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Lemma 1.1 (Chinese Remainder Theorem)
Let a ⊥ b. Then Z/(ab) is isomorphic to Z/(a)× Z/(b).

2 Motivation

We can write non-negative integers in binary notation as sums

a =
k∑

i=0
ai · 2i

where the digits ai are in {0, 1}. Indeed, by adopting reasonable conventions about leading zeros,
we obtain a unique representation. If we extend the summation “to the left,” we can represent
arbitrary non-negative reals:

a =
k∑

i=−∞
ai2i

All such series are automatically convergent with respect to the standard norm, but note that this
representation is not unique:

1 · 20 =
∑
i<0

1 · 2i

Arithmetic operations are defined in the usual manner. To deal with negative numbers we have
admit signs as in

a = ±
k∑

i=−∞
ai2i

Inquisitive minds might wonder what happens if we extend the summation to the right instead and
consider “numbers” of the form, say,

a =
∞∑

i=0
ai2i

We will call these objects dyadic integers. It is convenient to abuse the standard decimal point
and write these numbers in the format a = . a0a1a2 . . . A priori, these expressions are just formal
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Laurent series, there is no convergence unless all but finitely many of the digits are 0. Still, at
the least we get back the non-negative integers. We can add two such numbers via the eminently
reasonable rule 2i + 2i 7→ 2i+1; note that we may have to apply this rule infinitely often in a single
addition. Now consider

m =
∞∑

i=0
2i = .1111 . . .

According to our rules for addition, m + 1 = 0. Hence m = −1. We can also define multiplication:
to multiply by 2i, shift by i places to the right and deal with sums by distributivity. For example,
multiplying by m = −1 comes down to flipping all bits after the first 1. It turns out that our dyadic
integers form a commutative ring. Moreover, we can represent all the integers in our new number
system without use of a sign, and one can show that the representation is unique.
So far, so good. But unless the dyadic integers capture more numbers this would seem like so much
wasted effort. What number would the expression

a = . 10101010 . . .

represent? Since 2a = . 0101010 . . . we have 3a = . 11111 . . . so that a = −1/3; likewise 1/3 =
. 11010101 . . . This observation can be pushed further: suppose the bit-sequence associated with a
dyadic number a is periodic. Then a = r/q where the denominator q is odd. For suppose (ai) has
period π ≥ 1. Then 2πa = a−

∑
i<π ai2i so that

a = −
∑

i<π ai2i

2π − 1
The numerator r here is constrained to −2π < r < 0. But then a general rational r/q, q odd,
corresponds to an ultimately periodic dyadic integer. This turns out to be an if-and-only-if situation.
For example, 1/3 + 1/5 = 8/15 translates into

. 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 . . .

. 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 . . .

. 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 . . .

Needless to say, instead of 2 we could also consider an arbitrary prime p and use digits D =
{0, 1, . . . , p− 1}.

3 Completions of Q

The reals R can be construed as the completion of Q with respect to the standard norm |x| on Q,
the absolute value. Technically one considers all Cauchy sequences (an) over Q:

∀ ε > 0 ∃n ∀ i, j > n (|ai − aj | < ε)
A null-sequence is a sequence (an) with

∀ ε > 0∃n ∀ i > n (|ai| < ε)
We define an equivalence relation ≈ on these sequences: (an) ≈ (bn) ⇐⇒ (an − bn) is a null-
sequence.
Then the space of all Cauchy sequences over Q modulo ≈ is the completion of Q with respect to the
standard norm. This space is isomorphic to the reals (assuming they were defined in some other
way to begin with; say, via Dedekind cuts). In particular this space is complete: applying the same
Cauchy completion a second time produces no new points. Note the role of the absolute value in
the construction, it is worth while to take a closer look at this type of map.
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3.1 Norms and Valuations

A norm (or absolute value, sometimes called the absolute value at infinity) on a field F is a map
|.| : F→ R≥0 subject to the following conditions:

• |a| = 0 ⇐⇒ a = 0

• |ab| = |a||b|

• |a + b| ≤ |a|+ |b| (triangle inequality)

Every field admits the trivial norm |0| = 0, |x| = 1 otherwise. The standard norm on Q or R is
given by |a| = a for a ≥ 0, and |a| = −a otherwise. For C we have the norm |a| =

√
aa.

Proposition 3.1 an = 1 implies |a| = 1. Also, |an| = |a|n for n ∈ Z.

It follows that a finite field admits only the trivial norm.
A norm is discrete if for some ε > 0 and all a

1− ε < |a| < 1 + ε implies |a| = 1.

