
CDM
Rewrite Systems

Klaus Sutner

Carnegie Mellon University
Spring 2025

1 Rewrite Systems

2 Thue Systems

3 Knuth-Bendix Completion

4 Post Systems

5 Prefix Rewrite Systems

6 Frontiers

Recognition versus Generation 2

In the case of languages, the usual dichotomy between analysis and synthesis
takes the following form:

Recognition Develop an algorithm that, given a word, determines whether it
belongs to the language.

Generation Develop a method that allows one to generate all words in a
language in some systematic fashion.

From a computability perspective, recognition requires decidability, but it is far
from clear what a solution to the generation problem would look like. For
example, if L is infinite the enumeration has to run forever, so it is different
from a standard algorithm.

As Problems 3

This becomes clear when we try to dress up these questions as a standard
combinatorial problem:

Problem: Recognition L
Instance: A language L ⊆ Σ⋆, a string x ∈ Σ⋆.
Question: Is x ∈ L?

Fine, but the analogous problem for generation looks a bit weird:

Problem: Generate L
Instance: A language L ⊆ Σ⋆.
Solution: Enumerate all x ∈ L.

Dèjá Vu All Over 4

The good news is that we have already encountered a very similar situation in
classical computability theory: decidability versus semidecidability, and
semidecidability is equivalent to being recursively enumerable. So, in general,
generation will be more powerful than recognition.

However, if the languages in quesion are fairly simple we won’t have some
arbitrary Turing machine grinding away. So there is a good chance that we may
be able to connect recognition and generation very tightly. Specifically, we will
use rewrite systems to generate languages.

But the main idea really goes back to the 1930s, and even earlier.

Axel Thue (1863–1922) 5

Thanks to CS, rewrite systems
are now an active research
area, a century after their in-
vention.

Two Problems 6

Just to be clear, we are facing two issues:

Given a decision algorithm, extract an enumeration algorithm.

Given an enumeration algorithm, convert it into a decision algorithm.

Problem one is easy in principle: enumerate all objects, and use the decision
algorithm to select the appropriate ones. Of course, efficiency is another matter
entirely.

The second problem is highly important in the RealWorldTM: the enumeration
algorithm is the specification of a programming language, and we want to
convert it into a parser.

Rewrite systems 7

Definition
A rewrite system (r/w-system) is a pair

R = ⟨Σ,P⟩

where Σ is an alphabet and P ⊆ Σ⋆ ×Σ⋆ is a finite set of productions, also
called r/w rules.

We often write productions with a short arrow, as in

u � v

Rewrite systems are also called semi-Thue systems or reduction systems.

If Σ is clear from context, we simply write P for the whole system.

How Does It Work? 8

The main idea is very simple: a string U = xuy can be rewritten to V = xvy
whenever u � v is in P. The LHS u is called a handle. Note: there may be
multiple handles in a string; worse, they may overlap.

Technically, we define a derivation relation on Σ⋆. First, a one-step derivation:

xuy→P xvy ⇐⇒ u � v in P

Full derivation ∗−→P is then the reflexive transitive closure of one-step. We
drop the subscripts if the system in question is clear.

Claim
For any rewrite system P, the derivability relation ∗−→ is semidecidable.

Generating a Language 9

Given a r/w-system ⟨Σ,P⟩ fix some word w ∈ Σ⋆, sometimes called the axiom.

Then we obtain a language by collecting all strings derivable from w:

L(P, w) = {x ∈ Σ⋆ | w ∗−→ x }

By definition, L(P, w) is recursively enumerable: it is not difficult to
systematically generate all derivations in the system.

Exercise
Describe a method to generate all derivations in a r/w-system.

Thue-Congruence 10

Rewrite rules are naturally directed: u can be replaced by v, but not necessarily
the other way round. If the rules come from equations, it is natural (though
algorithmically problematic) to include both directions: Sometimes (in
particular in algebra) one wants to think of the rules as equations: x ≈ y turns
into x � y and y � x. In this case one speaks of a Thue system.

Correspondingly, define the symmetric closure of P to be

Ps = P ∪ Pop = {u � v | u � v ∈ P ∨ v � u ∈ P }

Definition
The Thue congruence generated by P is the finest equivalence relation
containing P. In sybmols: x

∗←→P y.
Two strings are congruent modulo P iff x

∗←→P y.

Congruence 11

u1 u2 u3

x v1 v2 y

∗ ∗ ∗ ∗ ∗ ∗

The generic situation for two congruent words x
∗←→ y: they are connected by

a zig-zag, an alternating path of back-and-forth reductions.

Losing Direction 12

If you prefer, you can think of P as a compact description of an infinite graphs
over the vertex set Σ⋆: the edges are given by the one-step relation x→P y.

The transition from P to Ps is then similar to turning a digraph into a ugraph
by ignoring the direction of the edges.

In particular for symmetric Thue systems, the equivalence relation x
∗←→ y

corresponds to the connected components of the corresponding ugraph.

Factor versus Prefix Handles 13

In a standard rewrite system, the replacements can be made anywhere in the
string: a factor u is replaced by v. This is arguably the most natural way to
define rewrites.

But, there is an alternative that is particularly attractive in connection with
efficient algorithms: we can allow rewrites to take place only at the beginning
of the string. These systems are referred to as prefix rewrite systems.

In particular when the handles are unique, one can simply read the string from
left to right, and replace a prefix whenever the opportunity arises.

More later.

Example: Erasing Things 14

Consider alphabet {a, b} and P: ab � ε, ba � ε. Let f(x) = |x|a − |x|b.
The claim is that P recognizes balanced words in the following sense:

Claim
x

∗−→ ε iff f(x) = 0.

Proof.
Every application of→P preserves f , so the implication left to right is obvious.

For the other direction suppose x ̸= ε. Since f(x) = 0 we must have x = uabv
or x = ubav. Either way, x→P uv, done by induction.

