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Prouhet-Thue-Morse Word

Here is a famous infinite binary word 7" = (t,,) (discovered independently at
least 3 times) defined by

to =10
t2n = tn
tont1 = tn

Here T denotes bit-complement.

Let's write T;, for the binary word consisting of the first n bits of this sequence.
For example,

T3 = 01101001100101101001011001101001
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Shuffle

Recall the shuffle operation which interleaves the elements of two sequences:
allb=aibiazbs ... arby
Using shuffle, we can define a sequence of binary words as follows:
So =0
Sny1 =S| S
which produces

01

0110

01101001

0110100110010110
01101001100101101001011001101001

Note the prefix property, so we can define S = lim,, S,,.



Word Multiplication

Here is a kind of multiplication on binary words (known as Keane product):
r®0=2 zR1==7
rRyb=(z®y)(r®0Db)

For example, 01 ® 001 = 010110. Clearly |z ® B| = |z||B].

Now define
Cr,=0®01R01®...001
—_— —

n

Again, C), is a proper prefix of Cp11, so we can define the limit C' = lim C,,.



Infinite Polynomials

Define an infinite product over Z[z] as follows:

[Ta-2")=a-oa-aHa-a". ..

=D (=1mat

k>0

where the coefficients pi € 2.

This produces yet another bit sequence P = (px).



Binary Digit Sums

For simplicity, write o(n) for the binary digit sum of n, so ¢(10) = 2 and
o(255) = 8 (of course, the argument is written in decimal). Define the digit
sum sequence D = (U(n) mod 2)n as the parities of all digit sums.

I I I I I
100 200 300 400 500

The digit sum function is quite erratic.



Drum Roll ...

Lemma
They are all the same.

It is a bracing exercise to show that all the different definitions produce the
exact same Prouhet-Thue-Morse sequence.



No Cubes

T has many interesting properties, perhaps the most important one being the
fact that it is cube-free: it is impossible to write

T=...zzx...
for any non-empty finite word x. In fact, one cannot even get

T=...xxx1...

There is now a whole field, combinatorics of infinite words, where similar
properties are studied. The arguments tend to be very combinatorial in nature
(duh!) and often quite refractory.
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Application 11

Burnside Problem (1902)
Suppose G is a finitely generated group where all elements have
finite order. Is G necessarily finite?

Some positive results were obtained initially, but the problem remained open for
a good long time.

Theorem (Golod, Shafarevich 1964)

The Burnside Problem fails in general.



Bounded Version

In the bounded version we require that all elements satisfy the identity 2™ = 1
for some fixed n.

Theorem (Novikov, Adian 1968)
The bounded Burnside Problem fails for all odd n > 4381.

The PTM sequence plays a role in the (rather complicated) proof.

It is also directly applicable to the corresponding problem for semigroups.
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Better Mousetrap

ala 0/0

a/a

This invertible Mealy automaton on 5 states due to Grigorchuk provides an
example of a Burnside group (and has other interesting properties).

13
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Generating Infinite Words 15

Think of an infinite word/sequence A € A as a function A: N — A. A word
is computable if this function is computable: some Turing machine, on input n,
computes A(n).

Wild Idea:
How about words that can be computed by a finite state machine?

We need to modify the usual concept of a finite state machine to make this
work: instead of scanning the word and accepting/rejecting, our machines will
take n € N as input and return a symbol in A.



FSM with Output

There is a general class of finite state machines with output, so-called
transducers. For the moment, we won't need this level of generality, we will
simply attach an output symbol in A to each state in a DFA.

The other issue that requires clarification is the input n € N: we need to
represent natural numbers as strings. We will only consider the two most
pedestrian choices:

@ ordinary base k representation

@ reverse base k representation

16



Base k& Representations 17

The input alphabet will be a digit alphabet of the form
Dy ={0,1,...,k—1}

Recall the standard base k (or radix k) representation of a natural number: the
leading digit is the MSD:

repy (n) = dydy—1 ...do where n =Y _ dik',d, # 0

i<r

Given an arbitrary word w over Dy, we will denote its value in base k by val(w).
It is convenient to allow ¢ for 0, so val(0’w) = val(w) for all ¢ > 0, w € Dj,.

