
CDM
Automata on Infinite Words

Klaus Sutner

Carnegie Mellon University
Spring 2021

1 Infinite Words

2 Deterministic Languages

3 Muller and Rabin Automata

4 Determinization

Towards Infinity 2

A Challenge: Does it make any sense to consider finite state
machines on infinite words?

If this is not simple lunacy, how would this generalization work? What could
these machines be good for?

Infinite Words 3

As a matter of principle, infinite words come in two flavors: bi-infinite

Σ∞ = Z → Σ

or one-way infinite

Σω = N → Σ

Both kinds appear naturally in the analysis of symbolic dynamical systems
(reversible and irreversible).

One-way infinite ones can be used to describe the properties of programs that
never halt, such as operating systems and user interfaces. Protocols also
naturally give rise to infinite descriptions.

Adieu Concatenation 4

Note that neither Σ∞ nor Σω form a semigroup under concatenation in any
conceivable sense of the word: there is no way to combine two infinite words by
“placing one after the other” and get another infinite word (at least not of the
kind that we are interested).

But not that there is an obvious concatenation operation

Σ⋆ × Σω −→ Σω

and a slightly less obvious one of type

Σω × Σω −→ Σ∞

The second one is particularly interesting in conjunction with automata on
biinfinite words, but we won’t go there: the technical details are too messy.

Automata Recognizing Infinite Words 5

Key Question:
How do we modify finite state machines to cope with infinite inputs?

Transition system: same as for ordinary finite state machines.

Acceptance condition: requires work.

What kind of acceptance condition might make sense? For finite words there is
a natural answer based on path existence, but for infinite words things become
a bit more complicated.

Whatever condition we choose, we should not worry about actual acceptance
testing, this is a conceptual problem, not an algorithmic one.

But also remember the second killer-app: model checking. We only care
whether some machine accepts some input, the actual input is irrelevant.

ω-Languages 6

So we are interested in one-way infinite words:

Σω = N → Σ

One-way infinite words are often called ω-words.
Subsets of Σω are called ω-languages.
Given an automaton for infinite words its acceptance language is denoted by
Lω(A) and so on.

Note that an ω-language may well be uncountable; there cannot be a good
notation system for ω-words.

We will usually drop the ω whenever it is obvious from context.

Runs and Traces 7

Since we will not change the underlying transition systems, we can lift the
definitions of run and trace to the infinite case: a run is an alternating infinite
sequence

π = p0, a1, p1, a2, . . . , pm−1, am, pm, . . .

The corresponding infinite sequence of symbols is the trace:

lab(π) = a1, a2 . . . , am−1, am, . . . ∈ Σω

In general, the number of runs on a particular input is going to be uncountable,
but that will not affect us (it is path existence that matters).

Acceptance 8

Again: Key Question: What could it possibly mean for a finite state machine
to accept an infinite word?

Obviously we need some notion of acceptance that does not just depend on a
finite initial segment of the input: this would ignore “most” of the input and
just replay our old theory.

On the other hand, we should keep things simple and not use wildly infinitary
conditions to determine acceptance; we don’t want to sink in a morass of
descriptive set theory.

So here is a fairly natural condition: let’s insist that an accepting run must
touch the set of final states infinitely often. More precisely, define the set of
recurrent states of a run π to be

rec(π) = { p ∈ Q |
∞
∃ i (pi = p) }

Büchi Automata 9

Definition
A Büchi automaton B is a transition system ⟨Q, Σ, τ⟩ together with an
acceptance condition I ⊆ Q and F ⊆ Q.
B accepts an infinite word x ∈ Σω if there is a run π of B on x that starts at I
and such that rec(π) ∩ F ̸= ∅.
The collection of all such words is the acceptance language of B. A language
L ⊆ Σω is recognizable or ω-regular if there is some Büchi automaton that
accepts it.

So far, this is just a definition. It seems reasonable, but it is absolutely not
clear at this point that we will get any mileage out of this.