2

Mystery System 15

P: abc � ab, bbc � cb

Here are the first few steps applying the Thue system Ps to abb. We follow all
possible rewrites.

abb

abcb

abb, abbbc, abccb

abcb, abcbbc, abcccb

abb, abbbc, abccb, abbbcbc, abccbbc, abccccb

abcb, abcbbc, abcccb, abbbbbcc, abcbbcbc, abcccbbc, abcccccb

abb, abbbc, abccb, abbbcbc, abccbbc, abccccb, abbbcbcbc,

abcbbbbcc, abccbbcbc, abccccbbc, abccccccb

Come Again? 16

This seems fairly chaotic, but if one focuses on strings of the form a⋆b⋆c⋆ there
is a pattern. Write L for all the strings derivable from abb. Then

L ∩ a⋆b⋆c⋆ = { ab2n+1cn | n ≥ 0 }

In a sense, this r/w-system computes the function n 7→ 2n + 1.

Thus, very simple rewrite systems can easily produce fairly complicated
languages.

150 17

The first 150 words generated by the system, abb is the one on top.

Undecidability 18

Derivability is semidecidable, and in general, that is all we can say: it may well
be undecidable.

To see why, consider configurations of a Turing machine M be written as usual
as strings of the form

C = bmbm−1 . . . b1 p a1a2 . . . an ∈ Γ ⋆ Q Γ ⋆

Clearly, the one-step relation of M can be described as a rewrite system P, so
∗−→P corresponds to computations of the TM.

Thus, a decison algorithm for ∗−→Py would solve the Halting problem for M.

But, for less general rewrite systems there are lots of interesting results.

Rewriting and Computer Algebra 19

Here is how a CAS uses rewriting to simplify a mathematical expression:

D[2 Cos[3 x - Pi], x] - 6 Sin[3 x] ==> 0

A (partial) trace of the corresponding evaluation:

(((3x− π,−π + 3x), cos(−π + 3x),− cos(3x)),
2(− cos(3x)), 2(−1) cos(3x),−2 cos(3x),−2 cos(3x)),
∂x(−2 cos(3x)), 6 sin(3x),−(6 sin(3x)),−6 sin(3x),

− 6 sin(3x), 6 sin(3x)− 6 sin(3x),−6 sin(3x) + 6 sin(3x),
0

Rewriting and Functional Languages 20

There are even whole programming languages based entirely on the notion of
rewriting, see for example

http://code.google.com/p/pure-lang/

Pure is a functional programming language based on term rewriting.
This means that all your programs are essentially just collections of
symbolic equations which the interpreter uses to reduce expressions to
their simplest (“normal”) form.

let X = [x,xˆ2,xˆ3];
reduce X with x = u+v end; // yields [u+v,(u+v)ˆ2,(u+v)ˆ3]

http://code.google.com/p/pure-lang/

Killer App 21

We have a collection T of terms and a finite list of rewrite rules on these
terms. We use the rules to simplify the terms: we can rewrite an arbitrary term
t into a normal form ν(t).

Then, in order to check whether two terms s and t denote the same object, we
rewrite both s and t into normal form and check that ν(s) = ν(t).

The last identity is plain equality of terms and is trivial to check.

Requirements 22

In practice, one needs the rewrite rules to have a few special properties:

The precise order in which the rules are applied should not matter.

Whatever rules we apply, after finitely many steps the rewrite process
should terminate (we arrive at a term without descendants).

Without these sanity conditions, things get tricky. Lack of termination is
obviously a disaster, but multiple, irreconcible reductions are also ruinous.

We need to formalize this approach and develop algorithms.

Irreducibility and Normal Forms 23

Definition
z is a descendant of x iff x

+−→P z.
x ∈ Σ⋆ is irreducible iff it has no descendants.
We write IrrP for the set of all irreducible terms.
A normal form for x is an irreducible word x′ such that x

∗−→P x′.
If the normal form is unique, we often write ν(x).

Normal forms are mostly useful if they are unique: we can use ν(x) as the
name or representative of x modulo P.

Irreducible is Regular 24

Lemma
Let ⟨Σ,P⟩ be a finite rewrite system. Then the set of irreducible words is
regular.

Proof.
Irreducibility only depends on the left hand sides of productions u � v, so let
u1, u2, . . . , un be a list of all LHS. Then a word x is irreducible iff it is not in
Σ⋆{u1, . . . , un}⋆Σ⋆. 2

Any generic regex-to-fsm algorithm can construct a nondeterministic fsm for
the “forbidden factors” language. Or we could use the Aho-Corasick dictionary
algorithm to check for forbidden factors.
In fact, we can do slightly better than that with a little preprocessing.

DFA for Irreducibles 25

Proposition
A DFA recognizing Irr can be constructed in polynomial time.

Proof.
We may safely assume that ε is not a LHS and that no LHS u1, . . . , un is a
factor of another. Define a partial DFA as follows. States Q are all proper
prefixes of the ui, ε being the initial state; all states are final. The transition
function is given by

δ(x, a) =
{

z xa irreducible, z longest suffix of xa in Q,
↑ xa reducible.

Correctness by a straightforward induction. 2

Another Example 26

Again let Σ = {a, b} and

P: aaaa � ε, bb � ε, ba � aaab

Burning Question: Is there a normal form? Is it unique?

By the first two rules, any x can be written as

aα1 bβ1 aα2 bβ2 . . . aαn bβn

where 0 ≤ αi < 4 and 0 ≤ βi < 2 and only α1 and βn may be 0.

This suggests a normal form aαbβ .

Another Example 27

If n = 1 we’re done.

Otherwise apply the last rule to get

aα1+3α2 bβ1+β2 . . . aαn bβn

Reductions by the first two rules produces an expression as above, except that
n must have decreased at least by 1.
Done by induction.

Dihedral Group 28

We are really dealing with the dihedral group D4: rigid motions of a square in
the plane.

In this interpretation, a corresponds to a rotation by π/2 and b corresponds to
a reflection (horizontal, vertical or diagonal, it does not matter).

As a geometric operation, ba = aaab = a−1b.
Check it out.

