
CDM

Safra’s Algorithm

Klaus Sutner

Carnegie Mellon University
Fall 2024

1 Determinizing Büchi Automata

2 Safra’s Algorithm

3 Presburger Arithmetic

Where Are We? 2

We have a notion of “regular” (recognizable, rational) ω-language accepted by
a nondeterministic Büchi automaton.

We know that deterministic Büchi automata are strictly weaker.

And we have deterministic Muller and Rabin automata that might be
expressive enough to deal with complementation.

What is needed is a practical algorithm that converts a nondeterministic Büchi
automaton into a, say, Rabin automaton (Muller is just as well).

Determinization 3

Note the trade-off: the Rabin automaton must be deterministic, but it has a
more flexible acceptance condition.

Theorem
For every Büchi automaton there exists an equivalent Rabin automaton. Hence
the recognizable ω-languages are effectively closed under complementation.

Wurzelbrunft would think that this theorem is similar to the old Rabin/Scott
result (powerset automaton construction). Alas, things don’t work out: we are
not keeping track of individual computations (a tree of unbounded width), only
of reachable sets of states. That introduces spurious computations in the
infinite case.

No Luck 4

For example, for our standard 0 < #b < ∞ example we get

1 2
b

a, b a

1 1, 2
b

a a, b

There is no way the power automaton on the right can be made to accept the
right language, no matter whether we deal with Rabin or Muller automata:
The second state 1, 2 must be recurrent on any accepting run, but then there is
a run accepting bω.

It seems we need a bigger hammer than Rabin-Scott.

Büchi 5

In 1960, Büchi already had a construction that showed that ω-regular
languages are closed under complementation.

Unfortunately, his argument is based on Ramsey theory and produces a horrible
upper bound of

22O(n)

The method is not competitive (though related and faster methods seem to be
useful in the context of universality testing)

McNaughton 6

A better solution was given in 1966 by McNaughton, who showed how to
convert a Büchi automaton into a (deterministic) Muller automaton by dealing
with components of the form KLω.

Theorem (McNaughton 1966)
For every Büchi automaton there is an equivalent Muller automaton.

Alas, the construction is still complicated and difficult to implement.

There is also a purely algebraic proof due to Le Saëc, Pin and Weil (using
ω-semigroups) that shows that the complement of a recognizable language is
again recognizable.

The Problem, A Closer Look 7

Suppose A = ⟨Q, Σ, τ ; I, F ⟩ is some Büchi automaton and B the
corresponding power automaton. The problem is that B only keeps track of the
set of all reachable states:

I
u−−→ Pu

v−−→ Puv
w−−→ Puvw −→ . . .

Suppose all the displayed states contain some q ∈ F . Then there is no reason
whatsoever why A should have an accepting run on xyz . . .: The final states
may not lie on the same infinite branch. There is some infinite run of A, but it
may well fail to be accepting.

1 b−−→ 1 b−−→ 1 b−−→ 1 b−−→
↘ ↘ ↘ ↘

2 2 2

Our power automaton accepts too much.

The Solution, Sort Of 8

To fix this problem we need to consider subsets of P ′
u ⊆ Pu = δ(I, u) that do

not have this problem. For example, we want that

P ′
u

v−−→ P ′
uv

implies that every state p ∈ P ′
uv is the target of a run of A starting at a state

q ∈ P ′
u that contains a final state.

Of course, we have no idea what P ′ should be or how to keep track of having
hit an intermediate final state.

The trick is to consider P ∩ F whenever this set is not empty.

Unfortunately, we have to iterate this trick to make things work properly. .

Safra Trees 9

The best way to organize the computation of the states of B is to use ordered
labeled trees, so-called Safra trees.
Each node in a Safra tree carries three pieces of information. Assume that the
Büchi automaton has n states.

Name: v ∈ V = {1, 2, . . . , 2n}.

Label: ∅ ̸= λ(v) ⊆ Q.

Mark: a bit.

The names of all nodes in a tree are always distinct; 2n is a magic number that
will be explained later. The root is always named 1. Only leaves can be marked.
Since names are unique, we will occasionally confuse them with nodes.

In a sense, we will run the power automaton construction on all the nodes of
the tree.

The Safra Conditions 10

In order to constrain the possible number of Safra trees we impose several
conditions:

(S1)
⋃

u par v
λ(v) ⊊ λ(u)

(S2) u and v incomparable implies λ(v) ∩ λ(u) = ∅

Here u par v means that u is the parent of v. Thus if v1, v2, . . . , vk are the
children of u then their labels form a partition of a proper subset of λ(u).