A discrete norm has a discrete range in R≥0.
A norm is non-archimedean if it satisfies a stronger version of the triangle inequality, the ultrametric
inequality

|a + b| ≤ max(|a|, |b|).

It is easy to see that a norm is non-archimedean iff |n| ≤ 1 for all n ≥ 0. For a non-archimedean
norm we have |a| < |b| implies |a + b| = |b|.
Fields of positive characteristic admit only non-archimedean norms; finite fields in particular admit
only the trivial norm.
Given a non-archimedean norm, it is interesting to consider the following subrings of F

o = { a ∈ F | |a| ≤ 1 }
m = { a ∈ F | |a| < 1 }

Note that o is indeed a subring of F, called the valuation ring (see below), and m is the uniquely
determined maximal ideal in o.

Lemma 3.1 A non-archimedean norm is discrete if, and only if, m is principal.

Closely related to norms a valuations, intuitively obtained by taking the negative logarithm to a
non-archimedean norm. A valuation on a field F is a group homomorphism ν : F× → (R, +) . It
convenient to extend domain and codmain and we obtain

• ν(a) =∞ ⇐⇒ a = 0

• ν(ab) = ν(a) + ν(b)

• ν(a + b) ≥ min(ν(a), ν(b)) where equality holds for ν(a) ̸= ν(b).
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The image of ν is the value group Γ ; ν is discrete if Γ is isomorphic to Z∞, the ordered, free Abelian
group with a point at infinity. By rescaling, we may assume that Γ is equal to Z∞.
Given a valuation ν we obtain a non-archimedean norm by setting

|a|ν = cν(a)

for any constant 0 < c < 1. For this norm we have the valuation ring

o = { a ∈ F | |a| ≤ 1 } = { a ∈ F | ν(a) ≥ 0 }

One can verify that o is indeed a commutative ring and even an integral domain; moreover, F is its
field of fractions. In the discrete case, these rings are called discrete valuation rings (DVR). DVR
carry a lot of interesting structure. The group of units of o is

{ a ∈ o | |a| = 1 } = { a ∈ o | ν(a) = 0 }

Pick such a unit p and note that a ∈ F× can be written uniquely as a = u pn where n = ν(a). As a
consequence, o is a principal ideal domain and the non-trivial ideals of o look like

I = (pn) = { a ∈ o | ν(a) ≥ n }

But then m = { a ∈ F | |a| < 1 } is indeed the uniquely determined maximal ideal.

3.2 p-Adic norms on Q

As an example, let us consider the norms on Q. The standard norm clearly fails to be discrete or
non-archimedean. Here is a more interesting alternative. Fix some prime p and define the p-adic
valuation of an integer n ̸= 0 to be the largest e such that pe divides n, in symbols νp(n):

νp(n) = max
(

e ≥ 0 | pe | n
)

Set νp(0) = ∞. Lift to rational a/b in lowest common terms via νp(a/b) = νp(a) − νp(b). Clearly,
on domain Q, νp(.) has value group Z∞. We obtain the associated p-adic norm by setting c = 1/p:

|a/b|p = p−νp(a/b)

This produces a discrete non-archimedean norm, see section 5 for a discussion of the associated
valuation ring.

Less formally, our valuation on Z is given by∣∣∣±∏
qeq

∣∣∣
p

= ep

where the product is supposed to extend over all primes, and each exponent eq is a uniquely
determined non-negative integer. To lift to the field of fractions, write a non-zero rational as
r = pea/b where e ∈ Z and p is coprime with ab. Then |r|p = p−e. Note that the p-adic norm
produces a somewhat counterintuitive notion of size: for example, p2 is smaller than p−2.
By a theorem of Ostrowski, all the non-trivial norms on Q other than the standard norm are
equivalent to p-adic norms (equivalent meaning |x|1 = |x|c2 for some constant c.) In fact, we have
for all x ̸= 0: ∏

|x|p = 1
The question arises what a completion of Q with respect to a p-adic norm might look like. One
can follow the construction of the reals from Q using the p-adic norm instead of the standard,
Archimedean norm. Here is a slightly more direct approach that focuses on reasonable representa-
tions of the objects under consideration.
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4 Constructing p-Adic Integers

We now give a somewhat more constructive description of p-adic numbers, focusing on appropri-
ate data structures and algorithms. First define the set of rationals without a factor p in the
denominator:

