problem of testing automaticity, but using reverse base
k instead of ordinary base k.

For the latter, we have a fairly elegant characterization in terms of morphisms
and substitutions. Algorithmically, though, only pure fixed points without
substitutions are easy to handle.

For reverse bases we will find a similarly elegant description, that produces a
fairly straightforward algorithm. Unfortunately, it requires fairly long initial
segements of the sequence.



1 Decimation and Kernels

2 Uniform Morphisms

3 Periodic Sequences

4 State Complexity



Characterizing Automaticity 3

Recall that our definition of a k-automatic sequence is phrased in terms reverse
base k, we need a CDFA M such that

A(n) = λ
(
δ(q0, rrepk(n))

)

To find M, or conclude that it fails to exist, we need an independent
characterization of automaticity.

We will start with a very elegant way to describe p-automatic sequences when
p is a prime, using algebra.

Then we present a more combinatorial approach that translates nicely into an
algorithm.



Formal Power Series 4

Let F = Fq be the finite field of characteristic p of size q.

Definition
The ring F[[X]] of formal power series over F has elements

f(X) =
∑
n≥0

anXn

where (an) is an infinite sequence over F.
f is algebraic if there is a non-zero polynomial P ∈ F[X, Y ] such that

P
(
X, f(X)

)
= 0

One can define addition and multiplication on F[[X]] in the usual way. We can
think of F[X] ⊆ F[[X]] as a subring.



Characterization 5

Theorem
Let f(X) =

∑
n≥0 anXn be a formal power series.

Then f is algebraic iff (an) is p-automatic.

For example, for the PTM sequence T (X) over F2, we get

T (X) = X + X2 + X4 + X7 + X8 + X11 + X13 + X14 + X16 + X19 + . . .

0 = (X + 1)3T (X)2 + (X + 1)2T (X) + X

For PTM this is easy to show by using the recurrence. Alas, in general, testing
algebraicity is not so easy, we need a more flexible method.



Calculation 6

T (X) =
∑

tnXn

=
∑

t2nX2n +
∑

t2n+1X2n+1

=
∑

tnX2n + X
∑

(tn + 1)X2n

= T (X2) + X T (X2) + X
∑

X2n

= (X + 1)T (X2) + X

X2 + 1

Exploiting characteristic 2 we get

(X + 1)2 T (X) = (X + 1)3 T (X)2 + X



Digression: Actions 7

There is a general framework to study sequences of operations performed on
some sort of objects. We are dealing with

a collection X of objects,

a collection S of operations on the carrier set X.

A priori, X is just a flat set with no particular structure, in particular there is
no algebraic structure.
We can think of S as a collection of atomic actions that can be performed on
the elements of X.

For example, X might be the collection of all squares in the plane, and our
operations are rotations and reflections.

Or X might be the state set of a DFA, and the actions are given by the
transition maps δa.



Action Sequences 8

Performing a single operation is usually not particularly interesting, it is whole
sequence of operations from S that produce interesting effects.

In the previous example, we might translate a rectangle, then rotate it,
translate it again, and so on.

For the DFA, a sequence of atomic actions produces the extended transition
function δ : Σ⋆ → Q → Q .

This is where algebra naturally pops up: sequences of atomic actions are
naturally modeled by the free monoid S⋆, the collection of all finite sequences
over S.
The monoid operation here is concatenating, which corresponds directly to
executing one sequence of actions after another.



Milking Algebra 9

On the face of it, referring to the set of all finite sequences as the “free monoid
over S” may sound a bit over the top.

But it opens the door to better descriptions. For example, let X be the
collection of all placements of the unit square with labeled corners, centered at
the origin.

1 2

34



Dihedral Groups 10

The square can be rotated around the center (say, clockwise by π/2) or
reflected along the horizontal axis. Call these operations α and β.

It is easy to see that

α4 = 1
β2 = 1
αβ = βα3

More work shows that these are essentially the only identities, so that the
action sequences are really described by {α, β}⋆/eqs.

But the last structure is (isomorphic to) the dihedral group D4.



Can we Exploit This Idea? 11

We want to build CPDFs for certain civilized sequences. Suppose we have
some sequence A ∈ ∆ω and a CPDF M that generates it.

Burning Question: What is the meaning of the states in M?

For example, what is the meaning of q0 and p = δ(q0, d)?

Well, the behavior of q0 better be A. Now recall that we write numbers in
reverse base k, so d is the LSD in n. So A(n) = A(d + kn′) and we are only
looking at some place in the subsequence A(d + ik)i∈N.