We could change our conventions to obtain a unique notation system, but this
approach is less cumbersome.



Reverse Base k& Representations

Alternatively, we can consider the leading digit to be the LSD, leading to
reverse base k (or reverse radix k) notation:

rrep,(n) = drdr—1...do where n = Zdik’ui, dr #0
i<r

We write rval(w) for the numerical value of a word w € Dy,.

Proposition

rep(n)°? = rrep(n)

Since regular languages are closed under reversal one may suspect that both
notation systems will produce the same results (but see the section on state
complexity below).
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Colored Automata 19

Since we want to determine A(n) € A given (the representation of) n we need
to modify ordinary DFAs slightly to produce output. Think of the symbols in A
as colors.

Definition
A colored deterministic finite automaton (CDFA) is an automaton

M= <Q7D7 6; qO,)\>

where (Q, X, 0) is a deterministic and complete transition system, go € @ an
initial state and A\ : Q@ — A is the coloring map.
The cardinality of A is the order of M.

Given input rep(n) € D*, we define the output to be

A(6(qo, rep(n)))



Example: PTM 20

0
1
\_//
1

In this case, D = A = 2.

Of all the alternative definitions of the PTM sequence, the digit sum one is
arguably the most basic.

One can check that it does not matter whether we use base 2 or reverse base 2.



Behaviors

A CDFA of order 2 is essentially just a plain DFA, so we should expect the
standard machinery for DFAs to carry over.

For ¢ € A the c-behavior of a state p is
[ple = {z € D" | A(d(p,z)) = c}

The behavior of p is the vector ([p]c | ¢ € A).

In slight abuse of terminology, we define the language of M to be the vector of
languages
L(M) = [go] € (D)

A CDFA is accessible if Vp3x (6(q0,x) = p); it is reduced if its states all have
distinct behavior.
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Example Contd 22

The PTM machine

0 0
1

has language
({xGZ*|#1xmod2:0},{w€2*|#1xm0d2:1})

and is clearly accessible and reduced.



Minimal CDFAs

As with ordinary DFAs we are interested in the smallest equivalent (accepting
the same language) CDFA.

Theorem

For every CDFA there is an equivalent one that is accessible and reduced.
Moreover, this CDFA is unique up to isomorphism.

We will refer to this automaton as the minimal CDFA.

The minimal CDFA can be computed using essentially the same algorithms as
in the order 2 case.

23



Partition Refinement 24

Start with the partition of @ induced by the coloring A.
Then keep breaking blocks in the partition apart until we reach a point where
P = (P,...,Py) and for all d € D:
5(Pz,d) g Pj or 5(Pz,d) N Pj = @
In this case we can think of P; as mapping to P; under d and get a potentially

smaller CDFA.

When a fixed point is reached, we have the minimal automaton. If n is the
state complexity of A, this is easy to do in O(n?) steps. It can even be handled
in O(nlogn) steps, but the algorithms are more complicated.



Automatic Words

Definition
An infinite word A over alphabet A is k-automatic if there exists a CDFA M
over alphabets D = Dy, and A such that for all w € D*:

A(0(go, w)) = A(rvaly(w))

We will say that M generates A to distinguish this situation from other forms
of acceptance of infinite words.

Thus, our definition assumes reverse base k representations. This is somewhat
arbitrary, but will turn out to be convenient later.

25



But Why? 26

The definition is actually a bit strange, one might expect more parameters,
something like

reverse-k-trailzeros-automatic or
k-noleadzeros-noempty-automatic

This is not only ugly, it also could ruin the whole idea: if these different versions
all turn out to be different, the definitions are too brittle to be of any interest.

So we have to make sure that all the variants are “the same” in the sense that
a sequence is either automatic in all of them or in none.

To do this, we need to explain exactly what kind of notation systems for
numbers we want to allow for automaticity, and then establish equivalence.