Forking 29

The rewrite relation is usually nondeterministic, so an attempt at reducing a
term to normal form may fork into to two separate chains.

x x′

w w′

y y′

∗

∗

∗

This is particularly tricky when, at the fork, the two chosen handles overlap, so
order of application matters greatly: there is no easy fix by duplicating the
replacement taken in the other chain.

Ideally, we would like to be able to apply the rewrite rules in any order
whatsoever.

Confluence 30

Definition
Two strings x and y are confluent iff there exists a z such that x

∗−→ z land
y

∗−→ z.
The rewrite system is (locally) confluent iff any two words with a (direct)
common ancestor are confluent.

We will write x ↓ y to indicate that x and y are confluent:

x y

z
∗ ∗

So in a confluent system we have for any w, x, y ∈ Σ⋆ such that w
∗−→ x and

w
∗−→ y, there is a z ∈ Σ⋆ such that x

∗−→ z and y
∗−→ z.

Confluence Diagrams 31

w

x y

z

∗∗

∗ ∗

w

x y

z
∗ ∗

confluent locally confluent

In a confluent r/w-system, nondeterministic choices are not a major problem
(though they may influence the length of a reduction).

Church-Rosser 32

Definition
A r/w-system is Church-Rosser iff

x
∗←→ y implies x, y are confluent

x y

z
∗

∗

∗

In other words, two terms that are congruent modulo P already are confluent.
In cryptic symbols:

x
∗←→ y ⇒ x ↓ y

Church-Rosser vs Confluence 33

Theorem
A r/w-system is Church-Rosser iff it is confluent.

Proof. LtR is obvious. RtL by picture:

u1 u2 u3

x v1 v2 y

• • •

• •

z

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

2

Termination 34

Confluence is not enough to guarantee the existence of a unique normal form:
the chain of reductions might fail to terminate.

Definition
A rewrite system is terminating or Noetherian if there are no infinite rewrite
chains

x0 → x1 → x2 → . . .→ xn → xn+1 → . . .

Note that in an algebraic context we cannot simply symmetrize an identity
s ≈ t to two rules s � t and t � s if we want termination.

More generally, any cycle x
+−→ x is fatal, the derivation graph of P must be

acyclic.

Unique Normal Forms 35

Theorem
In a confluent and terminating rewrite system unique normal forms exist.

Proof.
By termination, we can rewrite w to an irreducible string w′.

Now consider any irreducible descendant w′′ of w. If w′ ̸= w′′, then at least
one of them can be rewritten by confluence, contradicting irreducibility.

2

The order in which we apply the reductions is irrelevant in the sense that we
always arrive at the unique normal form. Note, though, that the derivation
length may depend on our choices.

Leftmost Derivations 36

Suppose we have a confluent and terminating system. We can simplify the
reduction to normal form by searching for a leftmost derivation: given w, find
x, u and y such that

w = xuy |x| minimal, |u| minimal, u � v ∈ P

This sort of reduction can easily be handled by a finite state machine (a
transducer). The whole reduction is just the transitive closure of a rational
relation.

But note that there is no general bound on the number of steps needed to get
to normal form.

Induction 37

Definition
A predicate ϕ on Σ⋆ is P-inductive iff for all x ∈ Σ⋆

∀ z
(
x � z ⇒ ϕ(z)

)
⇒ ϕ(x)

Predicate ϕ is universal if it holds for all x ∈ Σ⋆.
P is well-founded iff every P-inductive predicates is already universal.

In other words, in a well-founded r/w-system we have a method of induction
familiar from N, or, more generally, partial well-orders.

The following lemma justifies this terminology.

Induction vs Termination 38

Lemma
A r/w-system is P is terminating iff it is well-founded.

Proof.
For LtR, let S = {x ∈ Σ⋆ | ϕ(x) } and assume w ∈ Σ⋆ − S.
Since ϕ is inductive, w must have an immediate descendant w′ /∈ S. Continuing
inductively, we get a chain w � w1 � w2 � . . . in the complement of S.
By termination, the chain is finite, so some wn has no descendants. But then
wn ∈ S, contradiction.

For RtL, consider the predicate ϕ(x) defined as: there is no infinite chain
starting at x. Obviously, ϕ is P-inductive, and hence universal by assumption.

2

Testing Confluence 39

Theorem
A terminating r/w-system is confluent iff it is locally confluent.

Proof. Confluence implies local confluence, so assume our system is
terminating and locally confluent.

Consider the predicate ϕ(w): for all x and y such that w
∗−→ x, w

∗−→ y implies
x ↓ y. In other words, w works on top of the confluence diamond:

w

x y

z

∗∗

∗ ∗

By termination, it suffices to show that ϕ is inductive.

Proof 40

w

x′ ⋄ℓ y′

x u y

v

z

∗ ∗ ∗ ∗

∗ ∗

∗

∗

The upper diamond is local confluence, the others are plain confluence and
justified by induction.

2

Descendants 41

Lemma (Kőnig’s Infinity Lemma)
Suppose T is an infinite but finitely branching tree. Then T contains an infinite
branch.

Proof. Let x0 be the root of T and y1, . . . , yk all its immediate descendants.
Since the subtree with root x0 is infinite, there must be at least one yi so that
the subtree with root yi is also infinite. Set x1 = yi, and continue inductively.

2

Corollary
In a terminating r/w-system, the set of descendants of any string is finite.

Insuring Termination 42

Definition
A partial order > on Σ⋆ is admissible iff

u > v implies ∀x, y
(
xuy > xvy

)
A reduction order for P is any admissible well-order > such that

u � v ∈ P implies u > v

If > is admissible and all rules in P are ordered wrto >, then

x
+−→ y implies x > y

Thus, to ensure termination it suffices to find a suitable reduction order for P.

Induction 43

Lemma
The following are equivalent:

1. P is Noetherian.
2. There is a reduction order for P.

Proof.
If P is Noetherian we can define

x > y ⇐⇒ x
+−→ y

For the opposite direction, recall that x
+−→ y ⇒ x > y. Since > is a well-order

there cannot be infinite reduction chains.
2

Admissible Orders 44

Length Order: x > y if |x| > |y|.