Proposition
A Safra tree has at most n nodes.

Proof. For every node v there exists a state p ∈ λ(v) that appears nowhere
else in the tree. 2

Counting 11

Proposition
A Safra tree has at most n nodes.

Proof. For every node v define

f(v) :∈ λ(v) −
⋃

λ(ui) ̸= ∅

Thus f(v) is a state that is present at v, but missing from the subtrees of v.

It is easy to see that f is injective.
2

Counting Trees 12

Of course, the number of these trees is still wildly exponential: the only obvious
bound is

2O(n log n)

This is uncomfortably large, but at least it’s finite: we can use Safra trees as
states in the deterministic machine.

It remains to explain how to compute the transition function

δ(T, a) = T ′

where T and T ′ are Safra trees and a ∈ Σ.

Batten down the hatches.

1 Determinizing Büchi Automata

2 Safra’s Algorithm

3 Presburger Arithmetic

Determinization 14

We would like a (somewhat) practical algorithm that converts a Büchi
automaton into a Rabin (or Muller) automaton. Note the trade-off: the Rabin
automaton must be deterministic, but it has a more flexible acceptance
condition.

Wurzelbrunft would think that determinization of Büchi automata must be
similar to the old Rabin/Scott result, the powerset automaton construction.

Alas, things don’t work out, at least not without hugely more effort.

No Luck 15

For example, for our standard 0 < #b < ∞ example we get

1 2
b

a, b a

1 1, 2
b

a a, b

There is no way the power automaton on the right can be made to accept the
right language, no matter whether we deal with Rabin or Muller automata:
The second state 1, 2 must be recurrent on any accepting run, but then there is
a run accepting bω.

It seems we need a bigger hammer than Rabin-Scott.

Büchi 16

In 1960, Büchi already had a construction that showed that ω-regular
languages are closed under complementation.

Unfortunately, his argument is based on Ramsey theory and produces a horrible
upper bound of

22O(n)

The method is not competitive (though related and faster methods seem to be
useful in the context of universality testing)

McNaughton 17

A better solution was given in 1966 by McNaughton, who showed how to
convert a Büchi automaton into a (deterministic) Muller automaton by dealing
with components of the form KLω.

Theorem (McNaughton 1966)
For every Büchi automaton there is an equivalent Muller automaton.

Alas, the construction is still complicated and difficult to implement.

There is also a purely algebraic proof due to Le Saëc, Pin and Weil (using
ω-semigroups) that shows that the complement of a recognizable language is
again recognizable.

The Problem, A Closer Look 18

Suppose A = ⟨Q, Σ, τ ; I, F ⟩ is some Büchi automaton and B the
corresponding power automaton. The problem is that B only keeps track of the
set of all reachable states:

I
u−−→ Pu

v−−→ Puv
w−−→ Puvw −→ . . .

Suppose all the displayed states contain some q ∈ F . Then there is no reason
whatsoever why A should have an accepting run on xyz . . .: The final states
may not lie on the same infinite branch. There is some infinite run of A, but it
may well fail to be accepting.

1 b−−→ 1 b−−→ 1 b−−→ 1 b−−→
↘ ↘ ↘ ↘

2 2 2

Our power automaton accepts too much.

The Solution, Sort Of 19

To fix this problem we need to consider subsets of P ′
u ⊆ Pu = δ(I, u) that do

not have this problem. For example, we want that

P ′
u

v−−→ P ′
uv

implies that every state p ∈ P ′
uv is the target of a run of A starting at a state

q ∈ P ′
u that contains a final state.

Of course, we have no idea what P ′ should be or how to keep track of having
hit an intermediate final state.

The trick is to consider P ∩ F whenever this set is not empty.

Unfortunately, we have to iterate this trick to make things work properly. .

Safra Trees 20

The best way to organize the computation of the states of B is to use ordered
labeled trees, so-called Safra trees.
Each node in a Safra tree carries three pieces of information. Assume that the
Büchi automaton has n states.

Name: v ∈ V = {1, 2, . . . , 2n}.

Label: ∅ ̸= λ(v) ⊆ Q.

Mark: a bit.