No Pattern Matching 10

The standard acceptance testing problem makes little sense in this setting.

Problem: Recognition Büchi
Instance: A Büchi automaton A and a word x ∈ Σω.
Question: Does A accept input x?

A will just be some finite data structure. But there is no general way to specify
the input x, the space Σω is uncountable. We could consider periodic words or
the like, but as stated the decision problem is basically meaningless.

But: We might still be able to generalize our logic approach and use Büchi
automata to solve decision problems.

Example I 11

Let Σ = {a, b} and

L = { x ∈ {a, b}ω | 1 ≤ #bx < ∞ }

So L is the language of all words containing at least one, but only finitely many
b’s. This language is recognizable.

In fact, two states suffice. Here is a Büchi automaton for L = {a, b}⋆b aω:

1 2
b

a, b a

Example II 12

Let Σ = {a, b, c} and

L = { x ∈ {a, b, c}ω | #ax = #bx = ∞ ∧ #cx < ∞ }

So L contains finitely many c’s, but infinitely many a’s and b’s. This language
is also recognizable.

0 1

2

3

a, b

a, b

a

b

a, b, c a, b

a, b

Correctness 13

Note that 0 a−→ 1 or 0 b−→ 1 would also work; it’s not so clear what the
canonical automaton looks like.

Correctness proofs are harder than for ordinary automata, they typically involve
some (modest) amount of infinite combinatorics. In this case, one might use
the following claims. Write K for the ω-language over {a, b} of words
containing infinitely many a’s and b’s.

1. A word x is in L iff x = uv where u ∈ {a, b, c}⋆ and v ∈ K.

2. Let s ∈ {a, b}. Then sv ∈ K iff v ∈ K.

3. Any infinite path in the SCC {1, 2, 3} touching state 1 infinitely often
must use the edges (2, 3) and (3, 1) infinitely often.

Exercise
Give a complete proof that the Büchi automaton accepts L.

Example III 14

Consider alphabet Σ = {a, b, c}. Let L be the language
Every a is ultimately followed by a b, though there may be arbitrarily
man c’s in between, and overall there may be only finitely many a’s.

Then L is recognizable.

1 23

a

b

b, c c

b, c

b, c

Again, think about what a correctness proof would look like.

Acceptance Testing 15

While acceptance testing in general makes no sense, we can still handle the
situation when the word is very simple.

Lemma
Let A be a Büchi automaton and U = v uω an ultimately periodic infinite
word. Then it is decidable whether A accepts U .

In this case, U has an obvious finite description: the finite words v and u. A
more general case is a computable word: the function U : N → Σ is
computable.

Exercise
Prove the last lemma.

A Catastrophe 16

Lemma
It is undecidable if a Büchi automaton accepts a computable word (even a
primitive recursive one).

Proof.
For any index e define a computable infinite word Ue by

Ue(s) =
{

b if {e}s(e) converges (after at most s steps),
a otherwise.

Then {e}(e) converges iff Ue ∈ a⋆bω; otherwise Ue = bω. This property is
easily checked by a 2-state Büchi automaton (even a deterministic one). If we
could test acceptance of a computable word in a Büchi automaton we could
thus solve the Halting Problem. 2

Streamlining Büchi Automata 17

It is clear that a Büchi automaton may have useless states. In particular, any
inaccessible state (in the sense of a classical finite state machine) is clearly
useless. But there is more: for example, if a final state belongs to a trivial
strongly connected component it is useless: the computation can pass through
the state at most once, so we might as well remove it from the set of final
states.

Lemma
Useless states can be removed from a Büchi automaton in linear time.

Exercise
Give a careful definition of what it means for a state in a Büchi automaton to
be useless. Then produce a linear time algorithm to eliminate useless states.

Union and Intersection 18

Lemma
Recognizable languages of Σω are closed under union and intersection.