Length-Lex Order: x >ll y if |x| > |y| or |x| = |y| and x >lex y.

Weight Order: Let f : Σ → N and extend f to Σ⋆ as a monoid
homomorphism. x >f y if f(x) > f(y).

All these orders are admissible and well-founded. The last two are total, the
first is only partial.
Note that for non-trivial alphabets ordinary lexicographic order >lex is not
well-founded (it is total and admissible, though).

Termination versus Algebra 45

Note that in algebraic manipulations one often would like to use associativity
and commutativity and rewrite terms according to

a ∗ (b ∗ c)→ (a ∗ b) ∗ c

a ∗ b→ b ∗ a

Alas, just as often one would like to rewrite in the opposite direction: equations
in algebra really do not carry any direction.
That causes huge problems with termination: a simple-minded algorithm could
just go back and forth between a ∗ b and b ∗ a forever.
And restricting rules in any obvious way is also problematic since we might
then miss out on important simplifications. There are special A/C rewrite
sytems to deal with this.

1 Rewrite Systems

2 Thue Systems

3 Knuth-Bendix Completion

4 Post Systems

5 Prefix Rewrite Systems

6 Frontiers

The Word Problem 47

Early in the 20th century Axel Thue was interested in the following question.

Given a set of objects, and a collection of “rules” (transforma-
tions that turn objects into objects). Can a given object x be
transformed into object y? Is there some third object z such
that both x and y can be transformed into z?

Thue’s questions make sense for lots of combinatorial structures such as terms,
trees or graphs, but we will only consider the special case when the objects are
all strings.

The Word Problem 48

There is a nice algebraic interpretation:

Problem: Word Problem for Monoids
Instance: A monoid M and elements x and y of M .
Question: Is x = y in M?

Of course, for this to make any computational sense the monoid M must be
given in some useful form: its elements must have a good finitary description.
Also, we must be able to handle the algebra in M effectively: at the very least
we must be able to perform multiplication and recognize the unit element.

The problem then is to determine equality of elements given by some
sufficiently nice representation.

Words and Equations 49

A good way to produce such effective descriptions is to start with the free
monoid Σ⋆ over a (not necessarily finite) set Σ: this is just the collection of all
finite words over Σ.
The operation is concatenation and the unit element is the empty word ε.
For example, Σ = {a} produces a monoid isomorphic to ⟨N, +, 0⟩.

For better examples, we need to be able to “identify” certain words as denoting
the same element in the monoid.
For example, let Σ = {a, b} and let’s insist that

ab = ba

Then we get a monoid isomorphic to the standard free Abelian monoid
⟨N2, +, 0⟩.

Free Monoids and Quotients 50

Lemma
The Thue equivalence ∗←→P is a congruence on Σ⋆.

Proof.
It is clear that ∗←→P is in fact an equivalence relation.
So assume x

∗←→P y and u
∗←→P v. Then xu

∗←→P yv since the substitutions
can be applied to the two parts of the word separately.

2

But then we can form the quotient monoid

MP = Σ⋆/
∗←→P

Multiplying Quotients 51

More precisely, since ∗←→P is an equivalence relation, we can consider the
equivalence classes [x] of x ∈ Σ⋆.

Since the relation is a congruence, we can define a multiplication on these
equivalence classes in the obvious way:

[x] · [y] = [xy]

The result is a monoid MP = Σ⋆/
∗←→P .

Finite Representations 52

In this context Σ is called a set of generators for MP .

It is easy to see that every monoid M can be written in the form MP (just use
M as Σ and let P be all valid equations in M).

Of course, this is not particularly exciting. The interesting case is when Σ is
finite and P is finite, in which case we speak of a finite representation.

Given a finite representation we can easily check x↔P y by table lookup.

But how about the word problem in MP , which comes down to checking
x

∗←→P y?

For chains of substitutions of bounded length the problem is primitive recursive,
but what if there is no bound?

Example: Representing a Group 53

Let Σ = {a, ā, b, b̄} and define P to be:

aā � ε āa � ε bb̄ � ε b̄b � ε

ba � ab bā � āb b̄a � ab̄ b̄ā � āb̄

Claim: Using only the first 4 rules we can reduce any word w to the form

W = sk1
1 tℓ1

1 sk2
2 tℓ2

2 . . . skr
r tℓr

r

where all the exponents are positive, except possibly k1 and ℓr, r ≥ 0; further
si ∈ {a, ā} and ti ∈ {b, b̄}. In fact, W is uniquely determined by w.

This is straightforward but tedious to show by induction on the length of w.

To simplify notation, define for i ∈ Z

a(i) =
{

ai if i ≥ 0
ā−i otherwise.

and likewise for b. Then

W = a(k1)b(ℓ1)a(k2)b(ℓ2) . . . a(kr)b(ℓr)

where the exponents are non-zero integers (except perhaps for k1 and ℓr). Let
us refer to the number r of ab-blocks in W as the width of W .

Claim: We can reduce the width of W to 1.

W = a(k1)b(ℓ1)a(k2)b(ℓ2) U
∗−→ a(k1)a(k2)b(ℓ1)b(ℓ2) U
∗−→ a(k1+k2)b(ℓ1+ℓ2) U

It’s a Group 55

We have seen that the Thue congruence defined by P is a monoid congruence,
so we can form the quotient structure

Σ⋆/
∗←→P

A priori, this is just a monoid, but a closer look reveals that it is isomorphic to
the Abelian group Z× Z: the first 4 rules ensure that ā is the inverse of a, and
likewise for b̄. If we were to use only the first 4 rules in P, we would obtain the
free group on two generators a and b.

The last 4 rules provide the commutation required to get to Z2.

Group Operation 56

The group operation is concatenation followed by a reduction to normal form:

a(k)b(ℓ) · a(k′)b(ℓ′) ∗←→ a(k+k′)b(ℓ+ℓ′)

This shows clearly the isomorphism between the quotient structure and Z2.

Representing groups as quotient monoids is a standard technique in algebra.

In conjunction with r/w-systems we obtain an effective representation
(efficiency is another matter, alas).