The names of all nodes in a tree are always distinct; 2n is a magic number that
will be explained later. The root is always named 1. Only leaves can be marked.
Since names are unique, we will occasionally confuse them with nodes.

In a sense, we will run the power automaton construction on all the nodes of
the tree.

The Safra Conditions 21

In order to constrain the possible number of Safra trees we impose several
conditions:

(S1)
⋃

u par v
λ(v) ⊊ λ(u)

(S2) u and v incomparable implies λ(v) ∩ λ(u) = ∅

Here u par v means that u is the parent of v. Thus if v1, v2, . . . , vk are the
children of u then their labels form a partition of a proper subset of λ(u).

Proposition
A Safra tree has at most n nodes.

Proof. For every node v there exists a state p ∈ λ(v) that appears nowhere
else in the tree. 2

Counting Trees 22

Of course, the number of these trees is still wildly exponential: the only obvious
bound is

2O(n log n)

This is uncomfortably large, but at least it’s finite: we can use Safra trees as
states in the deterministic machine.

It remains to explain how to compute the transition function

δ(T, a) = T ′

where T and T ′ are Safra trees and a ∈ Σ.

Batten down the hatches.

Set-Up 23

Suppose

B = ⟨Q, Σ, τ ; I, F ⟩

is an arbitrary Büchi automaton on n states.

We want to construct a (deterministic) Rabin automaton A whose states will
be Safra trees over B.

For each Safra tree T and letter a ∈ Σ, we will explain in a moment how to
construct a new Safra tree δa(T).

Initialization 24

We will use a feeble list notation to indicate the nodes in a Safra tree, without
actually writing down the parent relation. Since our example trees are
microscopic, this actually works fine.

The initial tree T0 is

(1 : I) if I ∩ F = ∅,

(1 : I!) if I ⊆ F (root is marked),

(1 : I; 2 : I ∩ F !) otherwise (leaf 2 is marked).

The Steps 25

1. Unmark
Unmark all the nodes in the tree.

2. Update
Replace λ(v) by τ(λ(v), a) everywhere.

3. Create
If λ(v) ∩ F ̸= ∅, attach a new rightmost child u to v.
Set λ(u) = λ(v) ∩ F and mark u.

4. Horizontal Merge
Remove all states in λ(u) that appear in nodes v to the left of u.

5. Kill Empty
Remove all nodes with empty label set.

6. Vertical Merge
Mark all states u such that λ(u) =

⋃
u par v

λ(v) and remove all descen-
dants.

Left 26

Let T be an ordered tree (children are ordered left-to-right).

A node v in T is to the left of node u if there is a subtree T ′ of T such that T ′

has root r and children r1, r2, . . . , rk and there is 1 ≤ i < j ≤ k such that v is
in the subtree with root ri and u is in the subtree with root rj .

Exercise
Figure out a fast way of performing the Horizontal Merge in a Safra tree.

The Steps 27

Pre-processing: removing marks is just a simple warm-up.

Main steps: Update and Create is where the real action is. In general,
they will destroy the Safra properties of the tree.

Post-processing: the remaining steps reestablish them. After Horizontal
Merge (S2) holds. After Kill Empty, all label sets are non-empty. After
Vertical Merge condition (S1) also holds.

Exercise
Check in detail that the new tree is Safra.

Details 28

In the Create step, new names must be chosen from V − current nodes. In
practice, the choice is always

new = min(V − current nodes).

This works fine since there can be at most n nodes before step 3 and names
are chosen in V = [2n].

Also, we will traverse the tree in top-down, left-to-right order.

Warning: The node names are critical, we are not just dealing with trees of a
certain shape. For example, the tree (1:P, 2:R) is not the same as (1:P, 3:R).
The construction breaks without this distinction.

More Details 29

Similarly, in Horizontal Merge, we arbitrarily have adopted the convention to
move from left to right (top-down is not an issue here).

Exercise
Figure out what would happen in the following examples if we changed any of
these conventions.

The Whole Rabin Machine 30

The 6-step procedure defines (somewhat complicated) functions

δa : Safra trees −→ Safra trees

for each a ∈ Σ.

The Rabin machine A is now simply defined as follows:

Run the vanilla closure algorithm starting at tree T0 and with
operations δa, a ∈ Σ.

This produces a finite collection of Safra trees as state set Q′ of A, plus the
transition function of A (the usual Cayley graph argument).

Of course, T0 ∈ Q′ is the initial state.