But then p = δ(q0, d) should correspond to this subsequence.

And δ(p, d′) should be a subsequence of this subsequence, and so on.



Example: PTM 12

0 1

1

1

0 0

δ(0, 0) is the subsequence T (2N) = T .
δ(0, 1) is the subsequence T (2N + 1) = T .
δ(1, 0) is the subsequence T (2N) = T .
δ(1, 1) is the subsequence T (2N + 1) = T .



Decimation 13

Definition
Let A ∈ ∆ω be an infinite word. Given a stride k ≥ 1 and an offset d ≥ 0,
define the decimation of A with respect to k and d by

A[k, d](i) = A(k · i + d)

In other words, starting at position d, we only consider every kth letter. Usually
this is most interesting when 0 ≤ d < k.

For the PTM word T we have

T [2, 0] = T T [2, 1] = T

T [2, 0] = T T [2, 1] = T



The Action Angle 14

We can think of decimation as an action operating on ∆ω. The atomic actions
here are

A⇝ A[k, d]

and we can compose these basic actions to get a decimation of a decimation of
a decimation . . .

Actions are arguably most useful when the underlying algebraic structure is a
group (see the D4 example above), but they are also useful in the more general
setting of just semigroups.

Question: Is there some reasonable algebraic structure that de-
scribes our decimations?



Decimation Monoid 15

Proposition
The operation ∗ defined by

[k, d] ∗ [k′, d′] = [kk′, kd′ + d]

induces a monoid structure on N+ × N with neutral element [1, 0].
We refer to this monoid D as the decimation monoid.

D can be represent by matrices over N2×2 like so:

[k, d]⇝
(

k d
0 1

)

The algebraically inclined will recognize D as a semidirect product of the
multiplicative monoid on N+ and the additive monoid on N.



Other Algebra 16

Denote the (left) shift operation by σ, so σ(A)(i) = A(i + 1). Clearly

σ(A)[k, d] = A[k, d + 1]

σ
(
A[k, d]

)
= σk(A)[k, d]

The usual shuffle operation provides a sort of inverse to decimation since

A = shf0≤d<k A[k, d]

In other words, we take all the sequences obtained by stride k and offset
0 ≤ d < k, and interleave them to get back the original sequence.



The k-Submonoid 17

The decimations of the form [k, d], 0 ≤ d < k are called primary.
For us, the submonoid Dk generated the primary decimations

[k, 0], [k, 1], . . . , [k, k−1]

is particularly important.

Since [k, d] ∗ [k, d′] = [k2, kd′ + d] it is easy to see that

Dk = { [ki, d] | 1 ≤ i, 0 ≤ d < ki }

The submonoid is still infinite, but, if we apply its elements to a particular
sequence A, we may well get only finitely many subsequences.



Recovering the Word 18

Let 0 ≤ d < ki. Write fst(W ) for the first letter of a word W . Then

A(d) = fst(A[ki, d])

Thus, we can recover the letters of the word from the first letters of the various
decimations.

Again, this is particularly interesting when the total number of these
decimations is finite. This is the critical connection to finite state machines.



The k-Kernel 19

Definition
The k-kernel of a word A ∈ ∆ω is defined

Kerk(A) = { A[ki, d] | 1 ≤ i, 0 ≤ d < ki }

As we have seen, the 2-kernel of the PTM word T consists only of the two
sequences T and T = T [2, 1].

Thus, the 2-automatic word T has a finite 2-kernel (don’t get distracted by the
fact that kernel actually has cardinality 2). Could this be coincidence?



Finite Kernels 20

Theorem
A sequence is k-automatic if, and only if, its k-kernel is finite.

Before we give a proof, consider a CPDF M generating a k-automatic
sequence A.

Returning to our “what does a state mean” theme, let us interpret the behavior
JpK of a state p in M to be the word generated with p as the initial state.
Then we have

Jδ(p, d)K = JpK[k, d]

This works since M is using reverse base k, so the first letter is the LSD. For
standard base k one needs a different argument.



Word Action 21

Correspondingly we can define an action of words over the digit alphabet Dk

on ∆ω by

Jδ(q0, w)K = A[k|w|, rvalk(w)]

So the states in M correspond to the decimations of A with strides ki and
offsets j < ki. Recall that we can recover the letter in any particular position
by filtering out the first letter in the decimation.

This is very similar in spirit to the characterization of the minimal DFA of a
plain regular language as having states that correspond to the left quotients of
the language.



