CDM

Model Checking ECA

KLAUS SUTNER

CARNEGIE MELLON UNIVERSITY
SPRING 2021

1 ECA 90 Fixed

2 ECA 150 Fixed

3 ECA 90 Cyclic

Existential quantifiers are easier than universal ones, so we check non-reversibility:

$$\varphi = \exists x, y, z (x \rightarrow z \land y \rightarrow z \land x \neq y)$$

We are working with finite words, not infinite ones, so we get the injectivity spectrum rather than specific answers (for $\mathbb N$ or $\mathbb Z$ grids).

$$\operatorname{spec}(\varphi) = \{ \, n \in \mathbb{N} \mid \langle \mathbf{2}^n, \to \rangle \models \varphi \, \}$$

Basic synchronous automaton over $\mathbf{2}\times\mathbf{2}$ checking inequality.

Inflated to alphabet $2 \times 2 \times 2$, uses tracks 1 and 2 to check $x \neq y$.

Basic synchronous automaton \mathcal{A}_{\to} over $\mathbf{2}\times\mathbf{2}$ checking one step in ECA 90 with fixed boundary conditions.

 $\mathcal{A}_{
ightharpoonup,1,3}$ using tracks 1 and 3 to check x
ightharpoonup z.

Intersection

 $\mathcal{A}_{\rightarrow,1,3}\times\mathcal{A}_{\rightarrow,2,3} \text{ checking } x \rightarrow z \wedge y \rightarrow z.$

$$\mathcal{A}_{\rightarrow,1,3} \times \mathcal{A}_{\rightarrow,2,3} \times \mathsf{UE}_{1,2}$$
 checking $x \rightarrow z \wedge y \rightarrow z \wedge x \neq y$.

Minimized 9

The symmetry is a consequence of the nice algebraic properties of ECA 90,

Projection 10

Hence ECA 90 fails to be injective on a lattice of length n iff $n \in 3 + 2\mathbb{N}$.

The spectrum is regular as a language over a^* ; equivalently, a semilinear set over \mathbb{N} .

One could argue that n=1 actually makes sense here (it's non-injective), but our construction assumes $n\geq 2$.

1 ECA 90 Fixed

2 ECA 150 Fixed

3 ECA 90 Cyclic

Basic synchronous automaton \mathcal{A}_{\to} over 2×2 checking one step in ECA 150 with fixed boundary conditions.

 $\mathcal{A}_{
ightharpoonup,1,3}$ using tracks 1 and 3 to check x
ightharpoonup z.

Intersection 14

 $\mathcal{A}_{\rightarrow,1,3}\times\mathcal{A}_{\rightarrow,2,3} \text{ checking } x \twoheadrightarrow z \wedge y \twoheadrightarrow z.$

$$\mathcal{A}_{\rightarrow,1,3}\times\mathcal{A}_{\rightarrow,2,3}\times\mathsf{UE}_{1,2}\ \mathsf{checking}\ x\to z\wedge x\to z\wedge y\neq y.$$

Minimized 16

Again, the symmetry is a consequence of algebra.

Projection 17

ECA 150 fails to be injective on a lattice of length n iff $n = 2 \pmod{3}$.

This time we are getting n=1 right, by accident.

1 ECA 90 Fixed

2 ECA 150 Fixed

3 ECA 90 Cyclic

Basic Automaton 19

Basic synchronous automaton $\mathcal{A}_{\rightarrow}$ over $\mathbf{2}\times\mathbf{2}$ checking one step in ECA 30 with fixed boundary conditions.

 $\mathcal{A}_{\rightarrow,1,3}$ using tracks 1 and 3 to check $x \rightarrow z$.

Intersection 21

 $\mathcal{A}_{\rightarrow,1,3} \times \mathcal{A}_{\rightarrow,2,3}$ checking $x \rightarrow z \wedge y \rightarrow z$.

 $\mathcal{A}_{\rightarrow,1,3} \times \mathcal{A}_{\rightarrow,2,3} \times \mathsf{UE}_{1,2}$ checking $x \rightarrow z \wedge y \rightarrow z \wedge x \neq y$.

Determinized 23

Determinization forces a single initial state.

Minimized 24

Minimization rearranges things a little.

Projection 25

ECA 90 with cyclic boundary conditions is never injective.

Alas, for n=1 our construction fails.