Undecidability 57

Theorem (E. Post, A.A. Markov 1947)
The word problem for finitely presented monoids is undecidable.

This theorem is often considered to be the first undecidability result in pure
mathematics (as opposed to inside logic).
A simple example due to G. Makanin looks like this:

P: ccbb � bbcc, bcccbb � cbbbcc, accbb � bba,

abcccbb � cbba, bbccbbbbcc � bbccbbbbcca

There is a corresponding result for groups (Novikov-Boone 1955), but that is
significantly harder to prove. For commutative monoids the word problem is
decidable.

1 Rewrite Systems

2 Thue Systems

3 Knuth-Bendix Completion

4 Post Systems

5 Prefix Rewrite Systems

6 Frontiers

Testing Confluence 59

We would like to have an algorithm for the following problem:

Problem: Confluence
Instance: A terminating r/w-system P.
Question: Is P confluent?

Since we assume that P is terminating it suffices to check for local confluence.
So assume w � x and w � y.

If the two handles used do not overlap, it is straightforward to obtain
confluence: just take the other reduction next.

w = α u1 β u2 γ

The real problem is to deal with overlapping handles: the first reduction step
interferes with the second.

Colliding Handles 60

w
u1x

u2 y

w
u1

x u2 y

Collisions of type overlap and factor.

Critical Pairs 61

Let u1 � v1, u2 � v2 ∈ P be two rules (possibly the same).
The set of critical pairs for π1 : u1 � v1, π2 : u2 � v2 is defined as follows:

CP(π1, π2) =
{ (xv1, v2y) | xu1 = u2y, |x| < |u2| } ∪
{ (v1, xv2y) | u1 = xu2y }

We say that a critical pair (z1, z2) is confluent iff z1 ↓ z2.

Proposition
Let P be terminating.
P is confluent iff all critical pairs are confluent.

Analysis 62

We can test confluence of a critical pair by computing the normal form of each
component, say, by using a leftmost derivation. As already mentioned, there is
no general bound on the lengths of these derivations.

For two rules π1 and π2 such that |u1| ≥ |u2| there are at most |u1| critical
pairs. In fact, the construction of all critical pairs takes time quartic in ∥P∥.

Theorem
The Confluence Problem for terminating r/w-systems is decidable.

Knuth-Bendix Completion Sketch 63

Let P be terminating with a reduction order > and suppose our confluence test
turns up a critical pair (z0, z1) that fail to be confluent. Say, ẑi is a normal
form of zi.

We could try to make P confluent by adding a rule ẑi � ẑ1−i, ordered
according to > (so as to preserve termination).

Iterating this method, we obtain an increasing sequence of r/w-systems that
are equivalent in the sense that they generate the same Thue congruence. We
stop as soon as we reach a fixed point.

Knuth-Bendix Algorithm 64

// Knuth-Bendix
R = {u � v | u > v, u � v ∈ P ∨ u � v ∈ P }
repeat

R′ = ∅
forall critical pairs (z1, z2) do

compute normal forms ẑ1, ẑ2 wrto R
if ẑ1 > ẑ2 then add ẑ1 � ẑ2 to R′

if ẑ2 > ẑ1 then add ẑ2 � ẑ1 to R′

od
if R = R′ ∪R

until R′ == ∅
return R

Comments 65

Dire Warning: The completion process may not terminate.

Write Rk for the rule set R at the end of round k.
If the algorithm terminates we have output P̂ = Rk+1 = Rk.

Without termination we still get “output” P̂ =
⋃

Rk, but this rule set is
infinite (and recursively enumerable, for what that’s worth).

Properties 66

Whether the completion algorithm terminates or not, we still have

1. P̂ is terminating and confluent.

2. P̂ and P are equivalent.

3. > is a reduction order for P̂.

4. Irr(P̂) = {x ∈ Σ⋆ | ∀ y
(
x

∗←→P y ⇒ x = y ∨ y > x
)
}

Moreover, the procedure is optimal in the sense that it will terminate in finitely
many steps iff there is a finite, confluent r/w-system equivalent to P that has
> as a reduction order.

Example: Commuting Group 67

Recall the example of the algebraic r/w-system P from above that defines Z2.
This time, order the alphabet as in Σ = {a < ā < b < b̄}.

aā � ε āa � ε bb̄ � ε b̄b � ε

ba � ab bā � āb b̄a � ab̄ b̄ā � āb̄

It is easy to check that length-lex order is a reduction order for P. Hence
R = P at the beginning of the first round.

Next we have to identity all critical pairs. Since all LHSs have length 2 and are
distinct, there are no factor-type pairs.

Critical Pairs 68

For overlap-type pairs we have xu1 = u2y and |x| < |u2| = 2 implies that
x, y ∈ Σ. Hence we are really looking for LHSs u1 and u2 such that u11 = u22.

This time, there are several possibilities.

Here is one typical example:

b | aā = ba | ā ⇝ (b, abā)

Since abā→ baā→ bε = b, no new rule is added.

This shows that P is already confluent and the algorithm returns P̂ = P in one
round.

Different Order 69

Suppose we change the order to Σ = {b̄ < a < ā < b}.

This forces us to flip the last two rules for R in round 1: ab̄ � b̄a, āb̄ � b̄ā. We
get critical pairs (a, b̄ab) from b̄ba and (ā, b̄āb) from b̄bā, leading to new rules
b̄ab � a and b̄āb � ā.

In round 2 we get additional rules b̄a2b � a2 and b̄ā2b � ā2.

In general, we pick up new rules b̄akb � ak and b̄ākb � āk in the kth round.

The algorithm does not terminate.

1 Rewrite Systems

2 Thue Systems

3 Knuth-Bendix Completion

4 Post Systems

5 Prefix Rewrite Systems

6 Frontiers

1920s 71

Emil Post analyzed Russell and Whitehead’s Principia Mathematica with a view
towards building simpler systems that would still have the same proof power.

Somewhat surprisingly, Post managed to interpret Principia as an exercise in
word processing†: everything comes down to a purely mechanical manipulation
of strings, semantics being entirely optional. The key point is that the
manipulations require no insights whatsoever, they are all trivially algorithmic.