Proof (of theorem) 22

First assume A ∈ ∆ω is k-automatic via a CPDF M on m states. As we have
seen, every element in the k-kernel corresponds to a state in M, so the kernel
has cardinality at most m.

For the opposite direction consider the finite kernel K of A. Define a CPDF M
by

⟨K, Dk, δ; A, fst⟩

where δ(X, d) = X[k, d].
2



1 Decimation and Kernels

2 Uniform Morphisms

3 Periodic Sequences

4 State Complexity



Uniform Morphisms 24

We will see in a moment how to explain automata using reverse base k
representations, the question arises whether there is some natural combinatorial
characterization of automaticity that is based on standard base k
representations. Voilà.

Definition
A morphism µ : ∆⋆ → ∆⋆ is k-uniform if |µ(a)| = k for all a ∈ ∆.
µ is extensible if there is a special letter a ∈ ∆ such that µ(a) = au.

Note that every extensible morphism must have a fixed point in ∆ω:

A = a u µ(u) µ2(u) µ3(u) . . .

If the morphism is also k-uniform, then an is mapped to the block
aknakn+1 . . . akn+k−1 = µ(an) under µ.



PTM 25

Here is a 2-uniform, extensible morphism for PTM:

0 7→ 01
1 7→ 10

which produces

0
01
0110
01101001
0110100110010110
01101001100101101001011001101001



Morphisms and Automaticity 26

Theorem
A sequence is k-automatic if, and only if, it is the image of a fixed point of a
k-uniform morphism under an alphabetic substitution.

Proof.
Let µ : ∆ → ∆k be a k-uniform morphism with fixed point B, a ∈ ∆ the
special letter, and σ : ∆ → ∆ a substitution.

We have to show that A = σ(B) is k-automatic. Define a CDFA by using ∆ as
state set:

M = M(µ, σ) = ⟨∆, Dk, δ; a, σ⟩

where δ(p, i) = µ(p)i (assuming 0-indexing).

An easy induction shows that λ(δ(a, repk(n))) = A(n).



Proof, contd. 27

For the opposite direction assume we have a CDFA

M = ⟨Q, Dk, δ; q0, λ⟩

that generates a word A ∈ ∆ω. We may safely assume that δ(q0, 0) = q0.

We use Q as alphabet and define the morphism µ : Q → Qk by

µ(p) = δ(p, 0) δ(p, 1) . . . δ(p, k − 1) ∈ Qk

The substitution is the coloring map λ.

Then A = λ
(
limn→∞ µn(q0)

)
.

2



A 3-Uniform Morphism 28

a 7→ abc b 7→ bac c 7→ cba

produces the fixed point
abc bac cba bac abc cba cba bac abc bac abc cba . . .

a

bc

a⇝ 0 red
b⇝ 1 green
c⇝ 2 blue



And Inference? 29

Suppose we some infinite sequence A. E.g. we may have some way to compute
A(n), though we may only have an initial segment of A.

Either way, we may assume we know the alphabet ∆ of A, A ∈ ∆ω and A uses
all symbols in ∆.

How would we check whether A is k-automatic?
And construct a CDFA generating A if it is?

By the theorem, there has to some k-uniform morphism µ and an alphabetic
substitution σ such that

A = σ
(
FPnt(a, µ)

)
FPnt(a, µ) = a u µ(u) µ2(u) µ3(u) . . .

If we can determine µ and σ, we know how to construct a CDFA that
generates A.

If no such µ and σ exist, A is not k-automatic.



Easy Case 30

Suppose we have additional information: the substitution σ is the identity, so A
is a pure fixed point.

In this case we can read off µ from A:

A = a u1 . . . uk−1 | µ(u1) | µ(u2) | . . . | µ(uk−1) | . . .

Moreover, we only need an initial segment of A to obtain a complete
description of µ.



General Case 31

If there is a substitution, the pure fixed point B is masked.

Still, we can resort to brute force and enumerate all substitutions σ : ∆ → ∆ .

As stated, this is wildly exponential, though for small ∆ it is still feasible.

Needless to say, one can limit the search space by skipping all substutions that
clearly clash with the structure of the fixed point B = σ−1(A) (actually, there
will be multiple preimages in general).



1 Decimation and Kernels

2 Uniform Morphisms

3 Periodic Sequences

4 State Complexity



Disclaimer 33

Just to be clear, periodic sequences are not interesting as far as sequences
inference is concerned (though there are lots of nice combinatorial problems).