Proof. For union simply use the disjoint sum of the Büchi automata.
For intersection, we use a slightly modified product machine construction. The
new state set is

Q1 × Q2 × {0, 1, 2}

The transitions on Q1 and Q2 are inherited from the two given machines.
On the last component act as follows:

Move from 0 to 1 at the next input.
From 1 move to 2 whenever a state in F1 is encountered.
Reset from 2 to 0 when a state in F2 is encountered.

Proof, contd. 19

The initial states are of the form

I1 × I2 × {0}

and the final states are
F = Q1 × Q2 × {0}

The infinitely many visits to F imply infinitely many visits to F1 and F2, and
conversely. 2

There is a message here: though the construction is similar to the finite case it
is a bit more complicated. You have to stay alert. Also note that we have not
dealt with complements.

Exercise
Fill in the details in the last construction.

Rational Languages 20

Another piece of evidence for the usefulness our our definition is that
recognizable language on infinite words can be written down as a type of
regular expression.

Definition
A language L ⊆ Σω is rational if it is of the form

L =
⋃
i≤n

UiVi
ω

where Ui, Vi ⊆ Σ⋆ are all regular.

Since we already have a notation system for regular languages of finite words it
is easy to obtain a notation system for recognizable languages of ω-words: add
one operation ω with the understanding that this operation can only be used
once and on the right hand side.

Rational Expressions 21

A basic expression has the form

α βω

where α and β are ordinary regular expressions. As we will see shortly, sums of
these expressions then produce exactly all the recognizable ω-languages.

For the examples from above we have fairly simple expressions

a⋆b(a + b)⋆aω

((b + c)⋆(ε + ac⋆b))ω

Equivalence Recognizable and Rational 22

Lemma
An ω-language is recognizable if, and only if, it is rational.

Proof. First assume A is a Büchi automaton accepting some language L. For
each final state p define two new automata

A0
p = A(I, p) A1

p = A(p, p)

and let Up = L(A0
p), Vp = L(A1

p).
Then

L =
⋃

p∈Q

UpVp
ω

since rec(π) ∩ F ̸= ∅ implies that one particular state p ∈ F must appear
infinitely often.

Proof, contd. 23

For the opposite direction it suffices to show that L = UV ω is recognizable for
any regular languages U and V ̸= ∅, {ε} since recognizable languages are
closed under union.

To this end consider two machines A0 and A1 for U and V . Join the final
states of A0 to the initial states of A1 by ε-moves, and the final states of A1
to the initial states of A1.
Perform ε-elimination to obtain a plain nondeterministic automaton A.
Set the initial states of A to the initial states of A0 and the final states to the
final states of A1.
The resulting Büchi automaton A accepts L.

2

1 Infinite Words

2 Deterministic Languages

3 Muller and Rabin Automata

4 Determinization

Deterministic Büchi Automata 25

Definition
A Büchi automaton is deterministic if it has one initial state and its transition
system is deterministic.

We may safely assume that a deterministic Büchi automaton is also complete:
otherwise we can simply add one sink state. In a deterministic and complete
Büchi automaton there is exactly one run from the initial state for any input.

Note that the undecidability result for computable words holds already for
deterministic Büchi automata.

Still, deterministic automata should be of interest if one tries to compute
complements: construct a deterministic machine for the language, then
manipulate the acceptance condition to get a machine for the complement.

Another Catastrophe 26

Proposition
Let L = { x ∈ {a, b}ω | #bx < ∞ }. Then L is ω-regular but cannot be
accepted by any deterministic Büchi automaton.

Proof. To see this, suppose there is some deterministic Büchi automaton that
accepts L.
Hence, for some n1, δ(q0, ban1) ∈ F . Moreover, for some n2,
δ(q0, ban1 ban2) ∈ F . By induction we produce an infinite word

ban1 ban2 ban3 . . .

accepted by the automaton. Contradiction. 2

This shows that a deterministic transition system together with a Büchi type
acceptance condition rec(π) ∩ F ̸= ∅ is not going to work: not only do we have
to construct a deterministic transition system, we also have to modify our
acceptance conditions. Alas, it is far from clear how one should do this.

