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Transfinite Constructions 2

In mathematics, there are many examples of operations that need to be
repeated “infinitely” often in order to construct some object.

To make real sense out of this, one needs to generalize the natural
numbers to transfinite ordinals.

Here is a classic example of the need for such an infinitary operation, due
to Cantor, in his early work on the limits of Fourier analysis.

Surprisingly, the same machinery is also used in his later work on the
continuum hypothesis.



Fourier Analysis 3

Suppose f is a smooth real-valued function over (−π, π).
Then we can write f as a trigonometric series

f(x) = b0/2 +
∑

an sin(nx) + bn cos(nx).

Fourier discovered in 1807 how to calculate the coefficients via an
integral.

As it turns out, this representation is unique: f determines the
coefficients uniquely.



Cantor’s Work 4

Cantor proved the following.

Theorem (Cantor 1870)
Every real function has most one representation by a trigonometric series.

This comes down to showing that if a trigonometric series converges
pointwise to 0, all the coefficients must be 0.

Cantor knew that one can relax the condition, convergence may fail on
finitely many points. So the question is how far one can relax the
hypothesis.



Sets of Uniqueness 5

A set of uniqueness is a set U such that convergence on

(−π, π) − U

is enough.

Cantor set out to find general sets of uniqueness.

So this question is deeply involved with the structure of sets of reals, a
horribly complicated domain as we now know.



Cantor Derivatives 6

Definition
Let A ⊆ R closed. A point a ∈ R is isolated (in A) if there exists a
neighborhood of a that is disjoint from A. Otherwise a is a limit point or
accumulation point. A is perfect if it has no isolated points.

Perfect sets can be constructed from arbitrary closed sets by removing
isolated points. Write

X ′ = { x ∈ X | x limit point }

for the derived set of X.

Unfortunately, A′ ⊆ A may not be perfect, either. So we repeat the
process: A′′ , A′′′ and so on. More precisely, we form a sequence
A(0) = A, A(n+1) = A(n)′ for all n ∈ N.



First Species 7

Cantor called a set A a set of first species iff A(n) = ∅ for some natural
number n.

Theorem (Cantor 1871)
Every set of first species is a set of uniqueness.

As it turns out, this is just the tip of an iceberg.



Infinity 8

There is no guarantee that A(n) will be perfect for any n ∈ N.

How do we continue our pruning process beyond the first infinitely many
stages?

It’s a fair guess that we should consider
⋂

An next. So we define

A(∞) =
⋂

n<ω

A(n)



. . . and Beyond 9

Alas, A(∞) may not be perfect either.

We could continue by setting

A(∞+1) =
(
A(∞))′

and similarly A(∞+2) and A(∞+n) in general. As one might suspect, we
wind up with A(∞+∞) and still no end in sight.

At this point one should worry about the actual, precise meaning of
expressions like ∞ + ∞, 5∞, ∞ · ∞ and so on.



Ordinals 10

The goal is to define a collection of numbers called ordinals that extends
the naturals and comes equipped with

a natural order, and
arithmetic operations like addition, multiplication, exponentiation.

Everything should be a strict generalization of the natural numbers.

This extension will be radically different from others like Q or R, the
emphasis is on order properties rather than arithmetic.



Ordinals, Intuitively 11

Think of the naturals as a total order ⟨N; <⟩.

0, 1, 2, . . . , n, n+1, . . .

There are exactly two kinds of elements in this order:

0, the minimum element
successors

Here y is the successor of x (and x the predecessor of y) if

x < y ∧ ¬∃ z (x < z < y)



Towards Infinity 12

We append a new ordinal ω at the end and we get†

0, 1, 2, . . . , n, n+1, . . . ω

Note that ω is neither 0 nor a successor, it is the first limit ordinal.

The ordinals α < ω are exactly all the natural numbers.

†The ellipsis is one of the most consistently abused symbols in all of math. Here
the first one stands for finitely many steps, but the second one for infinitely many.



And More . . . 13

Once we have reached level ω, we can take one more step and get to the
successor, written ω + 1.

And then to ω + 2, . . . , ω + n, and so on. If we keep going, we finally
wind up at

0, 1, 2, . . . , n, . . . ω, ω+1, ω+2, . . . , ω+n, . . . |

The new limit ordinal is called ω + ω = ω · 2.
So we have two infinite blocks, one after the other†.

†Careful, 2 · ω = ω when one defines ordinal arithmetic formally, see below.



And More . . . 14

You guessed it, we can also get ω + ω + ω = ω · 3.

In fact, we can get an infinite sequence of increasing limit ordinals

ω, ω · 2, ω · 3, . . . , ω · n, . . . |

We denote this level by ω · ω = ω2: ω many blocks of size ω each.

And we can get ωk for any natural number k†.

†In fact, this is just the very tip of the iceberg, but it’s enough for our purposes.