Robustness 27

Theorem

Let A be an infinite word. Then A is k-automatic iff one of the following
conditions hold: A is generated by a CDFA

@ using base k notation (with or w/o leading zeros)

@ using reverse base k notation (with or w/o trailing zeros)

Leading/trailing zeros and the question whether the empty word denote 0 are
easy to deal with, the interesting problem is the relation between standard base
k and reverse base k.

This is analogous to plain regular languages being closed under reversal.



3 Brzozowski Minimization



Digression: Brzozowski's Method

There are several standard minimization algorithms: Moore, Hopcroft, Valmari;
all based on partition refinement. But there is also a positively weird one, due
to Brzozowski. Instead of refining partitions, it uses reversal and Rabin-Scott
determinization to construct the minimal automaton—which operations, at
first glance, seem to have absolutely nothing to do with the task at hand.

Write
@ A°" for the reversal of any finite state machine, and

@ pow(.A) for the accessible part obtained by determinization.

Determinization preserves the language, but may be exponential in time and
space. Reversal of the automaton reverses the language, but is linear time.

29



Key Lemma

Lemma
If A is an accessible DFA, then A" = pow(A°®) is minimal.

Proof.
Let A= (Q,X,d;q0, F).

A’ is accessible by construction, so we only need to show that any two states
have different behavior.

Let P =6, '(F)# P' =6, (F) in A’ for some z,y € £*.
We may safely assume that p € P — P,
Since A is accessible, there is a word z such that p = ¢.(qo).

Since A is deterministic, z°° is in the .A’-behavior of P but not of P’.

30



Brzozowski Minimization

More generally, we can use the lemma to establish the following surprising
minimization algorithm.

Theorem (Brzozowski 1963)

Let A be a finite state machine. Then the automaton pow(pow(A°)°P) is
(isomorphic to) the minimal automaton of A.

Proof.
B = pow(A®P) is an accessible DFA accepting £(A)° for any finite state
machine A (deterministic or not).

By the lemma, A’ = pow(B°?) is the minimal automaton accepting

L(A)®P = L(A).

31



Dire Warning 32

We are only ever constructing the accessible part of the full power automaton.
Alas, in general, that accessible part already can have exponential size.

So Brzozowski's algorithm can be exponential, unlike the “real” algorithms.

Weird Fact: It often works quite well, when the machines involved are small
for whatever reason, the two constituent algorithms are quite fast.



Application: Reasoning about Minimality 33

On occasion the last lemma can be used to determine minimal automata
abstractly, without actually running any algorithm.

Structural descriptions are better than algorithmic ones.

More precisely, in some cases we can make assertions about the minimality of a
collection of finite state machines using Brzozowski's result that would be more
difficult to obtain in other ways. Running a minimization algorithm abstractly
on a class of machines is usually quite hard (though there are a few exceptions
like tally DFAs). A characterization like Brzozowski's is usually better to work
with.



Example: kth-Letter

Recall the standard NFA A for “kth symbol from the end.”

a,b

Claim: pow(.A) has 2* states and is minimal.

Since A = B°° where B is the minimal partial DFA for “kth symbol from the
front,” we have pow(A) = pow(B°?), done by Brzozowski's lemma.

State complexity 2" is purely combinatorial: exactly the states P C [0, k] such
that k € P belong to pow(.A).

34
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Cheap Examples

This is borderline embarrassing, but a cheap source of automatic sequences is
to start with a regular language L C Dj that is closed under trailing zeros,
LO* = L.

We can associate a binary sequence Ay, € 2% with L by

! if rrep(n) € L,
Ar(n) = { 0 otherwise.

Ay is k-automatic by brute-force. In fact, the minimal CDFA for Ay, is really
just the minimal DFA for L.

We can do the same with ordinary base k representation, in which case we
need to deal with leading zeros: 0L = L.

36



Divisibility

Fix some modulus m > 2 and base k; define the divisibility language

L={zeDy|valg(z) =0 (mod m)}

The corresponding sequence A, € 2% is particularly simple

AL — (1Om—1 )w

Surprisingly, it's already far from obvious to figure out what the corresponding
minimal CDFA looks like.