Z(p) = { r ∈ Q | νp(r) ≥ 0 } = { r ∈ Q | |r|p ≤ 1 }

Then Z(p) forms a ring, pn+1Z(p) is an ideal in this ring and thus defines a congruence. We write
s = t (mod pn+1Z(p)) if s − t ∈ pn+1Z(p). Thus, writing s − t = a/b in lowest common terms we
have νp(a) ≥ n + 1.
A sequence (sn) over Z(p) is coherent if sn = sn+1 (mod pn+1Z(p)). Thus, if the terms are integral,
then sn− sn+1 must be divisible at least by pn+1. Coherence allows one to think of such an integral
sequence as defining an inverse limit in

Z/(p)← Z/(p2)← Z/(p3)← . . .

where the maps are the canonical epimorphisms; see also the standard sequences below.
Two sequences (sn) and (tn) are similar, in symbols (sn) ≈ (tn), if sn = tn (mod pn+1Z(p)).

Definition 4.1 The p-adic integers are the quotient

Zp = ZN,coh
(p) /≈

Addition and multiplication are defined point-wise.

Since p is prime we obtain an integral domain in this way (non-prime p still produce a commutative
ring but one with zero-divisors). While the p-adic integers are defined in terms of sequences of
fractions they can also be obtained from sequences of integers. This sequence is the standard
sequence and can be seen as a canonical representation of the corresponding p-adic integer.

Lemma 4.1 For each coherent sequence (sn) over Z(p) there exists a similar sequence (tn) such
that tn ∈ Z, 0 ≤ tn < pn+1.

Proof. Let sn = a/b ∈ Z(p). Since b is a unit in the ring of modular numbers Z/(pn+1) we can
choose an integer b′ such that bb′ = 1 (mod pn+1). Now set tn = ab′ mod pn+1. 2

It is often more convenient to write the elements of the standard sequence in radix p representation:

tn =
∑
i≤n

αip
i.

Note that this works since (tn) is coherent. In the binary case, αn+1 = αn or αn+1 = αn + 2n. It is
then natural to write

α =
∑
i<∞

αip
i

for a p-adic integer. Lastly, we can remover the powers of p as is standar practice in radix nota-
tion, yielding a sequence .α0α1α2 . . . This is the p-adic digit representation of α. Note that this
representation is unique (as opposed to the standard radix representation of reals).
The map Z(p) → Zp, s 7→ (s) is a ring monomorphism, so we can think of the integers as a subring
of the p-adic integers. However, from the standard sequence representation it is easy to conclude
that Zp is uncountable, so this notion of integer is far from the standard one.
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Example 4.1 For this example let p = 2, so we are dealing with dyadic integers.
r standard sequence digit form
-1 (1,3,7,15,. . . ) .11111 . . .
5 (1,1,5,5,5,. . . ) .101
-5 (1,3,3,11,27,59,123,251,. . . ) .110111111 . . .
1/5 (1,1,5,13,13,13,77,205,205,205,1229,. . . ) .10110011001100 . . .

Computation of digit representation in Mathematica:

Reverse@IntegerDigits[ PowerMod[ 5, -1, 2ˆ10 ], 2 ]
FromDigits[ {{1, {0, 1, 1, 0}}, 1}, 1/2 ]

Example 4.2 Consider the sequence an = (1 + p)pn − 1. A simple computation shows that for
n > 0 we have |an|p = p−(n+1). Hence (an) is a null sequence.

Ultimately constant digit representations correspond to integers. For example, in the dyadic num-
bers, −5 corresponds to .1101ω. Ultimately periodic digit representations correspond to rational
numbers. To see this, note that ∑

i≥0 pi = 1/(1− p) in the p-adic norm (much like the case |p| < 1
in the standard norm). Consider α = .b0 . . . brc0 . . . cs−1. Then

α =
∑
i≤r

bip
i +

∑
j<s cjpj

1− ps

Lemma 4.2 The p-adic digit representations of numbers in Z(p) are ultimately periodic.

Proof. Exercise. 2

Here is a critical lemma that helps to determine solutions of polynomial equations over Zp.

Lemma 4.3 (Hensel) Let f ∈ Z[x] be a polynomial with a root f(r) = 0 (mod pn) and f ′(r) ̸= 0
(mod p). Then there exists an r′ such that f(r′) = 0 (mod pn+1) and r = r′ (mod pn).