Rabin Pairs 31

It remains to determine the Rabin pairs of A.
The pairs are (L, R) where v is (the name of) some node and

L = { T ∈ Q′ | v /∈ T } R = { T ∈ Q′ | v ∈ T, marked }

Of course, we only need consider nodes v ∈ V that appear marked in at least
one tree.

That’s all.

Lame Example 32

Suppose the Büchi automaton has Q = F .

Then Safra’s algorithm degenerates into the ordinary Rabin-Scott powerset
construction: all the trees have exactly one node, the root.

This is reassuring, since any infinite run is accepting in this case and the
existence of an infinite run (without any additional conditions) can be tested by
the power automaton.

Exercise
Make sure you understand how and why this works.

Example I 33

Let’s return to the old workhorse example

L = { x ∈ {a, b}ω | 1 ≤ #bx < ∞ }

of words containing at least one but only finitely many b’s. A Büchi automaton
B for L looks like so:

1 2
b

a, b a

The Rabin automaton A has initial state (1:1).

Computing All States 34

1 (1:1) a⇒ (1:1)

1 (1:1) b⇒ (1:1, 2; 2:2!)

2 (1:1, 2; 2:2!) a⇒ (1:1, 2; 2:2!)

2 (1:1, 2; 2:2!) b⇒ (1:1, 2; 3:2!)

3 (1:1, 2; 3:2!) a⇒ (1:1, 2; 3:2!)

3 (1:1, 2; 3:2!) b⇒ (1:1, 2; 2:2!)

The Rabin pairs are

((1, 2; 3), (1, 3; 2))

since 2 and 3 are the only marked nodes.

Some Steps 35

δb(T1) = T2

T1 = (1:1), T2 = (1:1, 2; 2:2!)

1. Unmark: zip

2. Update: (1:1, 2)

3. Create: (1:1, 2; 2:2!)

4. Horizontal Merge: zip

5. Kill Empty: zip

6. Vertical Merge: zip

More Steps 36

δa(T2) = T2

1:1,2

2:2!

1:1,2

2:2

4:2!

3:2!

1:1,2

2:2!

δb(T2) = T3

1:1,2

2:2!

1:1,2

2: ∅ 3:2!

1:1,2

3:2!

A detailed description of the computation of the transitions with source state
2. The intermediate tree after Update and Create are shown.

The Diagram 37

The diagram should look familiar:

1 2 3
b

a a a

b

b

This is the machine we already saw previously.
In this particular case, we have already verified that the machine behaves
properly.

Example II 38

We determinize the Büchi automaton for #a < ∞ ∨ #b < ∞.

2 1 3
a b

a, c a, b, c b, c

1 (1:1) a⇒ (1:1, 2; 2:2!)
1 (1:1) b⇒ (1:1, 3; 2:3!)
2 (1:1, 2; 2:2!) a⇒ (1:1, 2; 2:2!)
2 (1:1, 2; 2:2!) b⇒ (1:1, 3; 3:3!)
3 (1:1, 3; 2:3!) a⇒ (1:1, 2; 2:2!)
3 (1:1, 3; 2:3!) b⇒ (1:1, 2; 2:2!)
4 (1:1, 3; 3:3!) a⇒ (1:1, 2; 2:2!)
4 (1:1, 3; 3:3!) b⇒ (1:1, 3; 3:3!)
5 (1:1, 2; 3:2!) a⇒ (1:1, 2; 3:2!)
5 (1:1, 2; 3:2!) b⇒ (1:1, 3; 2:3!)

The Rabin Automaton 39

2 1 3

4 5

c

a b

a, c

b
a

b, c

b, c

a
b

a, c

Rabin pairs ((1, 4, 5; 2, 3), (1, 2, 3; 4, 5)).

Better Rabin 40

We can do a bit of state merging (but note this is tricky):

1

2 3

c

a b

a, c b, cb

a

Rabin pairs ((1, 2; 3), (1, 3; 2)).

Example III 41

Here is another Büchi automaton B on alphabet {a, b, c}.
This one is slightly more complicated.

1 2

b, c

a

a, b b, c

The language is given be the rational expression

((b + c)⋆a + b)ω

Example III, contd. 42

1

2

3 4

5 c

a

b, c

a

c

b

c

a

a

b

ba

b, c

Rabin pairs ((∅; 1, 4, 5), (1, 3, 4, 5; 2))

Comments 43

The Safra trees corresponding to the 5 states are

1 (1:1!)
2 (1:1, 2; 2:1!)
3 (1:2)
4 (1:1, 2!)
5 (1:2!)