†Very much in the spirit of Hilbert: math can be construed as a game in which ink marks are
being pushed around on paper.

Post Canonical System 72

Let Σ and X be two finite alphabets, referred to as terminals and variables,
respectively.

A Post production rule is an expression

W1, W2, . . . , Wk ⇒ U

where Wi, U ∈ (Σ ∪ X)⋆.

A Post canonical system (PCS) P consists of axioms (a finite set of words over
Σ) and a finite collection of production rules.

Derivations 73

The language L(P) ⊆ Σ⋆ of a PCS P is define inductively:

All axioms are in L(P).

Let σ be a binding from X to Σ⋆ and W1, W2, . . . , Wk ⇒ U a produc-
tion. If all Wi[σ] are in L(P), then so is U [σ].

It is straightforward to define a corresponding notion of derivation, either as a
linear sequence, or as a tree.

In light of Post’s “analyze Principia” project, the language of a PCS is also
called its set of theorems.

Examples 74

In the following, Σ = {a, b} and the only axiom is ε.

Production rules for “balanced parentheses”:

X ⇒ aXb

X, Y ⇒ XY

Production rules for “same number of as and bs”:

XY Z ⇒ XaY bZ

XY Z ⇒ XbY aZ

A Derivation 75

Here is a sample derivation of abbaab in the second PCS.

X Y Z rule
ε − − − ax.
ab ε ε ε 1

abab a ε b 2
abbaab ab ε ab 2

Exercise
Show that this PCS works as advertised: it’s language consists of all strings
over Σ with the same number of as and bs.

Semidecidability 76

It is clear that there is an algorithm to test whether an alleged derivation is
actually correct according to the rules of a particular PCS (even if we are only
given the first column).

But beware: it may well be undecidable whether w ∈ L: a priori, the only way
to tackle this question is to search systematically for a corresponding
derivation.

Alas, this approach is really not very helpful:

If w ∈ L, our search will terminate with answer YES.
If w /∈ L, our search will go on forever.

Hence the theorems of a PCS are semidecidable, but may well fail to be
decidable.

Post Normal Form 77

Post managed to prove a surprising normal form theorem for his systems.

Theorem (Post 1943)
All the productions of a PCS can be written in the form

uX ⇒ Xv

More precisely, given a PCS P one can effectively construct a new system P ′,
possibly over a larger alphabet, using only this type of productions, so that
L(P) = L(P ′) ∩Σ⋆.

Note that derivations in normal form system are less complicated, it is easier to
find the right binding for the variable.

Post Tag System 78

Here is a rather useful way of expressing Post normal form.

Definition
A Post d-tag system consists of an alphabet Σ, a deletion number d and a map
P : Σ → Σ⋆ .

The system defines the following rewrite rules

a1 a2 . . . ad x � x P (a1)

Thus, the rewriting here only occurs at the end of the string:

First remove the first d letters, then
append the suffix P (a) where a was the first letter.

So this is much like standard queue operations.

Example 2-Tag 79

The alphabet is Σ = {a, b, c} and the rules are

a � bc b � a c � aaa

For example, we have the following, rather circuitous, derivation from aaa to a:

aaa, abc, cbc, caaa, aaaaa, aaabc, abcbc, cbcbc, cbcaaa, caaaaaa, aaaaaaaa,

aaaaaabc, aaaabcbc, aabcbcbc, bcbcbcbc, bcbcbca, bcbcaa, bcaaa, aaaa, aabc,

bcbc, bca, aa, bc, a

At this point the derivation ends since we have no 2 letters left to erase.

In this system, all initial words produce a terminating derivation.

Orbit Lengths 80

50 100 150 200

20

40

60

80

100

120

The transients (leading to a fixed point), for all 243 words of length 5. Words
are sorted in lexicographic order.

The Orbit of a30 81

Here are the lengths of all words of the form a⋆ in the orbit of a30:

30, 15, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1

Yup, it’s true . . .

Basic Behavior 82

Given any word w the tag system defines a sequence of words (wi), the orbit of
w.
Clearly there are the 3 basic possibilities:

Halting:
for some i, |wi| < d and the rewrite process stops.

Periodic:
|wi| remains bounded and the orbit is ultimately periodic.

Unbounded:
|wi| grows unboundedly.

Note that it is semidecidable whether w halts or becomes periodic.
Unboundedness is more complicated.

Undecidability 83

Theorem (Minsky 1961)
It is undecidable whether a word has an infinite orbit in a Post tag system.

The proof is quite hard and involves a reduction of ordinary Turing machines to
“two-tape non-writing Turing machines” (two counters).

With more effort these can then be simulated by tag system.

These undecidability results are genuinely difficult, this is nothing like Halting.

Undecidability in the Real World 84

Post seems to have constructed a complete classification of all binary 2-tag
systems (alas, he did not publish).

But for the d = 3 he was stumped by the following binary system:

a � aa b � bbab

At first glance, this system looks far to primitive to cause any serious problems:
there are just two tiny rules; clearly, with a modest amount of effort, we should
be able to completely understand this system. Right?

Alas . . .

Transient Lengths 85

5 10 15 20 25 30 35

500

1000

1500

2000

2500

The length of all transients of words bk, k ≤ 40. The periods are 1, 2 and 6.

The Orbit of b14 86

Lots of structure, but just enough chaos to stump everybody.

ECA 110 87

The proof for the computational universality of elementary cellular automaton
110 is based on a simulation of a type of tag system.

Major Bummer 88

Post had originally hoped to obtain a good theory that would cover all formal
systems (including e.g. Russel and Whitehead’s Principia Mathematica).

His initial success was to show that they all could be construed as tag systems.
But then he realized that even for d = 3 these systems are too difficult to deal
with, a very unhappy experience.

. . . the best I can say that I would have proved Gödel’s theorem
in 1921—had I been Gödel.