Proof. As integers, the roots of f modulo pn have the form r + kpn where k ∈ Z. In order to
determine appropriate values of k, let f(x) = ∑

i≤d aix
i so that

f(r + kpn) =
∑

ai(r + kpn)i

=
∑

air
i + kpn

∑
i>0

iair
i−1 + A

= f(r) + kpnf ′(r) + A

where A is a multiple of p2n. Hence

f(r + kpn) = f(r) + kpnf ′(r) (mod pn+1)

and it follows that
k f ′(r) = f(r)/pn (mod p)

Our claim follows. 2

Note that polynomial equations over Zp may have solutions even when the corresponding equation
over Q does not. For example, consider x2 = 2. There is a solution x2

n = 2 (mod 7n) for all
n ≥ 0. In fact, we can obtain a coherent sequence of integers: x = (3, 10, 108, 2166, 4567, 38181, . . .)
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defining a solution x in Z7. There is one other solution corresponding to −x with sequence
(4, 39, 235, 235, 12240, 79468, . . .). To prove the existence of these solutions we can use Hensel’s
lemma: let f(x) = x2 − 2 so that f ′(x) = 2. Then r = 3 satisfies the conditions of the lemma:
f(r) = 7 = 0 (mod 7) and f ′(r) = 2 ̸= 0 (mod 7).
There are many versions of Hensel’s lemma; here is one that deals more directly with the question
of when a polynomial has a root over Zp.

Lemma 4.4 (Hensel, II) Let f ∈ Zp[x] be a polynomial. Suppose that for some α0 ∈ Zp we have
f(α0) = 0 (mod pZp) but f ′(α0) ̸= 0 (mod pZp). Then there is a unique p-adic integer α such that
f(α) = 0 and α = α0 (mod pZp).

5 p-Adic Rationals

We can extend the p-adic valuation to Zp since, for all n, we must have νp(sn) ≥ n + 1 or νp(sn) =
νp(sn+1). So in the limit νp(sn) is either infinite or νp(sn) = νp(sm) for all n ≥ m.
The units in Zp are easy to characterize (note that there are uncountably many of them).

Lemma 5.1 α ∈ Zp is a unit if, and only if, |α|p = 1.

Proof. First suppose α is a unit and let (sn) be the corresponding standard sequence. Then there is
a standard sequence (tn) such that sntn = 1 (mod pn+1Z(p)). But then νp(sntn) = 0 and νp(sn) = 0.
The claim follows.
For the opposite direction let m minimal such that νp(sn) = 0 for all n ≥ m. If m > 0 we have by
coherence νp(sm−1 − sm) ≥ m ≥ 1. But then νp(sm−1) = 0, a contradiction. Hence m = 0.
We need to show that the sequence (s−1

n ) is coherent. By coherence of sn we have sn−sn+1 = r ·pn+1

where r ∈ Z(p). Now

s−1
n − s−1

n+1 = sn+1 − sn

snsn+1
= −rpn+1

snsn+1
∈ Z(p)

Done. 2

Thus, in the standard sequence representation, we need s0 ̸= 0 (same for digit representation). We
can write any element 0 ̸= α ∈ Zp as

α = ϵ · pνp(α)

where ϵ is a unit: we simple shift the first non-zero term of α to the first position by multiplying
by |α|p.
It is now easy to expand Zp to a field by a modification of the standard quotient construction.
To this end define an equivalence relation ∼= on Zp × { pi | i ≥ 0 } (rather than Zp × Z×

p as in the
standard construction) by

(α, pn) ∼= (β, pm) ⇐⇒ αpm = βpn

As usual, the equivalence classes are written in fractional notation: α/pn. The operations are
inherited from Zp:

α

pn
+ β

pm
= αpm + βpn

pn+m

α

pn
· β

pm
= αβ

pn+m
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Definition 5.1 The p-adic numbers are defined to be

Qp = {α/pn | α ∈ Zp, n ≥ 0 }

We can also think of Qp as Zp[1/p]. It is natural to extend the p-adic norm to Qp by

|α/pn|p = |α|p − n

Then we have again that any non-zero p-adic number ζ can be written as

ζ = ϵ · pνp(ζ)

where ϵ is a unit in Zp. Hence we can compute reciprocals in Qp essentially by finding the inverse
of ϵ, a unit in Zp. The p-adic digit representation for Qp is naturally written as

α =
∑
i≥m

αip
i

where m is an integer, possibly negative. Note that this is just a finite-tailed Laurent series if we
consider p to be the unknown. The series is often written using a “p-adic point” in analogy to the
standard decimal notation:

α = αm αm+1 . . . α1 . α0 α1 α2 . . .

