
CDM
Verification and CTL

Klaus Sutner

Carnegie Mellon University
Fall 2019



1 Verification

2 CTL Structures



Verification 2

Our automata-based decision algorithms are quite impressive, but still too weak
for “real world” applications.

What kind of logic is required to verify the correctness of a “system” (which
could be hardware, software, a protocol, . . . )?

We need three components:

A framework for modeling the system in question.
A specification language that describes the desired properties.
A verification algorithm that checks the specification against the descrip-
tion.

One might think that classical first order logic could be used for this purpose,
but unfortunately there are several issues that make FOL less than suitable for
our task.



Expressiveness versus Hardness 3

The main problem is that the more expressive a language we chose, the harder
the associated difficult decision problems become: even for propositional logic
we already have to contend with NP-hardness, so one should expect to
encounter worse hardness or even undecidability when moving to a stronger
system.

However, again in analogy to the propositional case, there is hope to develop
good algorithms for “practical problems”.

So the question is: is there a nice class of problems that is

close enough to real problems so that a solution is of interest, and
simple enough so that one can find good algorithms.

We can get some guidance by looking at a concrete example of a system that
we might want to deal with.



Alternating Bit Protocol 4

There are four players in ABP:

A sender that tries to transmit messages.
A receiver that would like to receive these messages.
A message channel that is responsible for the actual transmission of the
messages.
An acknowledgment channel that used for confirmation.

The problem is that the channels are faulty: they may delete or duplicate
messages. We do not consider other errors here.

How should sender and receiver communicate so that the messages are
correctly transmitted?

Note that we must assume that the channels are not completely broken (if no
message gets through ever no protocol will help).



The Protocol 5

The sender maintains a single bit b, initialized to 0.

It sends a banana . . .



Transition Systems 6

Let’s focus on systems that have a clear notion of state transition: the system
evolves in a sequence of steps

s0 → s1 → s2 → . . . → sn → . . .

This type of behavior is more typical of hardware and protocols than of
software.

We can think of the possible transitions as a binary relation on the space of all
possible states:

� ⊆ S × S

or, if you prefer, as a digraph on S.



Words 7

An important and very general class of systems is composed of states that are
words over some alphabet: just think about binary words, representing a fixed
number of bits.

So we have a structure
Cρ = ⟨Σ⋆,�⟩

where � is a binary predicate that expresses one step in the evolution of the
system.

Obviously it makes sense to start with systems where � is very simple.

One way to formalize simplicity is to insist that � is a regular relation: there
has to be a finite state machine that, given two points x and y, can check if
x � y.



Designing a Language 8

How do we describe properties of a regular structure

C� = ⟨Σ⋆,�⟩

We need some kind of specification language. Obviously we want to be able to
use � as an atomic proposition and we want equality (which is trivially
regular).

We also want a bit of logic, at the very least propositional logic.
⊥, ⊤ constants false, true
x � y atomic formulae
¬ not
∧ and, conjunction
∨ or, disjunction
⇒ conditional (implies)

The semantics of this language is clear. For example, x � y ⇒ x = y means
that x is fixed point with respect to �.



Quantifiers 9

We can strengthen our language by adding quantifiers:
∃ s there exists a state s
∀ s for all states s

For example
∀ y ∃x (x � y)

means that every state has a predecessor state (there is no Garden-of-Eden).
And

∀x, y, z (x � y ∧ x � z ⇒ y = z)

means that the system is reversible (deterministic).



A Decision Procedure 10

We would like some algorithm that takes as input

a finite state machine that checks �, and
a first order sentence φ

and decides whether φ holds over C�.

Note that the carrier set of C� is infinite, so brute-force will not work, we need
a clever idea.

Also note that there is no hope to do this when the specification language is
more complicated. For example, we must not be able to express questions
about the behavior of Turing machines.



Wait a Minute . . . 11

Recall that configurations of Turing machines are just words u p v.
Also, it is easy to check that the one-step relation for Turing machines is
regular.
But then can’t we write down a formula φ that means something highly
undecidable such as

The Turing machine halts on all inputs.

No, we cannot.
The relation M

1 is regular, and M

k is regular for any fixed k, but M is not.
Our language is not strong enough to talk about chains of arbitrary length.



The Idea: Using Automata 12

Consider a formula φ(x1, . . . , xk) with k free variables as indicated.
We will construct an automaton Aφ that accepts precisely those k-track words
that satisfy the formula:

L(Aφ) = {u1:u2: . . . :uk ∈ Γ ⋆ | C� |= φ(u1, u2, . . . , uk) }

Questions about C� can then be answered by checking properties of Aφ.