Deterministic Recognizable Languages 27

One might wonder whether the languages recognized by deterministic Büchi
automata have some natural characterization. Since you asked . . .

Definition
Let L ⊆ Σ⋆ be a language. Define the adherence of L to be

−→
L = { x ∈ Σω | x has infinitely many prefixes in L }

The best way to visualize this to think of Σ⋆ as an infinite tree. Mark the
nodes in this tree that belong to L. Then −→

L is the set of all branches in the
tree that touch infinitely many marked nodes. Note that there may be no such
branches even when L is infinite.

L
−→
L

a⋆b ∅
(ab)⋆ (ab)ω

(a⋆b)⋆ (a⋆b)ω

Adherence and Büchi 28

The reason the adherence operation is interesting is that it connects ordinary
languages with ω-languages. Given a Büchi automaton we can think of it as an
ordinary NFA and obtain on ordinary language L∗(A): just change the
acceptance condition.

What is the relationship, if any, between L∗(A) and Lω(A)?

Consider a run of the Büchi automaton on some input x ∈ Σ∞:

π : p0 x0 p1 x1 p2 . . . pk xk pk+1 . . .

If x is accepted by A, then, for infinitely many i, we have pi ∈ F . But then
x0x1 . . . xi−1 is accepted by the NFA A.
In other words

Lω(A) ⊆
−−−−→
L∗(A)

The Characterization 29

Lemma
An ω-language L is recognized by a deterministic Büchi automaton if, and only
if, L is the adherence of some regular language.

Proof.
We already know that Lω(A) ⊆

−−−−→
L∗(A) for any Büchi automaton A.

Now suppose A is in addition deterministic. Then equality holds and we are
done.

For the opposite direction assume L = −→
K where K ⊆ Σ⋆ is regular. Then K is

accepted by a deterministic finite state machine, for example, the minimal
automaton A for K.
Thinking of A as a Büchi automaton, we have Lω(A) = L. 2

But beware . . . Adherence Example 30

Consider again the automaton

1 23

a

b

b, c c

b, c

b, c

Note that (abb)⋆ ⊆ L∗(A).

But then (abb)ω ∈
−−−−→
L∗(A) − Lω(A)

The problem is that our finite computations do not have infinite extensions.

Closure Properties 31

Lemma
Deterministic recognizable languages are closed under union and intersection.

Proof.
Union follows directly from the last lemma and −−−→

A ∪ B = −→
A ∪

−→
B .

For intersections note that the modified product machine construction from
above preserves determinism. 2

Exercise
Check all the details in the last proof.

1 Infinite Words

2 Deterministic Languages

3 Muller and Rabin Automata

4 Determinization

Other ω-Automata 33

As we have seen, there are regular ω-languages that cannot be accepted by any
deterministic Büchi automaton. Alas, without determinization it is unclear how
we could deal with complements, which we need to handle negation.

Wild Hope: Maybe there are alternative machine models that allow for
deterministic descriptions of regular languages.

As before, we will not change the transition system, just the acceptance
condition.

One fairly natural possibility is to completely pin down rec(π).

Muller Automata 34

Definition
A Muller automaton consists of a deterministic transition system ⟨Q, Σ, τ⟩ and
an acceptance condition q0 ∈ Q and F ⊆ P(Q).
A accepts an infinite word x ∈ Σω if there is a run π of A on x that starts at
q0 and such that rec(π) ∈ F .

F is often referred to as the table of the Muller automaton. Note that the
table may have size exponential in the size of the transition system.

But, complementation is easy (just as it was easy for DFAs): make sure the
machine is complete, then replace the old table F by P(Q) − F .
Note that this simple operation might produce an exponential blow-up if done
in a ham-fisted way.