Example 5.1 Let p = 5, α = 2/3 so that m = 0. Then α = .4131313 . . . since

α0 = 2 · 3−1 mod p = 4 2/3− 4 = p · (−2/3)
α1 = −2 · 3−1 mod p = 1 −2/3− 1 = p · (−1/3)
α2 = −1 · 3−1 mod p = 3 −1/3− 3 = p · (−2/3)

It follows that, say, 2/75 = 41.313131 . . . and 50/3 = 0.0041313131 . . .

One can show that Qp is complete: all Cauchy sequences over Qp already converge to an element of
Qp. We can think of Q as a subfield of Qp. For let a/b ∈ Q and set n = |b|p. Then a/b pn ∈ Z(p) ⊆ Zp

and we can identify a/b ∈ Q with (a/b pn)/pn ∈ Qp. Q is then dense in Qp and indeed Qp could
also have been constructed as the completion of Q with respect to the p-adic norm.
Using these identifications we have

Zp = {x ∈ Qp | |x|p ≤ 1 }
Z(p) = Zp ∩Q = { a/b ∈ Q | p ∤ b }

Z×
p ∩Q = { a/b ∈ Q | p ∤ ab }

The first characterization relies on the fact that we are dealing with an ultrametric, so we get a
compact subring of Qp by restricting ourselves to norm at most 1. As a consequence, Qp is totally
disconnected.
There is a result, related to the Chinese Remainder Theorem, that shows that one can approximate
rationals in several p-adic norms simultaneously.

Lemma 5.2 (Weak Approximation Theorem) Let pi, i ≤ n, be distinct primes and ri, i ≤ n,
rational numbers. For every ε > 0 there exists a rational r such that |ri − r|pi

< ε.

This comes down to making sure that r − ri = 0 (mod pk
i ) for arbitrary k.
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6 Axiomatic Approach

To give a more axiomatic description of the p-adic number, consider an integral domain o with field
of fractions F, say, of characteristic 0. o is a valuation ring if for any element a ̸= 0 in F, a ∈ o
or a−1 ∈ o. The ideals of a valuation ring are totally ordered by inclusion, so there is a unique
maximal ideal m ⊆ o.
F is a p-adic field if the valuation ring o ⊆ F is a maximal subring of F, subject to the following
conditions. Letting m ⊆ o be the maximal ideal, the canonical quotient map is an isomorphism
o/m → Fp, for some prime p. The value group Γ = F×/o× is a Z-group (there exists a unique
minimal positive element, and [Γ : nΓ ] = n for all n ≥ 1). Let ν be the canonical map F× → Γ ;
then ν(p) is the unique minimal positive element of Γ .
Lastly, Hensel’s lemma holds in the following form: for any polynomial f(x) ∈ o[x] and a ∈ o such
that f(a) = 0 but f ′(a) ̸= 0, there is a a′ ∈ o such that f(a′) = 0 and ν(a′ − a) > ν(f ′(a)).

We can recover o from a homomorphism ν : F× → Γ into a Z-group by letting o = {x ∈ F× |
ν(x) ≥ 0 } ∪ {0}.

The critical example is o = Zp ⊆ Qp. Here Γ is (isomorphic to) Z, and m = (p) ⊆ Zp.

7 Dyadic Numbers and Circuits

The case p = 2 is particularly interesting, since we can naturally identify Z2 with the sequence space
2ω or the Boolean space Bω. As a consequence, there are natural operations on Z2 other than the
algebraic ones considered so far.

Logical: We can think of 2 as B and apply logical operations pointwise; we obtain a Boolean
algebra isomorphic to P(N).

Combinatorial:

• up-shift b = z−(a), b0 = 0, bn = an−1

• down-shift b = z(a), bn = an+1

• up-power b = ↑(a), b2n = an, b2n+1 = 0

• down-sample, even b = even(a), bn = a2n

• down-sample, odd b = odd(a), bn = a2n+1

• shuffle c = a ⊙ b, c2n = an, c2n+1 = bn

• convolution c = a ⊗ b, cn = ⊕i+j=naibj

The space of dyadic numbers together will all these operations is referred to as digital numbers D
by Vuillemin. There are natural embeddings

B ⊆ N ⊆ Z ⊆ Z(2) ⊆ Z2 ≃ D

from various important structures into the digital numbers. By selecting appropriate subsets of the
operations get for example the Boolean algebra ⟨D,∨,∧,¬⟩.
There are lots of equational relations between these operations. For example, we have
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−a = 1 + ¬a

z a = 2 ⊗ a = 2× a

↑ a = a ⊗ a

z z− a = a

a = (even a) ⊙ (odd a).