Example: Reversibility 13

The structure C� is reversible if it satisfies

∀x, y, z (x � y ∧ x � z ⇒ y = z)

Now let φ(x, y, z) = x � y ∧ x � z ⇒ y = z.
Then C� is reversible iff Aφ is universal: it must accept all inputs.
Note that there is a price to pay: universality testing is fast only when the
automaton is deterministic. Alas, Aφ will usually be nondeterministic.



The Construction 14

We proceed by induction on the subformulae of φ.
Assume that ψ is a subformula of φ.

If ψ is atomic, Aφ is essentially the given machine that checks � (modi-
fied to deal with k-track words.
If ψ is of the form ψ1 ∨ ψ2, Aψ can be chosen to be the disjoint union of
Aψ1 and Aψ2 , maintaining the same alphabet.
Universal quantifiers are translated into existential quantifiers. The au-
tomaton for ψ = ∃ y ψ0 can be obtained from Aψ0 by erasing the track
corresponding to variable y.



Negation 15

So far the operations are all quite efficient, but do produce nondeterministic
machines.
To deal ψ = ¬ψ0 we need to determinize the automaton Aψ0 first so we can
perform negation.
At this point, there may be exponential blow-up. 2



1 Verification

2 CTL Structures



Describing State 17

We have a collection P of atomic properties p1, p2, . . . that may or may not
hold at any specific state s ∈ S. The exact nature of these properties depends
on the system in question, think about

printer is busy
register R0 is initialized to 0
process 2 is in its critical state

The details don’t matter, but we have to be able to check easily whether
property p holds in state s. We do this formally via a map L : S → P(P )
describing which properties hold at which states:

s |= p ⇐⇒ p ∈ L(s).

For finitely many atomic properties and states this can be done by storing a
table of bit-vectors.



Designing Models 18

Definition
A computation tree logic (CTL) structure for P has the form

A = ⟨S,→, L⟩

where → is a binary relation on S and L : S → P(P ) is a property map.
To avoid special cases we require that ∀ s∃ t (s → t).

One can think of such a structure as a digraph on S whose nodes have
out-degree at least 1 and are labeled by subset of P .

These structures will model the systems whose properties we are trying to
verify.

Exercise
Explain how these CTL structures can be construed as specialized first order
structures. What is the appropriate first order language here?



Designing a Language 19

CTL structures describe the systems, so next we need a specification language
in which to describe the properties we are interested in.

The easy part of this is to deal with atomic propositions and logical
connectives. We use the symbols

⊥, ⊤ constants false, true
p, q, r, . . . propositional variables
¬ not
∧ and, conjunction
∨ or, disjunction
⇒ conditional (implies)

So this is very similar to propositional logic, but an assertion p now means: the
current state has property p.
We will give a more detailed definition of the semantics of this language below.



Quantifiers 20

It is tempting to enhance our language by adding quantifiers:

∃ s there exists a state s
∀ s for all states s

Unfortunately, this is less helpful than one might think.
For example, we would like to be able to say something like:

If the current state s has property p, then there is a path to some state
that has property q.

We could write down a formula along the lines of

(s, p) ⇒ ∃ s1, s2 (s → s1 → s2 ∧ (s2, q))

to indicate that in two steps we can get to a state with q but that’s much too
weak.



Quantifiers 21

To obtain the right notion of quantifiers, recall that we are dealing with
systems that evolve via state transitions:

s0 → s1 → s2 → . . . → sn → . . .

Since the relation → is not required to be deterministic, the evolution may be
branching: for any s ∈ S there may be several “next” states.

Since we want to be able to make assertions about next states, their next
states, and so on, it makes sense to introduce path quantifiers that refer to
whole paths in the digraph.

A: for all paths (starting at some state)
E: there exists a path (starting at some state)



More Quantifiers 22

Of course, being able to say “for all paths” is not quite enough: we want to be
able to make assertions about what happens along these paths.
This is really a temporal logic problem: think of the transitions as time, so we
want to make assertions about the future.

X: at the next state in the path

F: at some point along the path

G: always along the path

U: until some point along the path

The last one is a bit more complicated and combines two subformulae as we
will see in a minute.



The CTL Language 23

Definition
In addition to the propositional part from above, the language for CTL also
allows the constructs

EXφ, AXφ,

EGφ, AGφ,

EFφ, AFφ,

E(ψUφ), A(ψUφ).

So there are 8 (in words: eight) quantifiers in this logic.
Each involves quantification over paths and some temporal assertion.
For the U quantifier the matrix consists of two formulae, not just one as usual.

This may seem a whole lot more complicated than ordinary first-order logic
(which has just a universal and an existential quantifier), but it isn’t.