37



Base k 38

Since we are interested in values modulo m, it is natural to choose the modular
numbers @ = {0,1,...,m—1} as state set, go =0, A(0) =1, A(p) =0
otherwise. Again, this is really a standard DFA acceptor over digit alphabet Dy,
in disguise, with £ = {0}.

For the transition function note that
val(zd) = (k: val(z) + d) mod m

so we can set
d(p,d) = (pk + d) mod m

We will call these machines Horner automata, in symbols H, k.

Careful, though, H i is not minimal in general, just think about Hp, .
It's the obvious machine that works, but it typically has redundant states.



Divisibility m = 7 Base 3

Hr 3; edge colors: red—0, green—1, blue-2.

39



And Reverse Base k? 40

This is more complicated since
rval(zd) = (rval(x) + dklz‘) mod m

so the machine needs to keep track of the numbers &'*! mod m.
The sequence k' mod m, i > 0, depends very much on divisibility properties of
m and k. Without worrying about the details, it has to be ultimately periodic

as in a 8% where |a| 4 |3| < m, where a and § are finite words over X,,,. We
call o, 8 the fundamental sequence of k£ and m.

We can wrap this up in a nice algebraic way.



Threshold Remainder

Here is a function that describes the position of a particle moving on a lasso
with transient ¢ and period p.

i ifi <t,
t+(i—t)modp otherwise.

remy (i) = {

Write succ(i) = rem; ,(i 4+ 1) and write N;, for the structure’

({0,1,...,t+p—1},succ).

A picture of N5,11.

fSometimes called a semimodule, though there is really very little algebraic structure.

41



Reverse Divisibility Automaton

To build the divisibility machine for reverse base k, let ¢ and p be the
transient/period of the sequence k* mod m, ¢ > 0 and let «, 3 be the
fundamental sequence of k and m.

We can now build a divisibility automaton D,,, ; as follows:

{0,...,m—1} x N¢p,
(p+dﬁs mod m succ(s))
g0 = (0,0)
F={(0,s)|s€Np}

Q:
),d)

Note that this machine has size O(m?), though the accessible part can be
smaller and the minimal machine can be smaller yet.

42



Divisibility m = 7 Reverse Base 3

D73 has 42 =7 - 6 states.
Fundamental sequence is o = nil, 8 =1,3,2,6,4,5 (transient 0, period 6).

43



Divisibility m = 7 Reverse Base 3

,__/O‘\@

The minimal automaton of D7 3.

44



Comparison

Plain base 3 on the left, reverse base 3 on the right.

45



But Why?

From the picture, the minimal automaton of D7 3 is the reversal of Hr s.

To see why, note that H7 3 is a permutation automaton: all the transition
functions J, are permutations of the state set.

By Brzozowski, that means that pow(?—[(;")g) is the minimal automaton for

reverse base 3. But H3"; is a DFA, done.

Careful, though, it is not true in general that H., i is a permutation
automaton.

46



An Analogy

Let's get back to our real issue: we would like there to be no difference
between automaticity defined by base k or defined by reverse base k.

Since rrep,, (n) = rep,(n)°?, we might get some inspiration from Brzozowski's
wild minimization method. Careful, though: as stated, Brzozowski's result
holds only for order 2 automata (final vs non-final states), so we need tweak
things a little bit to handle colors in general.

More precisely, suppose M is the minimal CDFA for reverse base k that
generates some sequence A € A“. We need to construct the minimal CDFA
M’ that generates A using ordinary base k.

47



The Construction

Consider the original minimal CDFA M for A in reverse base k:

M =(Q,D,b;q0, )
Define A-many accessible ordinary DFAs of the form
M, = <Q,E,5;qo,)\_l(a)) forae A
M. = pow(Mﬁp)
Form a product automaton from all these machines

M’:®M;

acA

48



The states of M’ are A-vectors of subsets of Q:

pP= (pa7pb7 e 7pC) € m(Q)A

The transition function of M’ applies the inverse °° of the old & to all the
components of the state vector.