The second Rabin pair is useless: there is no run that conforms to (1, 3, 4, 5; 2).
Hence we really have built a deterministic Büchi automaton.

Alas, the last machine is too big: by “visual inspection” one finds that we could
merge states 3 and 5, as well as 2 and 4.

After Merging 44

1 2

3

c

b

c

a

a

a

b, c

b

As a Büchi automaton, F = {1, 2}.

Why Should This Work? 45

The key property of the construction is the following lemma (which says, in
essence, our original plan has been duly implemented).

Lemma
Suppose T is a Safra tree in A that contains a marked node v. Let
x = x1x2 . . . xk be a finite word such that v is an unmarked node in
δ(T, x1 . . . xi) for i < k and a marked node in δ(T, x1 . . . xk). Let Pi be the
label sets associated with node v in these trees.
Then Pi ⊆ δ(P0, x1 . . . xi) and for all p ∈ Pk there is a run in the Büchi
automaton starting at some q ∈ P0 that touches a final state.

Sketch of proof.
We forgo the opportunity to inflict significant cognitive pain on the student
body and do not prove the general case: we will only deal with the case where
v is the root.

Proof, contd. 46

Since the root has no siblings to the left we have Pi = δ(P0, x1 . . . xi).
Since Pk is marked, at time k − 1 we must have had a tree where the root had
children; for simplicity let’s assume there are only 2 children. Hence there are
times 0 < i < j < k where the children were introduced:

P0 Pi

Ri

Pj

Rj Sj

Pk−1

Rk−1 Sk−1

Pk

But then Pk was obtained by a Vertical Merge, and any run from P0 to Pk

passes through a final state: Ri = Pi ∩ F and Sj ⊆ Pj ∩ F .
2

Recall: Kőnig’s Lemma 47

Theorem
Any infinite, finitely-branching tree must have an infinite branch.

Proof.
Start with r0, the root. Since the tree is finitely-branching, one of the children
of the root must span an infinite subtree. Let r1 be one of these fat children.
Done by induction. 2

We can think of the lemma as a weak choice principle. This is more powerful
than plain Peano arithmetic (which suffices for ordinary finite state machines).

Note that the construction is non-constructive: if the tree were, say,
computable, we would not know how to actually determine r1.

Correctness 48

Theorem
Let A be the Rabin automaton obtained by applying Safra’s algorithm to a
Büchi automaton B. Then L(A) = L(B).

Proof.
First assume A accepts x ∈ Σω. Then there is a node named v that appears
infinitely often marked in the run of A on x. Moreover, after some initial
segment, all trees in the run contain v. Since v is marked infinitely often, there
is a chain of state sets Pti , i ∈ N and ti < ti+1, that appear as labels of v
when the node is marked.
By the lemma, every state in Pti+1 can be traced back to a state in Pti . By
induction, there is a partial (meaning finite) run starting at I to every state in
Pti for all i.
Think of these runs as defining nodes in a tree, the tree of all finite initial
segments of computations of the Büchi automaton. Clearly, the tree is finitely
branching and is infinite. By Kőnig’s lemma it must contain an infinite branch
– which branch corresponds to an accepting computation of B on x.

Proof, contd. 49

For the opposite direction, let B accept x and let π be a corresponding run;
say, p is a final state that appears infinitely often in π. Then the corresponding
states pi appear in the root of the Safra trees in the unique run of A on x. If
the root is marked infinitely often, A accepts and we are done.

Otherwise, since p appears infinitely often in π, it must appear in some child of
the root. After a while, it will settle down in the leftmost position. If the
corresponding node is marked infinitely often, we are done. Otherwise, by the
same argument, we consider a node at level 2.

Since the trees have bounded depth, we must ultimately reach a level where
the node is marked infinitely often, and A accepts x.

2

Complementation 50

Lemma
Recognizable ω-languages of are closed under complementation. Hence they
form an effective Boolean algebra.

Proof. To see this, first construct a Rabin automaton for the language. Then
convert the Rabin automaton into an equivalent Muller automaton (which is
still deterministic). We know how to complement the Muller automaton and
convert back to Büchi. 2

Effective just means: there is an algorithm, efficiency is another matter. As it
turns out, things a re much worse than the simple exponential blow-up for
complementation of ordinary regular languages.