Where Are We? 24

We have a way to express a system (CTL structures) and we have a way to
express specifications (CTL formulae).
The next step is to define the semantics. The appropriate setting here is to
choose a state s and define

A, s |= φ

meaning: the formula φ holds along the paths starting at s. And, of course,
ultimately we want to solve the decision problem:

Problem: CTL Validity
Instance: A CTL formula φ, a CTL structure A and a state

s in A.
Question: Does A, s |= φ hold?



Semantics 25

For the propositional part of CTL the semantics are no different from ordinary
propositional logic. For the quantifiers we define

EXφ: for some s′ such that s → s′: A, s′ |= φ.
AXφ: for all s′ such that s → s′: A, s′ |= φ.
EGφ: there exists a path (si) starting at s such that A, si |= φ for all i.
AGφ: for all paths (si) starting at s we have A, si |= φ for all i.
EFφ: there exists a path (si) starting at s such that A, si |= φ for some
i.
AFφ: for all paths (si) starting at s we have A, si |= φ for some i.
E(ψUφ): there exists a path (si) starting at s and some i such that
A, si |= φ and for all j < i A, sj |= ψ.
A(ψUφ): for all paths (si) starting at s there is some i such that A, si |=
φ and for all j < i A, sj |= ψ.

That’s it.



Simple Statements 26

Since we are dealing with a digraph, one might wonder what kind of
graph-theoretic statements one can make in CTL.

A, s |= EXp means there is a neighbor of s with property p.

A, s |= AXp means that all neighbors of s have property p.

A, s |= EFp means there is a path from s to t provided that t is the only
state with property p.

As is clear from the last example, the labeling (the assignment of atomic
properties) is crucial here.

Also note that we can only make statements about the weakly connected
component of s in A, s |= φ: none of the other states play any role in the
evaluation of the formula.



Unfolding the Diagram 27

A good way to visualize the meaning of CTL formulae is to unfold the digraph
into a tree, something like

r0

r1 r2 r3

r4

r5

r6

r7

r8

r9

One can then trace the paths in this tree.



A Tiny Example 28

Here is system with 4 states s1, s2, s3, s4 and 4 atomic properties p, q, r, t.
The atomic properties at each state are given in the table:

s1

s2

s3

s4

s1 r
s2 q, r, t
s3 q, r
s4 p, q

0 0 1 0
0 1 1 1
0 1 1 0
1 1 0 0



Some Assertions 29

The following assertions are all valid in the structure A from the last slide.

A, s1 |= EX(q ∧ r)
A, s1 |= ¬AX(q ∧ r)
A, s1 |= ¬EF(p ∧ r)
A, s3 |= EGr

A, s3 |= AGr

A, s1 |= AFr
A, s1 |= E(p ∧ qUr)
A, s1 |= A(pUr)

Exercise
Verify that all these assertions are indeed valid in A.

Exercise
Find more valid and invalid assertions for this structure.



Some Typical Assertions 30

Here are some important assertions one can make in this language.
p holds infinitely often, no matter what happens starting at s (think of p: some
process is enabled):

A, s |= AGAFp

We can make p hold again, no matter has happened so far (think of p: system
is reset):

A, s |= AGEFp

Ultimately, p will hold everywhere, no matter has happened so far (think of p:
deadlock has occurred):

A, s |= AFAGp

So the last property is not desirable and the system specification would
presumably forbid it.



Exploiting Logic 31

Recall from our discussion of propositional and predicate logic that equivalence
is an important way to rewrite and simplify formulae.
How would we define equivalence here?

ψ ≡ φ ⇐⇒ ∀ A, s (A, s |= ψ ↔ A, s |= φ)

Here are some easy equivalences for CTL.

AXφ ≡ ¬EX¬φ

EFφ ≡ ¬AG¬φ

AFφ ≡ ¬EG¬φ

AFφ ≡ A(⊤Uφ)

EFφ ≡ E(⊤Uφ)



A Hard Equivalence 32

Proposition

A(ψUφ) ≡ ¬(E(¬φU(¬ψ ∧ ¬φ)) ∨ EG¬φ)

The reason these equivalences are important is that they allow us to eliminate
some of the connectives and quantifiers from the language and thus simplify
the decision algorithm.
In particular a system using only

⊥,¬,∧,EX,EG,EU

is already adequate.



Model Checking 33

The idea behind the algorithm is to, given A and φ, compute

{ s ∈ S | A, s |= φ }.

To this end, label the states of A with all the subformulae of φ that are
satisfied at the state.
This is done by induction, starting with atomic formulae and gradually building
up to φ itself.

The process starts with the trivial subformulae ⊥ and p: nothing is labeled ⊥,
and for p the labeling is determined by L(s).



The Labeling Algorithm 34

We assume that the formula is built from connectives and quantifiers

¬,∧,EX,AF,EU.