Example: Muller 35

The at-least-one-but-finitely-many-b’s language from above is accepted by the
following Muller automaton.
The table has the form F = ((2), (3)).

1 2 3
b

a a a

b

b

Note that this automaton distinguishes between an even and odd number of
b’s. This is a bit scary since the distinction is by no means obvious from the
original Büchi automaton.

The Complement 36

We can complement the table to get a machine for the complement of the
language.

1 2 3
b

a a a

b

b

The complement table contains several useless entries:

F ∅ 1 1, 2 1, 3 2, 3 1, 2, 3
L ∅ aω ∅ ∅ a⋆(ba⋆)ω ∅

However, the two non-empty entries duly produce no b’s or infinitely many b’s,
exactly the complement of the language.

Muller and Closure 37

As we have seen, the family of languages accepted by Muller automata is
closed under complementation. It is in fact a Boolean algebra.

Lemma
Given two Muller automata A1 and A2 one can construct a Muller automaton
A such that L(A) = L(A1) ∪ L(A2). Similarly, there is a Muller automaton A
such that L(A) = L(A1) ∩ L(A2).

Proof.
As usual, we build a product machine A = A1 × A2. So the new state set is
Q = Q1 × Q2.

Write prji : Q → Qi for the natural projections.

Intersection 38

For union, the table of A has the form

{ F ⊆ Q1 × Q2 | prj1(F) ∈ F1 ∨ prj2(F) ∈ F2 }

Since the machines are deterministic it is easy to see that this works.

We could use de Morgan’s law in conjunction with the previous construction to
build a Muller automaton for the intersection. There is no need for this,
though: we can easily describe the table directly:

{ F ⊆ Q1 × Q2 | prj1(F) ∈ F1 ∧ prj2(F) ∈ F2 }

2

Muller versus Deterministic Büchi 39

Lemma
A language L ⊆ Σ∞ is recognizable by a Muller automaton if, and only if, it is
of the form

L =
⋃
i≤n

Ui − Vi

where Ui, Vi ⊆ Σω are recognizable by a deterministic Büchi automaton. In
other words, L must lie in the Boolean algebra generated by deterministic
Büchi languages.

Proof.
Suppose L is recognized by A with table F . Since L =

⋃
F ∈F L(A(F)) we

only need to deal with tables of size 1. But

L(A(F)) =
⋂

p∈F

L(A(p)) −
⋃
q /∈F

L(A(q))

where the automata on the right hand side are deterministic Büchi. Done by
the closure properties of deterministic Büchi languages.

Proof, contd. 40

For the opposite direction assume U is accepted by a deterministic Büchi
automaton A. Define

F = { P ⊆ Q | P ∩ F ̸= ∅ }

Then the corresponding Muller automaton A(F) accepts U .
But we know that Muller languages form a Boolean algebra, so we can get a
Muller automaton for any Boolean combination

⋃
i≤n

Ui − Vi.
2

Note that the table will have exponential size.

Rabin Automata 41

Another possibility to modify acceptance conditions is to augment the positive
condition of Büchi automata by a negative condition: a successful run must
ultimately avoid a certain set of states.

Definition
A Rabin automaton consists of a deterministic transition system ⟨Q, Σ, τ⟩ and
an acceptance condition q0 ∈ Q and R ⊆ P(Q) × P(Q).
A accepts an infinite word x ∈ Σω if there is a run π of A on x that starts at
q0 and such that for some (L, R) ∈ R: rec(π) ∩ L = ∅ and rec(π) ∩ R ̸= ∅.

The pairs (L, R) are called Rabin pairs: L is the negative condition and R the
positive condition.
In the special case where R = {(∅, F)} we are dealing with a deterministic
Büchi automaton.