They provide a nice we to test the k-automaticity machinery, though: we can
directly compute the size of the k-kernel and thus of the minimal CDFA.



Periodic Sequences 34

To see how decimation works, let’s take a look at periodic sequences A = aω,
where matters should be fairly straightforward. We call a the root of A.

Let p = |a|, the period of the sequence. We use 0-indexing, since it causes less
trouble with taking mods. Also, occasionally we write n- for n − 1.

Write a = a0, a1, . . . , ap- , so that

A(n) = an mod p

From the definitions, we immediately have

A[k, d] = take
(
A[k, d], p

)ω

where take(X, l) indicates the first l elements of X.



Small Example 35

Let a = a0a1 . . . ap- .

Decimations for stride k = 2. If p is even, we have

A[2, 0] = (a0a2 . . . ap--)ω

A[2, 1] = (a1a3 . . . ap-)ω

On the other hand, for odd p, we get

A[2, 0] = (a0a2 . . . ap-a1a3 . . . ap--)ω

A[2, 1] = (a1a3 . . . ap--a0a2 . . . ap-)ω

So in the even case, the period is cut in half, but we are not really concerned
with the least period here. We could just double the word to get back to
period p. From now on, for simplify we will assume that all the generators have
length p.



Periodic Decimation 36

Recall the decimation monoid D = ⟨N+ × N, ∗⟩. D acts on all infinite
sequences and in particular on periodic ones, but one might hope that things
simplify a bit if we restrict ourselves to, say, p-periodic sequences.

First off, we don’t need an infinite structure since for p-periodic A

A[k, d] = A[k mod p, d mod p]

For notational simplicity, we have written A[0, d] for the constant sequence aω
d .

So we only need to consider the primary decimations for 0 ≤ k < p. Some finite
algebraic decimation structure must be enough to handle p-periodic sequences.



A Small Semigroup 37

Let’s write (n) = {0, 1, . . . , n-}.

Definition
By a p-transformation we mean a map

Tk,d : (p) −→ (p)
s 7−→ sk + d mod p

where 1 ≤ k < p and 0 ≤ d < k. The closure of all p-transformations under
composition is the p-periodic transformation semigroup (PTS) Tp.
If we restrict the transformations to a single stride k we obtain the p, k-periodic
transformation semigroup Tp,k.

In one-line notation, Tk,d looks like
(
d, k + d, 2k + d, . . . , p-k + d

)
mod p.



Cayley Table T7 38



T21,16 39



Order Tp,k 40

p
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 2
3 3 6
4 4 8 8
5 5 20 20 10
6 6 12 6 6 12
7 7 21 42 21 42 14
8 8 24 16 16 16 24 16
9 9 54 18 27 54 18 27 18
10 10 40 40 20 10 10 40 40 20
11 11 110 55 55 55 110 110 110 55 22
12 12 36 24 12 24 24 24 24 12 24 24
13 13 156 39 78 52 156 156 52 39 78 156 26
14 14 42 84 42 84 28 14 14 42 84 42 84 28
15 15 60 60 30 30 15 60 60 30 15 30 60 60 30
16 16 64 64 32 64 64 32 32 32 64 64 32 64 64 32



Modular Geometric Sequences 41

To explain the table, write the transient/period of a geometric sequence
modulo some fixed m as

tpgs(a, m) = transient/period of the sequence ai mod m

E.g., tpgs(4, 17) = (0, 4) and tpgs(4, 18) = (1, 6).

Lemma
Let (t, p) = tpgs(a, m).
The order of Tm,a is p m whenever t = 0, and (t + p − 1) m otherwise.



Proof 42

The primary decimations all have stride k, so composition produces only
decimations of the form

[ki, d] 0 ≤ d < ki

Since A is p-periodic, we really are working with decimations

[ki mod p, d mod p]

So the strides form a geometric sequence modulo p.

If k and p are coprime, the period of the sequence, times p, is the size of the
monoid.

Otherwise the length of the whole lasso is t + p − 1, hence, this is the number
of strides. Again multiply by p to account for the offsets.

2



The Actual Values 43

If a and m are coprime, t = 0 and p = ord(a,Z∗
m).

Otherwise let p1, . . . , pr be the primes in gcd(a, m). Then we can write the
prime factorizations in the form

a = pe1
1 . . . per

r α

m = p
e′

1
1 . . . p

e′
r

r µ

where all the exponents are positive and pi, α and µ are coprime. Then

t = max
i

⌈e′
i/ei⌉

p = ord(a,Z∗
µ)

are the transients and period of (ai mod m).