Exercise
Modify Safra’s algorithm so that it produces directly a Muller automaton.

Complexity 51

If we measure complexity in terms of the minimal number of states in any
Büchi automaton recognizing the language, we have

union O(n1 + n2)

intersection O(n1n2)

complement 2O(n log n)

Note the horrendous upper bound for complementation. Alas, there are fairly
simple, albeit entirely artificial examples that realize this bound, see below.

Thus any decision algorithm based on ω-automata is likely going to encounter
substantial efficiency problems.

Implementing Safra 52

Safra’s algorithm has the vexing property there are several reasonable versions
that differ slightly in their behavior, but are all covered by essentially the same
correctness proof.

Transitions first: apply the transition function to the state sets before
branching.

Branch first: first handle children, then update the state set labels.

Lazy names: try to minimize the number of names used.

Lazy Names 53

The standard choice of name for a new node during the computation of
T ′ = δa(T) is the least available one:

new = min(V − current nodes).

Here is a “better” approach: during the construction of the new tree T ′, first
assign a symbolic name. Upon completion, try to assign actual names in such a
way that T ′ has already been encountered earlier on.

Exercise
Implement this algorithm so that it beats the standard one, at least on
occasion.

Blow-Up 54

Let Σk = {0, 1, 2, . . . , k} and let a = a0, a1, . . . be an infinite word over Σk.
Think of two consecutive letters ab as an edge a � b. a has an infinite path if
there is an infinite subword

an0 , an0+1, an1 , an1+1, an2 , . . .

where 1 ≤ ani+1 = ani+1 ≤ k.

Example: . . . ab . . . bc . . . cd . . . de . . . These letters will not all be distinct.

Let Lk = { a ∈ Σk
ω | a has an infinite path }.

Lemma (Michel 1988)

Lk has a nondeterministic Büchi automaton of size k + 1.
Every Büchi automaton for Σω − Lk requires at least k! states.

Michel 4 55

1 Determinizing Büchi Automata

2 Safra’s Algorithm

3 Presburger Arithmetic

ω Emptiness 57

We have the counterpart of “NFA Emptiness” for infinite words.

Problem: Büchi Emptiness
Instance: A Büchi automaton A.
Question: Is Lω(A) empty?

This is easily decidable: there has to be a path from an initial state to a final
state p such that p lies in a non-trivial strongly connected component of the
diagram of A.

Exercise
What is the complexity of Büchi Emptiness? Explore Emptiness tests for Muller
and Rabin automata.

Büchi’s Theorem 58

Theorem (Büchi 1960)
For every sentence φ of MSO[<], one can effectively construct a Büchi
automaton Aφ whose ω-acceptance language is the collection of all words w
that satisfy φ:

Lω(A) = { w ∈ Σω | w |= φ }.

Corollary
MSO[<] is decidable over Σω.

To check whether a sentence φ is valid we only need to test whether Aφ is
universal. Equivalently, we can check whether A¬φ = Aφ is non-empty.

As it turns out, it may be algorithmically advantageous to use a universality
testing algorithm and not deal with the last negation in the standard way.

Trivial Example 59

Here is a trivial example: ∃ x, y
(

x < y ∧ Qa(x) ∧ Qb(y)
)

.

1 2 3

∗:0:0
a:1:0

∗:0:0
b:0:1

∗:0:0

Projecting away the first-order variable tracks produces

1 2 3

∗

a

∗

b

∗

The last automaton accepts the language Σ⋆aΣ⋆bΣω.

Weak Monadic Second Order 60

Weak monadic second order, WMSO, logic is define like MSO, except that we
quantify over finite subsets of the domain. For example,

∀ X (∃ u X(u) ⇒ φ(X))

means that, for any non-empty finite set of positions P , φ(P) holds. So if
φ(X) is

∃ u (X(u) ∧ ∀ v (X(v) ⇒ v ≤ u))

we get a valid formula (which is invalid in full second-order).

As already mentioned, Büchi automata can easily deal with the additional
finiteness condition for the second-order tracks. Even better, the construction
is essentially the same as in the full second-order case.

It follows that weak monadic second order logic (with <) is also decidable,
using essentially the same algorithm.

Who Cares? 61

One might wonder why Büchi’s theorem is important outside of pure theory.

One-way infinite words arise naturally in the study of non-terminating programs
(such as operating systems) or certain protocols, so it is important to have
some tools available to deal with infinite words.