Also, D ≃ D×D since the shuffle operation is a pairing function ⊙ : D× D→ D . The corresponding
unpairing functions are even and odd.
The additional operations can be useful in describing certain functions f : D → D , in particular
with a view towards their realization as a digital circuit. We will only consider circuits with discrete
time, so the state of the circuit is defined only for t = 0, 1, 2, . . . It is convenient to consider a special
ternary Boolean function, a so-called multiplexer: a type of controlled switch where the first input
selects which of the other inputs is selected for output. Alternatively, we can think of a multiplexer
as an if-then-else gate. In symbols:

?(x, y, z) = (x ∧ y) ∨ (¬x ∧ z)

Note that ? together with constants true and false forms a basis for all Boolean functions.

¬x = ?(x,⊥,⊤)
x ∧ y = ?(x, y,⊥) = ?(x, y, x)
x ∨ y = ?(x,⊤, y) = ?(x, x, y)
x⊕ y = ?(x, ?(y,⊥, y), y)

Another important digital component is a register or unit delay: the output at time t = 0 is 0 and
otherwise the input at time t− 1. A closely related gadget is a register that outputs a 1 at time 0.
In order for a circuit built from multiplexers and registers to have well-defined behavior we require
that there are no cycles in the corresponding diagram whose nodes are exclusively multiplexers
(equivalently, there are no feedback loops in the purely Boolean part of the circuit).
Unless mentioned otherwise, we do not require circuits to be finite. However, all paths from input
to output must be finite.

7.1 Types of Functions

Definition 7.1 Let f : D → D . f is continuous if it is continuous in the sense of the standard
topology:

∀ ε > 0, x∃ δ > 0∀ y (|x− y| < δ →|f(x)− f(y)| < ε).
f is on-line or causal if

f(x) =
∑
t≥0

ft(x0, . . . , xt) 2t

where x = ∑
xi2i. f is 1-Lipschitz if

∀x, y (|f(x)− f(y)| ≤ |x− y|).

By the Heine-Cantor theorem, a continuous function on D is already uniformly continuous so that

∀n ∃m ∀x, y (|x− y| < 2−m →|f(x)− f(y)| < 2−n).

Thus, the first m = m(n) input bits suffice to determine the first n output bits.
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Theorem 7.1 f can be computed by a combinational circuit iff f is continuous.

In other words, we can write
f(x) =

∑
t≥0

ft(x0, . . . , xm(t)) 2t

for some function m : N → N . The component function ft is a finite Boolean function can thus
be computed by a combinational circuit. Note that we require paths from inputs to outputs to be
finite (though the whole circuit might be infinite).

Lemma 7.1 Let f be on-line. Then f is injective iff
• ∃ g ∀x : g(f(x)) = x.

• ∀x, y (|f(x)− f(y)| = |x− y|).

• ∃ g, c ∀x : f(x) = x ⊕ c ⊕ 2× g(x).
Note that an injective on-line function is necessarily surjective.
The following theorem generalizes Boolean decision diagrams to synchronous decision diagrams,
a type of (possibly infinite) digital circuit that describes on-line functions, much the way a BDD
describes Boolean functions.

Theorem 7.2 f can be computed by a synchronous digital circuit iff f is on-line iff f is 1-Lipschitz.

Proof. The idea is to construct a circuit built from muxes and registers by exploiting the following
analogue to Shannon expansion of Boolean functions:

f(x) = ?(x, b1 + 2× f1(x), b0 + 2× f0(x)).

To determine the right-hand side we compare coefficients:
f f1 f0

f0(x0) b1 = f0(1) b0 = f0(0)
f0(x0, x1) f1(x0, 1) f1(x0, 0)
f0(x0, x1, x2) f2(x0, x1, 1) f2(x0, x1, 0)

It is easy to build an infinite synchronous circuit with input x at the muxers, in the shape of a
complete binary tree, that implements f . 2

If f = p is given by a transducer we can construct the SDD as follows. First note that

f(x) =
∑

za<x

∂zf(a) 2|z|

The functions fu associated with f in the SDD construction then have the form

fu(x) =
∑

za<x

lst(∂zf(au)) 2|z|

Assuming that the transducer is accessible from state p, it follows that fu = fv iff ∀ q, a (lst(q∗au) =
lst(q ∗ av)). Hence the SDD is finite whenever the transducer is finite.
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