Example: Rabin 42

The Muller automaton from above can also be turned into a Rabin automaton
with Rabin pairs

R = ((1, 2; 3), (1, 3; 2))

1 2 3
b

a a a

b

b

The excluded sets force a tail end of the run to look like 2ω or 3ω.

Büchi, Muller, Rabin 43

The acceptance condition for all three has the form

initial states I (a singleton for Muller and Rabin)

a family F ⊆ P(Q) of permissible values for the recurrent state set of a
run.

Note that we may safely assume that F contains only strongly connected sets.

For Büchi automata the family is trivial: F = {F } and thus a data structure of
size O(n).

For Muller automata it is explicitly specified and potentially large.

For Rabin automata the specification is implicit: all X ⊆ Q such that
∃ (L, R) ∈ R (X ∩ L = ∅, X ∩ R ̸= ∅). Each Rabin pair is O(n), but there may
be exponentially many.

Equivalence Muller and Rabin 44

So now we have four classes of automata:

deterministic Büchi,
Büchi,
Muller and
Rabin.

We will see that Büchi, Muller and Rabin are all equivalent and strictly stronger
than deterministic Büchi. This result is similar to equivalences between various
types of automata on finite strings, but the arguments are more complicated.

We will not consider nondeterministic versions of Muller and Rabin automata
here.

1 Infinite Words

2 Deterministic Languages

3 Muller and Rabin Automata

4 Determinization

Complements of Ordinary Regular Languages 46

Recall the algebraic approach to showing that the complement of a regular
language L ⊆ Σ⋆ is again regular:

Find a congruence of finite index ≡ on Σ⋆,

that saturates L: L =
⋃

x∈L
[x].

Then both L and Σ⋆ − L are finite unions of equivalence classes of ≡.

But these classes are all regular, done.

For example, we could use the syntactic congruence
x ≡L y ⇔ ∀ u, v (uxv ∈ L ⇔ uyv ∈ L) (which can be expressed in terms of a
DFA for L).

Or we could exploit the monoid that recognizes L.

And ω? 47

It is tempting to try the same approach for ω-languages. Incidentally, this is
what Büchi did.

First off, our congruence must derive from nondeterministic machines.

This is slightly tricky, we need to involve the acceptance condition For Büchi
automata. Here goes:

x ≡ y ⇔ ∀ p, q (p x−→ q ⇔ p
y−→ q) ∧

∀ p, q (p x−→F q ⇔ p
y−→F q)

where p
x−→F q means: there is a run from p to q with label x that touches a

final state.

Properties 48

It is easy to see that ≡

is a congruence,

has finite index,

the languages [u][v]ω saturate L,

the languages [u][v]ω are ω-regular.

Looks like we nailed it. Alas . . .

Mind The Gap 49

We need to show that x ∈ Σω implies x ∈ [u][v]ω for some u, v ∈ Σ⋆.
Suppose we have a morphism f : Σ⋆ → M into a finite monoid M .

Lemma
For x ∈ Σω there exists u, e ∈ M , e idempotent, such that

x ∈ f−1(u)(f−1(e))ω

Proof. Define m(i, j) = f(xi . . . xj) ∈ M for i < j, so we are coloring pairs of
elements in N by M .
By Ramsey’s celebrated theorem, we get an infinite homogeneous subset I ⊆ N.
Set u = m(0, i1) and e = m(i1, i2).

2

Recognizability 50

The pairs (u, e) in M are sometimes called linked pairs.

So we now have a characterization of ω-regular languages in terms of
recognizability, entirely analogous to the finite word case.

There is a finite monoid M and a morphism f : Σ⋆ → M and a set of linked
pairs P such that

L =
⋃

(u,e)∈P

f−1(u)
(

f−1(e)
)ω

Determinization 51

We still need a (at least on occasion) practical algorithm to construct
automata for complements. This was an open problem for some 25 years after
Büchi’s groundbreaking work.

Theorem (Safra 1988)
There is an algorithm to convert a Büchi automaton into an equivalent Rabin
(or Muller) automaton.