Headache? 15

Let’s ignore the problem of arithmetic and just consider the order types†.

The orders ωk can be obtained cheaply by sorting Nk in the standard
lexicographic way.

E.g., N2 produces the same order as ω2:

(u, x) < (u, y) for all x < y

(u, x) < (v, y) for all u < v

†Classes of all order-isomorphic linear orders.



Alternatively 16

We could also rearrange N to obtain orders that are isomorphic to (some
small) ordinals.

E.g., if we sort N first by even/odd and then by the standard order, we
get ω + ω:

0, 2, 4, . . . , 2n, . . . | 1, 3, 4, . . . , 2n+1, . . . |

We can get ω + ω + ω by

0, 3, 6, . . . , 3n, . . . | 1, 4, 7, . . . , 3n+1, . . . | 2, 5, 8, . . . , 3n+2, . . . |

and similarly ω · n for any n.

Exercise
Find a rearrangement for ω2.



Back to Perfection 17

It is not hard to show that every non-empty perfect set has cardinality
2ℵ0 .

Cantor could prove that every uncountable closed set of reals has a
non-empty perfect subset, obtained by transfinite iteration of his
derivative.

The process removes only countably many points from the set, so this
result shows that the continuum hypothesis holds for closed sets.
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Ordinals and Well-Orders 19

The key property of the class of ordinals is that it is a well-order with
respect to ∈. To find an implementation of ordinals in set theory it is
thus natural to try to find a set Nα for each ordinal α that represents α
in some natural way.

By natural we mean that the structure

⟨Nα, ∈⟩

should be a well-order that is order-isomorphic to α.

So, for any well-order ⟨A,�⟩ there is an isomorphic order of the form
⟨Nα, ∈⟩ , we don’t need any order relation more complicated than ∈.



Von Neumann’s Ordinals 20

J. von Neumann
Zur Einführung der transfiniten Zahlen
Acta Litt. Acad. Sci. Hung., 1 (1923) 199–208

J. von Neumann
Eine Axiomatisierung der Mengenlehre
J. Reine und Angewandte Math., 154 (1925) 219–240

Von Neumann carried out this project in the 1920s.



Well-Orders 21

Definition
A structure ⟨A,�⟩ is a well-order if � is a total order on A and every
non-empty subset of A has a �-minimal element.

All the ordinal examples from above are well-orders. The integers and the
positive rationals are the standard counterexample.

Lemma (ZFC)
⟨A,�⟩ is a well-order iff there are no infinite descending chains.

In other words, we must not have a sequence

a0 � a1 � a2 � . . . � an � . . .



Do They Exist? 22

A key question in the early development of set theory was whether every
set can be well-ordered. In fact, Hilbert placed well-ordering the reals on
top of his famous list of open problems in 1900.

Cantor thought this was “self-evident” because we construct the required
order in stages. To well-order A construct a sequence aα in stages

aα = pick some x ∈ (A − { xβ | β < α })

Two problems: one needs to explain exactly what the “stages” are, and
how the “pick some” operations is supposed to work: A is an abstract set
and there is no clear mechanism how this choice should be made. We
need the right set theory axiom: the Axiom of Choice.



Some Equivalences 23

The following principles are equivalent to the Axiom of Choice, but often
easier to apply in concrete situations.

The Well-Ordering Principle: every set can be well-ordered.

Zorn’s lemma: every partial order in which every chain has an upper
bound contains a maximal element.

Hausdorff’s Maximality Principle: every partial order has a maximal
chain.

Every equivalence relation has a set of representatives.

Zorn’s lemma was popularized in particular by Bourbaki (who was allergic
to most of logic).



Is it True? 24

The Axiom of Choice is obviously true,
the Well-Ordering Principle obviously false,
and who can tell about Zorn’s Lemma?

Jerry Bona

Logic sometimes coexists uneasily with psychology.



Transitivity 25

If we use ∈ as the underlying order we must have the following (order
relations are transitive):

z ∈ y ∈ x implies z ∈ x.

This property warrants a definition of its own.

Definition
A set x is transitive if z ∈ y ∈ x implies z ∈ x.

Thus, x is transitive iff
⋃

x ⊆ x iff x ⊆ P(x).

The empty set is transitive, x ∪ {x} is transitive whenever x is, and the
union of transitive sets is transitive.



Transitive Closure 26

As an aside, we note that for any set x we can construct the least
transitive superset y, by induction on ∈.

Definition
The transitive closure of x is defined to be

TC(x) =
⋂

{ y ⊇ x | y transitive }.

We can define the transitive closure operator in by recursion along ∈:

TC(∅) = ∅

TC(x) = x ∪
⋃
z∈x

TC(z)



Exercise
Show that y ⊆ x implies TC(y) ⊆ TC(x).

Exercise
Show that the recursive definition works as advertised.