E. Post, 1938

1 Rewrite Systems

2 Thue Systems

3 Knuth-Bendix Completion

4 Post Systems

5 Prefix Rewrite Systems

6 Frontiers

Basic Rewriting 90

We will take a look at a type of rewrite system that seems appealing from the
algorithmic perspective: we only use prefixes as handles (rather than factors as
in the general case). So, finding a handle is particularly simple here.

Alas, we will see that this is one step too far: we wind up essentially with just
regular languages.

Still, this is useful to analyze finite state machines, and even produces
interesting results in group theory.

Prefix Rewrite systems 91

Definition
A prefix rewrite system (PRWS) is a pair

R = ⟨Γ,P⟩

where Γ = Σ ·∪ X is an alphabet and P ⊆ Γ ⋆ × Γ ⋆ is a finite set of
productions. Σ is the set of terminals and X is the set of non-terminals.

Non-terminals are also referred to as auxiliary symbols or syntactic variables,
the latter terminology is used in particular in conjunction with formal
grammars, a special type of rewrite system.

We modify the one-step relation as follows:

ux→P vx ⇐⇒ u � v in P

Languages 92

For languages, the dichotomy between analysis and synthesis takes the
following form:

Recognition Develop an algorithm that, given a word, determines whether it
belongs to the language.

Generation Develop a method that allows one to generate all words in a
language in some systematic fashion.

From a computability perspective, recognition requires decidability, but
generation only requires recursive enumerability. Hence, some languages can be
generated but not recognized.

However, for families of simple languages one would expect a connection
between the two approaches.

Associated Language 93

In our setting, we can modify to the definition of the language associated with
a PRWS in the following useful manner. Given A, B ∈ X let

L(P, A, B) = {x ∈ Σ⋆ | Ax
∗−→B }

We could also use sets of non-terminals. Note that the language is still a
subset of Σ⋆, though non-terminals are used during the derivation. In this
section we will focus on recognition, whence this definition.

Exercise
The {x ∈ Σ⋆ | A ∗−→Bx } could be considered as the language generated by a
PRWS system. What is the relationship to the recognition language?

Reduced PRWS 94

We can constrain the form of our productions without affecting the language.
In particular, it is easy to see that productions of the form

Aa � B contracting
A � B neutral
A � Bb expanding

suffice where a, b ∈ Σ—albeit at the cost of potentially increasing the number
of non-terminals. We will call these systems Reduced PRWS. Note that in a
RPRWS one only needs to consider derivations involving words of the form
XΣ⋆.

The next result is a bit more surprising:

Lemma
For every PRWS there is an equivalent reduced PRWS without expanding rules.

Proof 95

The new RPRWS P ′ uses the same alphabets, but the rules are changed
according to

Aa �P′ B where Aa
∗−→P B

A �P′ B where A
∗−→P B

It follows that x
∗−→P′ y implies x

∗−→P y.

It remains to show that x→P y implies x
∗−→P′ y. To this end, consider a

derivation in P of the form

A0x0, A1x1, . . . , An

Let x0 = a1a2 . . . ar ∈ Σ⋆. For i ∈ [r] define σ(i) to be the maximum j such
that xj = aiai+1 . . . ar.

More Proof 96

Hence, for all i ∈ [r] the derivation has a step

Aℓ(i)ai . . . ar →P Aℓ(i)+1ai+1 . . . ar

But then we introduce the new productions

Aℓ(i)ai
∗−→Aℓ(i)+1

Aℓ(i)
∗−→Aℓ(i+1)

and obtain an equivalent system without contractions. Here Aℓ(r+1) is
understood to be B.

2

Effective Version 97

Since we do not yet understand derivations in P, the last result is somewhat
unsatisfactory: the new rewrite system exists for reasons of finiteness, but we
have no way to construct it.

Intuitively, there should be a reasonably simple way to bound the lengths of the
derivations in P needed to produce P ′. In turn, to bound the lenghts of
derivations, it suffices to bound the lengths of the words occurring in them.

To this end, define a block in a derivation

X0x0, X1x1, X2x2, . . . , Xn−1xn−1, Xnxn

to be a maximal interval [l, r] such that xl appears as a suffix of xi, l ≤ i ≤ r.
It is clear that blocks are either nested or overlapping. Moreover, every terminal
suffix of a word in a derivation uniquely determines a corresponding block.

A Bound 98

Let’s say that a block [l, r] is of type X, Y iff Xl = X and Xr = Y .
So there are |X |2 different types of blocks.

By a shortest derivation we mean a derivation of minimum length given a fixed
source and target.

Now consider a longest term Xx in a shortest derivation. The |x|-many suffixes
of x give rise to a nested sequence of blocks. If that sequence is longer than
|X |2, then two blocks of the same type must be nested. But then the
derivation cannot be shortest, one can retain only the inner block and still have
a valid derivation.

Hence |X |2 + 1 is an upper bound for the length of terms in any shortest
derivation, yielding an obvious exponential bound for the length of such a
derivation.

An Automaton 99

We will now construct an automaton A that accepts words recognized by an
expansion-free reduced PRWS.

To this end, think of ∗−→ as a pre-order on X . We use as state set of A the
equivalence classes induced by this pre-order. Thus P ⊆ X is a state iff
∀X, Y ∈ P (X ∗−→ Y).

The transition function δ is given by P
a→ P ′ iff ∃X ∈ P, Y ∈ P (Xa

∗−→ Y).

The following claim is easily established by induction:

Claim: δ(P, w) = P ′ iff ∃X ∈ P, Y ∈ P ′ (Xw
∗−→ Y).

Finale Furioso 100

Theorem
The language L(P, A, B) of any prefix rewrite system P is regular.
A finite state machine for the language can be constructed from the system.

As an aside: The special case when the system is pure (i.e., X = ∅) is actually
of interest.
We need to adjust our definition of language slightly: the set {x | w ∗−→ x } of
all words derivable from a fixed word w is regular.

1 Rewrite Systems

2 Thue Systems

3 Knuth-Bendix Completion

4 Post Systems

5 Prefix Rewrite Systems

6 Frontiers

Frontiers 102

Recall that a tree is a prefix-closed set T ⊆ Σ⋆. Define the frontier and the
interior of X ⊆ Σ⋆ as follows.

fr(X) = X ·Σ −X

int(X) = {x | ∃u ∈ X (x < u) }

A frontier is any set of the form fr(T) for some tree T .