The algorithm has running time

2O(n log n)

Unfortunately, this is optimal: there are examples where the deterministic
automata are that large.
More next time.

Sanity Check 52

Safra’s algorithm is quite complicated, in all aspects:

the code is messy if one tries to make it reasonably efficient,

correctness is highly non-trivial, and

the running time analysis (lower bounds) is a mess.

So, for the time being, let’s ignore Safra’s algorithm and just verify that Büchi,
Muller and Rabin automata are reasonably well-behaved.

Muller to/from Rabin 53

Lemma
For every Rabin automaton there exists an equivalent Muller automaton, and
conversely.

Proof.
Consider a Rabin automaton ⟨Q, Σ, τ ; q0, R⟩. We will use the same transition
system and define a table

F = { X ⊆ Q | ∃ (L, R) ∈ R (X ∩ L = ∅, X ∩ R ̸= ∅) }

It is easy to see that ⟨Q, Σ, τ ; F⟩ is an equivalent Muller automaton.

Equivalence, contd. 54

The opposite direction is harder.
Let ⟨Q, Σ, δ; q0, F⟩ be a Muller automaton. For simplicity assume F = {F }.
Consider a new transition system on state set

Q′ = P(F) × Q

Let q = δ(p, a) and define transitions

(U, p) a−→ (U ′, q)

where U ′ = ∅ if U = F and F ∩ (U ∪ {q}) otherwise. There is one Rabin pair:

L = { (U, p) | p /∈ F } R = { (U, p) | U = F }

One can verify that the new machine is equivalent to the given Muller
automaton.

For a full table F = {F1, . . . , Fk} rinse and repeat. 2

Better Mousetrap 55

Consider a Muller automaton, again assume a singleton table, F = {F }.
Here is a construction of an equivalent Büchi automaton that avoids powersets.
Let F = {q1, . . . , qn−1}.
We construct a nondeterministic Büchi automaton on states Q′ = Q ∪ (F × n)
where n = {0, 1, . . . , n − 1}.
Let q = δ(p, a) and define τ in two parts:

τ(p, a) =
{

{q} if q /∈ F ,
{q, (q, 0)}, otherwise.

τ((p, k), a) =
{

{(q, k), (q, k + 1 mod n)} if p = qk, k > 0,
{(q, 1)} if k = 0.

F ′ = Q × {0}.

Mental Health Warning 56

Automata constructions over finite words are typically fairly natural, there is
usually one good answer.

This is no longer true for ω-automata, there may well be different reasonable
ways to construct machines for a particular purpose.

Also, correctness proofs become much, much harder.

Exercise
Prove that the last construction really works as advertised.

Rabin to Büchi 57

Lemma
For every Rabin automaton there exists an equivalent Büchi automaton.

Proof. Suppose A is some Rabin automaton with n states and m pairs
(Li, Ri).
Let

Q′ = Q ∪
⋃

i

{ (p, i) ∈ Q × [m] | p /∈ Li }

The Büchi automaton B inherits the initial state and the transitions from A;
furthermore, for each p

a−→ q in A there are additional transitions

p
a−→ (q, i) (p, i) a−→ (q, i)

in B whenever the corresponding states exist. Lastly, set

F = { (p, i) | p ∈ Ri }

Done. 2

Efficiency 58

In the conversion Muller to Rabin the transition system is unchanged. However,
we introduce exponentially many entries in the table, for each Rabin pair.

For the direction Rabin to Muller the new transition system already has
potentially exponential size in the the size of the old transition system (k can
be exponential in the number of states). The number of pairs is also
exponential, and each pair has perhaps exponential size.

A Rabin automaton with n states an m pairs can be simulated by a Büchi
automaton of size O(nm).

Overall, these conversions will only be feasible for rather small machines.

	Infinite Words
	Deterministic Languages
	Muller and Rabin Automata
	Determinization

