CDM

Safra's Algorithm

KLAUS SUTNER

CARNEGIE MELLON UNIVERSITY
SPRING 2024

1 Reasonable Examples

2 Blow-Up

 $0<\#_b<\infty$

 $0 < \#_b < \infty$

Note how an input \boldsymbol{a} resets the machine. Branch first, 1 Rabin pair.

 $0 < \#_a < \infty$

Transitions first, 2 Rabin pairs.

$$L = ccc^{\star}(a+b)^{\star}aa^{\star}$$

This could be managed by hand \dots

Branching first, $1\ \text{Rabin pair}$.

Note the accepting trap.

Without the sink.

Input \boldsymbol{b} resets the right part of the automaton.

Transitions first, 1 Rabin pair. Clearly better.

Figure out how to construct this machine from the previous one by state-merging.

PP 9.15 9

A surprisingly messy example from the Pin/Perrin book.

PP 9.15 10

Branching first.

Transitions first. 2 Rabin pairs.

A different algorithm due to Muller and Schupp.

A surprisingly messy example from the $\operatorname{Pin}/\operatorname{Perrin}$ book.

Branching first.

Transitions first. 2 Rabin pairs.

A different algorithm due to Muller and Schupp.

1 Reasonable Examples

2 Blow-Up

Michel 4

The Michel "infinite path" automaton for k=4.

257 states—from a 4-state machine!

Even worse, this time there are 385 states.

Muller-Schupp produces a machine with a whopping 13,907 states. The picture is the 2-neighborhood of state 1, containing 1919 states.

Timing 25

This is a straightforward implementation in Mathematica and should be taken with a grain of salt.