To see why, note that Zm ≃ Zm/µ × Zµ.



1 Decimation and Kernels

2 Uniform Morphisms

3 Periodic Sequences

4 State Complexity



State Complexity 45

We can use the size of the minimal CDFA generating a k-automatic word as a
measure of its complexity. An algorithm trying to identify a given sequence
would typically try to build the minimal CDFA that generates it.

Definition
For any k-automatic sequence A we refer to the number of states of the
minimal CDFA generating A as the state complexity of A.

Proposition
The state complexity of a k-automatic word is the size of its k-kernel.



Exponential Gap 46

Recall that we use reverse base k as the default representation.

As we have seen, there is also a minimal CDFA that generates A using
standard base k. We refer to the state complexity of this machine as the state
co-complexity of A.

On the face of it, complexity and co-complexity are exponentially related.
Unfortunately, exponential blowup does happen.

As an example, consider the binary word Ar defined by the language

Lr = 0⋆12⋆12r10⋆

in the sense that Ar(n) = 1 iff rrep3(n) ∈ Lr. Then the state complexity of Ar

is 2r+2 + 1, but the co-complexity is r + 3.



Computing State Complexity 47

Suppose we are given a k-automatic word A. How can we compute its state
complexity and the corresponding minimal CDFA?

Of course, this depends greatly on the representation of A.

For the time being, let us suppose we can directly manipulate infinite words. In
particular we need to be able to compute decimations A[ki, j] and check them
for equality.

Then we can compute the kernel of A and actually the minimal CDFA using
the standard closure algorithm: close {A} under the operations X 7→ X[k, j],
0 ≤ j < k.



The Kernel Algorithm 48

// generate k-kernel

let K = {A}
push A onto a stack S

while S ̸= nil
let X = pop(S)
forall j < k do

Y = X[k, j]
if Y ∈ K

then record transition X
j−→ Y

else add Y to K, push onto S

return K



Initial Segments 49

Again, there are only two non-logical operations in the algorithm:

decimation, to compute Y = X[k, j]

equality testing, to check if Y ∈ K

What if we start with a finite prefix α < A rather than A itself?

Decimation extends to an operation over finite words in the obvious way.
However, the length of the prefix shrinks by a factor of k at each step

To test equality we compare prefixes: x =p y if x ⊑ y or y ⊑ x. Thus, the
shorter word has to be a prefix of the longer.

Note that α, β < A implies α =p β.



False Positives 50

The Problem: Our our equality test may return false positives, there may well
be two different kernel sequences whose initial segments we cannot distinguish.

As a consequence, out kernel algorithm will in general produce an
under-approximation, we may obtain false identities.

The question then is: how long a prefix of A is required to properly separate all
the kernel elements?

More precisely, how long does the prefix have to be in order to

determine the size of the kernel,
determine the minimal CDFA.



Approximation Theorem 51

Theorem (KS, Tetruashvili)
Let A be k-automatic with state complexity m.
The prefix of length k2m−3 of A suffices to determine the state complexity, and
the prefix of length k2m−2 suffices to determine the minimal CDFA.
Moreover, both bounds are tight.

Proof.
Suppose the k-kernel of A is K = {A, A2, . . . , Am}. There are witnesses
vi ∈ Dk

⋆ of length at most m − 1 such that Ai = A[vi].

Moreover, for i ̸= j there are discriminating words wi,j of length at most m − 2
such that fst(Ai[wi,j ]) ̸= fst(Aj [wi,j ]).

It follows that the kernel algorithm from above will produce the correct number
of kernel elements given a prefix of length k2m−3. To obtain the whole CDFA
we need the first k2m−2 letters.

2



Proof, contd. 52

To see that the bounds are tight consider the regular languages

L1 = { x ∈ 2⋆ | #1x = r (mod r + 1) }

L2 = { x ∈ 2⋆ | #1x = r (mod r + 2) }

L3 = { x ∈ 2⋆ | #1x = r }

and write A1, A2 and A3 for the the corresponding binary words.

A1 has state complexity r + 1 and A2 has state complexity r + 2 but they
agree on their first 22m−3 − 1 bits.

Words A2 and A3 both have kernels of size m = r + 2 but distinct CDFAs, yet
they agree on their first 22m−2 − 1 bits.

2


	Decimation and Kernels
	Uniform Morphisms
	Periodic Sequences
	State Complexity