Another application is perhaps more surprising: logic on infinite words can be
used to express assertions in arithmetic – which, in turn, are important for
program verification.

Full Arithmetic 62

Ordinary arithmetic is the study of the structure

N = ⟨N, +, ∗, 0, 1; <⟩

Alas, even Σ1 statements of the form

∃ x1, . . . , xn φ(x1, . . . , xn)

are already undecidable in general over N (where φ has only bounded
quantifiers): we can express Diophantine equations this way.

And truth of all of first-order logic over N is highly undecidable.

Presburger Arithmetic 63

How about weaker structures that have fewer operations?

Realistically, the only useful choice is to drop multiplication. This yields
Presburger arithmetic:

N0 = ⟨N, +, 0; <⟩

Since multiplication is missing, one cannot describe polynomials in this setting,
only linear combinations.

So the problem of Diophantine equations disappears and there is some hope
that a decision algorithm might exist.

Admissible Operations 64

Full multiplication is absent, but multiplication by a constant is available; for
example

y = 3 ∗ x ⇐⇒ y = x + x + x

We can also do modular arithmetic with fixed modulus:

y = x mod 2 ⇐⇒ ∃ z (x = 2 ∗ z + y ∧ y < 2)
y = x div 2 ⇐⇒ ∃ z (x = 2 ∗ y + z ∧ z < 2)

A slightly non-trivial example of a Presburger formula:

∃ x ∀ y ∃ u, v (x < y ⇒ y = 5 ∗ u + 7 ∗ v)

Is it valid?

Presburger Arithmetic is Decidable 65

Without multiplication, arithmetic is much less complicated.

Theorem (M. Presburger 1929)
First-order logic over N0 is decidable.

This result seemed like a major boost to Hilbert’s program: first-order logic is
sound and complete, and it can handle an interesting fragment of arithmetic.
Of course, what was really needed is a similar result for all of arithmetic. Alas
. . .

Full Story 66

In 1929, Presburger showed that Peano arithmetic without multiplication
(Presburger arithmetic) is decidable.

In 1930, Skolem proved that Peano arithmetic without addition (Skolem
arithmetic) is decidable.

In 1931, Gödel showed that full Peano arithmetic is incomplete by expressing
computation in the system. As a consequence, Peano arithmetic is undecidable.

Logicians have studied lots of other, related structures.

Deciding Presburger Arithmetic 67

There are at least three ways to tackle this problem.

Quantifier elimination
Automaticity and ordinary finite state machines
Monadic second-order logic and ω-automata

Presburger’s original algorithm is based on quantifier elimination. Büchi
developed the MSO approach and automaticity essentially dates back to
Nerode in the 1990s.

Unfortunately, it turns out that the computational complexity of Presburger
arithmetic is pretty bad:

Ω(22cn

) and O(222cn

)

Using WMSO[<] 68

WMSO[<] can be used to give a decision procedure for Presburger arithmetic
that seems to work reasonably well in practice (though, in principle, the use of
determinization could cause blow-up).

One might think that natural numbers would be represented by first order
variables ranging over positions in a word: after all, in an infinite word these
positions are just N.

Alas, that won’t work: we need to be able to check addition using an
ω-automaton: a machine that accepts three track binary words of the form

0i10ω : 0j10ω : 0i+j10ω

But this is impossible by a standard pumping argument.

Binary Representation 69

The trick is to represent natural numbers by second order variables, finite sets
X ⊆ N:

val(X) =
∑
i∈X

2i

Thus, X is essentially just the standard reverse binary expansion.
Now an automaton can check val(X) + val(Y) = val(Z):

X 1 0 1 1 1 0 1 0 0 0 . . .

Y 0 0 1 0 1 0 0 0 0 0 . . .

Z 1 0 0 0 1 1 1 0 0 0 . . .

This is really the same argument that shows that addition in reverse binary is
synchronous.
Similarly we can check val(X) < val(Y) and so forth.

OK, but Why? 70

In programs that are not too terribly complex, index arithmetic can often be
described in terms of Presburger arithmetic.

Being able to check the validity of Presburger formulae is thus directly relevant
in program verification.

This is used for example in Microsoft’s Spec# system, an extension of C# that
includes specifications and tools to verify these specifications.

	Determinizing Büchi Automata
	Safra's Algorithm
	Presburger Arithmetic