We turn the DFA M’ into a CDFA via the coloring
Ap)=a iff qo € pa

We will see in a moment that that this is well-defined.



The Minimal CDFA for Standard Base k& 50

Theorem
The CDFA M’ is minimal and isomorphic to M®®.

Proof.  First note that by construction £L(M') = L(M).

A simple induction shows that each state vector p of M’ forms a partition of
the original state set @), so suppose that p # q, say, pa # ¢o. We may safely
assume that p € pg — ¢a-

But M is accessible, so §(qo,z) = p for some word . It follows that z°° lies in
the a-behavior of p but not of gq.

Hence M’ is both accessible and reduced. Done.



Uniform Morphisms 51

We will see in a moment how to explain automata using reverse base k
representations, the question arises whether there is some natural combinatorial
characterization of automaticity that is based on standard base &
representations. Voila.

Definition
A morphism p : A* — A* is k-uniform if |u(a)| = k for all a € A.
w is extensible if there is a special letter a € A such that pu(a) = au.

Note that every extensible morphism must have a fixed point in A“:

A= aup(u)p®(u) (). ..

If the morphism is also k-uniform, then a,, is mapped to the block
AknGknt1 - - - Gkntk—1 = ft(an) under p.



PTM

Here is a 2-uniform, extensible morphism for PTM:

0~ 01
1—10

which produces

0

01

0110

01101001

0110100110010110
01101001100101101001011001101001

52



Morphisms and Automaticity 53

Theorem

A sequence is k-automatic if, and only if, it is the image of a fixed point of a
k-uniform morphism under an alphabetic substitution.

Proof.

Let p: A — A* be a k-uniform morphism with fixed point B, a € A the
special letter, and o : A — A a substitution.

We have to show that A = o(B) is k-automatic. Define a CDFA by using A as
state set:

M = M(u,0) = (A, Dy, b;a,0)
where §(p,i) = pu(p): (assuming 0-indexing).

An easy induction shows that A(d(a, rep,(n))) = A(n).



Proof, contd.

For the opposite direction assume we have a CDFA
M =(Q, D, 8; g0, A)
that generates a word A € A“. We may safely assume that §(qo,0) = qo.
We use Q as alphabet and define the morphism 1 : Q@ — QF by
p(p) = 8(p,0)6(p,1)...5(p,k — 1) € Q"

The substitution is the coloring map A.

Then A = A(limn o0 1" (q0)).
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A 3-Uniform Morphism

a+— abc b+ bac c+> cha
produces the fixed point

abc bac cba bac abc cba  cba bac abe  bac abe cba

a ~ 0 red
b~ 1 green
¢ ~ 2 blue

55



And Inference?

Suppose we some infinite sequence A. E.g. we may have some way to compute
A(n), though we may only have an initial segment of A.

Either way, we may assume we know the alphabet A of A, A € A” and A uses

all symbols in A.

How would we check whether A is k-automatic?
And construct a CDFA generating A if it is?

By the theorem, there has to some k-uniform morphism p and an alphabetic
substitution o such that
A= U(FPnt(a7 u))
FPnt(a, p) = a upo(u) o (w) i (u) ...

If we can determine p and o, we know how to construct a CDFA that
generates A.

If no such p and o exist, A is not k-automatic.
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Easy Case 57

Suppose we have additional information: the substitution o is the identity, so A
is a pure fixed point.

In this case we can read off u from A:

A=aur...up—1 | plur) | plu2) | ... | pluk=1)] ...

Moreover, we only need an initial segment of A to obtain a complete
description of p.



General Case

If there is a substitution, the pure fixed point B is masked.

Still, we can resort to brute force and enumerate all substitutions 0 : A — A.

As stated, this is wildly exponential, though for small A it is still feasible.

Needless to say, one can limit the search space by skipping all substutions that
clearly clash with the structure of the fixed point B = 0~ (A) (actually, there
will be multiple preimages in general).
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