Lemma
Let T be a tree and S a frontier. Then the following hold.

1. int(fr(T)) = T ,
2. fr(int(S)) = S.

Büchi Frontiers 103

Let A ⊆ Σ⋆. The interior and exterior of A are defined as

int(A) = {x | ∃u ∈ A (x < u) }
ext(A) = {x | ∃u ∈ A (u < x) }

A is a frontier if A, int(A) and ext(A) form a partition of Σ⋆. If T is a tree, we
refer to T − int(T) as the frontier of T .

In the case of a single word w, w ∪ int(w) is the branch leading to w,
w ∪ ext(w) is the subtree rooted at w.

Claim: For a frontier A, x ̸= y ∈ A implies that x and y are incomparable.

Claim: A is a frontier iff A is a maximal antichain.

Example: Tree plus Frontier 104

Here is a picture of the frontier S = {aa, bb, aba, abb, baa, bab} of the tree
T = {ε, a, b, ab, ba}, the interior of S.

ϵ

a b

aa ab

aba abb

ba bb

baa bab

Example: Even/Even 105

Let E be the language of all even/even words over Σ = {a, b}.

Here is a pure prefix-rewrite system that recognizes E in the sense that x
∗−→ ε

iff x ∈ E.

aa, bb � ε

abb, bab � a

baa, aba � b

The words on the left-hand-side are the frontier of the tree {ε, a, b, ab, ba}, as
on the last slide.

Also note that for any x there is a v ∈ T such that x
∗−→ v.

Frontier PRS 106

The question arises whether the even/even example generalizes to some other
regular languages. First, we need to formalize our framework.

Suppose P = {ui � vi | i ∈ [n] } is a pure PRS. Call P a frontier PRS if the
set U = {ui | i ∈ [n] } of left-hand-sides is a frontier and vi ∈ int(U).

A frontier PRS recognizes a language L if there is a set U0 ⊆ U such that
L = {x | x ∗−→ w ∈ U0 }.

Thus the rewrite system from the last slide is a frontier PRS, and it recognizes
the even/even language.

It Works 107

First, a little sanity check: in any frontier PRS, all words can be rewritten to a
word in the corresponding tree.

Lemma
For any word x there exists w ∈ int(U) such that x

∗−→ w.

Proof. Again we only need to consider x not in the interior; for these words
recall the distance d(x) ≥ 0 defined to be |z| where x = uiz. Distance is
uniquely determined since U is a frontier. Now x→ viz, so if viz lies in the
interior, we are done. Otherwise d(viz) < d(x), done by induction. 2

Frontiers and Regularity 108

Lemma
A language recognized by a frontier PRS is regular.

Proof.
We can build a DFA A for the language of the PRS as follows. Let U be the
frontier of left-hand-sides.

States are Q = int(U), initial state is ε.
The set of final states is U0.
The transition function is given by

δ(x, a) =
{

xa if xa ∈ Q
v if u = xa ∈ U , u � v ∈ P.

Clearly computations in A correspond to derivations in P. 2

Frontiers and Regularity, II 109

Lemma
For every regular language L, there is a frontier PRS recognizing L. The PRS
can be constructed in polynomial time from a DFA for L.

Proof.
Think of Σ⋆ as the complete k-ary tree, rooted at ε. Given a DFA A for L, we
can label the nodes in Σ⋆ by states: λ(x) = q0 · x. Call a subtree T ⊆ Σ⋆

saturated if λ(fr(T)) ⊆ λ(T).

Construct a saturated subtree T , let U = fr(T) and define a frontier PRS by
setting u � v ∈ P ⇐⇒ λ(u) = λ(v) for v ∈ T .

U0 is given by the nodes in T labeled by final states. 2

Saturated Trees 110

The saturated trees from the last proof have the following characterization.

Lemma
Assume A is accessible. Then T ⊆ Σ⋆ is saturated iff λ(T) = Q.

Proof. It suffices to show the direction from left to right.
First, for x not in T , define the distance d(x) ≥ 0 to be |z| where x = uz,
u ∈ fr(T). It is easy to see that d(x) is well-defined.

Now let p ∈ Q and assume for a contradiction that p /∈ T . By assumption, p is
not on the frontier either. By accessibility, let p = λ(x) and x = uz where
u ∈ fr(T).

Then p = λ(vz) where v ∈ T and λ(u) = λ(v). Done by induction on d(x).
2

Constructing Saturated Trees 111

For the construction of a frontier PRS from a DFA, there are several interesting
ways to build the required saturated tree.

Length-lex: traverse the tree in length-lex order (ordered BFS) and make
sure that every label occurs exactly once in T .

Periodic: make sure that x is on the frontier of T iff there is exactly one
prefix z < x such that λ(x) = λ(z).

Levels: Truncate Σ⋆ at level k for k sufficiently large.

Since we can convert back to DFAs, we have a way to build machines that help
to explain the structure of the underlying regular language.

Example: a⋆b⋆a 112

The minimal automaton, isomorphic to the length-lex frontier automaton.

Periodic Frontier 113

The periodic frontier automaton for a⋆b⋆a.

Level Frontier, First 114

The frontier automaton for a⋆b⋆a at level 4. Back-edges go to the first possible
place.

Level Frontier, Last 115

The frontier automaton at level 4. Back-edges go to the last possible place.

Level Frontier, Random 116

The frontier automaton for a⋆b⋆a at level 4. Back-edges go to a random
admissible place.

Example: Even/Even 117

The periodic frontier automaton for even/even.

Make sure to figure out which states would merge under minimization.

Level Frontier, First 118

The frontier automaton at level 3 for even/even. Note the symmetry around
the middle axis (a convoluted way to prove that the language is invariant under
swapping a and b).

	Rewrite Systems
	Thue Systems
	Knuth-Bendix Completion
	Post Systems
	Prefix Rewrite Systems
	Frontiers