φ = ¬ψ: label s with φ if s is not labeled with ψ.

φ = ψ1 ∧ ψ2: label s with φ if s is labeled by both ψ1 and ψ2.

φ = EXψ: Label any state with φ if at least one of their immediate
successors is labeled ψ.

φ = AFψ: First label all states labeled with ψ with φ. Then label all
states all of whose immediate successors are labeled φ by φ, until a fixed
point is reached.

φ = E(ψ1Uψ2): First label all states labeled with ψ2 with φ. Then label
all states with φ if they are labeled ψ1 and one of their immediate succes-
sors is labeled φ, until a fixed point is reached.



Complexity 35

Proposition
The running time of this algorithm is O(mn(n+ e)) where m is the number of
logical operators in the formula, n the number of states in A and e the number
of transitions.

Proof.
To see this, note that each logical operator is handled only once, and that
processing each such operator except for the last two cases is linear in n+ e,
the size of the digraph.
The last two cases, φ = AFψ and φ = E(ψ1Uψ2) require time O(n(n+ e)):
we have to repeat the basic operation until no changes occur (which might
take n− 1 rounds).

2

This performance is sufficient for small structures but becomes a problem when
A is large.



Speed-Up 36

The fixed point method from above ignores the structure of the digraph. We
can exploit this structure if we switch to another system of quantifiers:

⊥,¬,∧,EX,EG,EU.

EX and EU can be handled in linear time with a bit of care.

For EGψ we first produce the subgraph of all states labeled ψ. Then compute
the strongly connected components and the acyclic skeleton of the restricted
graph. Then determine all nodes from which such SCC is reachable. All of this
can be done in time linear in n+ e using, say, Tarjan’s algorithm.

Proposition
The improved version of the algorithm has running time O(m(n+ e)).



State Explosion 37

Even the fast model checking algorithm is often not good enough: in practical
applications the size of the structure is often enormous.
Its size is often exponential in the number of variables, so the adding one
Boolean variable to the system doubles the size of the CTL structure.

There is no silver bullet for this problem, but a number of methods exist to
deal with state explosion.

Highly efficient data structures such as ordered binary decision diagrams
(OBDDs).
Abstraction: Shrinking the model by removing variables that are not rele-
vant for the formula in question.
Reduction: for asynchronous systems many different traces may be equiv-
alent as far as the formula in question is concerned.
Induction: if there is a large number of similar components some type of
induction may be used to deal with them.
Composition: try to break the problem into a number of smaller ones.



Example: Mutual Exclusion 38

Suppose we have 2 processes that share are resource and we want to make sure
that at any time only one of them can be in a critical section where the
resource is used.
We think of each of the processes as being in one of three states:

n: non-critical,
t: waiting to enter its critical state, and
c: in its critical section.

So each process is moving in the cycle n → t → c → n → . . ..
The problem is to devise a protocol that coordinates the two processes.

Needless to say, the protocol would have to guarantee certain properties. E.g.,
each process waiting to enter its critical section should ultimately get a chance
to do so. We will write down these conditions later.



A Protocol 39

Instead of spelling out the protocol in words we give the corresponding CTL
structure cA.

s1 : n1n2

s2 : t1n2

s3 : c1n2 s4 : t1t2

s5 : c1t2

s6 : n1t2

s7 : n1c2

s8 : t1c2



Specification 40

What properties should one demand from the protocol?

Safety: only one process can be in its critical section at any time.
Ψ1 = AG¬(c1 ∧ c2).

Liveness: any process waiting to enter its critical section will ultimately do
so.
Ψ2 = AG((t1 → AFc1) ∧ (t2 → AFc2)).

Non-Blocking: Any process can always request to move into its critical
section.
Ψ3 = AG((n1 → EXt1) ∧ (n2 → EXt2))

Sequencing: processes need not enter their critical sections in alternating
fashion.
Ψ4 = EF(c1 ∧ E(c1U(¬c1 ∧ E(¬c2Uc1)))) ∧ . . ..

Claim
Properties Safety, Non-Blocking and Sequencing are satisfied but Liveness is
not.



A Better Protocol 41

s1 : n1n2

s2 : t1n2

s3 : c1n2 s4 : t1t2 s′4 : t1t2

s5 : c1t2

s6 : n1t2

s7 : n1c2

s8 : t1c2

We can fix the Liveness problem by splitting state s4.



Success 42

Claim
The second protocol satisfies all four properties.

It is still not ideal, though.
For example, the protocol insists that at every step one of the state properties
changes. But we cannot just let a process stay in its critical section, either:
otherwise the other process never gets a chance.
This leads to the issue of fairness.

Exercise
Verify that the second model really satisfies Ψ1 through Ψ4.


	Verification
	CTL Structures