Ordinals Defined 28

We define the von Neumann ordinals Nα by induction:

N0 = ∅
Nα+1 = S(Nα)

Nλ =
⋃

α<λ

Nα

We write On = { α | α ordinal } for the collection of all ordinals.

It follows that
Na = { Nβ | β < α }

a fairly natural idea.



von Neumann 5 29

The leaves correspond to ∅, the edges indicate membership.



Characterization 30

Theorem
An ordinal is a set that is transitive and is well-ordered by the element-of
relation ∈.

We could have used this as a concise definition. Alas, this would be
rather too opaque.
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Transfinite Induction 32

Ordinals are well-ordered, so the classical principle of induction on N
extends to On.

Definition
Let Φ(x) be some property of ordinals. Φ is inductive if

∀ β<α Φ(β) ⇒ Φ(α)

Theorem
If Φ(x) is inductive, then Φ(α) holds for all α ∈ On.



Transfinite Recursion 33

Likewise, we can define “recursive” functions on the ordinals, using
recursion much in the same way as for natural numbers.

Theorem (von Neumann, 1923, 1928)
Given a function F (x, y) defined on sets, there is a unique function
f : V × On → V defined by

f(x, α) = F (x, λzf(x, z) ↾ α).

Note that this definition works for all ordinals α. In practice, it may still
be convenient to distinguish between arguments 0, successor ordinals and
limit ordinals.



Example: An Order Isomorphism 34

Consider the well-ordering A = ⟨N × N, <⟩ with the usual lexicographic
order. We can define an order isomorphism f : λ → A for some limit
ordinal λ by transfinite recursion:

f(ν) = min<(A − { f(α) | α < ν })

The right hand side is well-defined as long as A ̸= { f(α) | α < ν }. In
other words, we can think of f : On ↛ A as a partial function whose
domain is some initial segment λ of On.

This ordinal λ is the order type of our well-order; λ must be a limit
ordinal since A has no largest element.



Order Type 35

In this case it is not hard to given an explicit description of f and λ.

Note that any ordinal below ω2 can be written uniquely in the form
α = ωn + m for n, m < ω. Then

f(α) = (n, m)

and λ = ω2: we have A = { f(α) | α < ω2 } and the recursion stops.

Exercise
What is the order type of Nk under lexicographic order?



Another Well-Order 36

Here is another well-order: B = ⟨N+, ≺⟩ where

n ≺ m ⇐⇒ ν2(n) < ν2(m) ∨ ν2(n) = ν2(m) ∧ n < m.

Here ν2(x) is the dyadic valuation of x, the highest power of 2 which
divides x. Thus

1 ≺ 3 ≺ 5 ≺ . . . 2 ≺ 6 ≺ 10 ≺ . . . 4 ≺ 12 ≺ 20 ≺ . . .

Exercise
Determine the order type of B.



Addition, Multiplication and Exponentiation 37

α + 0 = α

α + β′ = (α + β)′

α + λ = sup{ α + β | β < λ }

α · 0 = 0
α · β′ = α · β + α

α · λ = sup{ α · β | β < λ }

α0 = 0′

αβ′
= αβ · α

αλ = sup{ αβ | β < λ }

For clarity, we have written α′ for the successor of α.



Properties 38

The arithmetic operations follow the Dedekind definitions on the natural
numbers.

One can show that addition and multiplication of ordinals are both
associative, but they fail to be commutative.

For example, letting 1 = 0′, 2 = 1′, we have

1 + ω = ω ̸= ω + 1

Similarly
2 · ω = ω ̸= ω · 2 = ω + ω

It may happen that ωα = α.



Justification 39

Apart from the analogy to Dedekind’s approach, it is worth pointing out
that they faithfully represent certain natural operations on well-orders.

Suppose A and B are well-orders of order type α and β, respectively. Let

C = { (0, a) | a ∈ A } ∪ { (1, b) | b ∈ B }

be the disjoint union of A and B. Order C by “first A, then B”. Then C
is a well-order of order type of C is α + β.

Likewise, setting C = A × B and ordering this set lexicographically
produces a well-order of order type α · β.



Fixed Points 40

Ordinals have a very important fixed point property.

Suppose f : On → On is a normal function:

strictly increasing: f(α) < f(β) for all α < β

continuous: f(λ) = sup(f(α) | α < β

Claim: There is an ordinal γ such that f(γ) = γ.

To see why, define α0 = 0, αk+1 = f(αk) and set γ = sup αk.



Epsilon Numbers 41

One important type of fixed are so-called ε-numbers, the fixed points of
the map α 7→ ωα.

The least ε-number is epsilon naught:

ε0 = ωωω
. . .

Note that an ε-number is closed with respect to exponentiation.

There are lots of ε-numbers, in fact just as many as there are ordinals.



Cantor Normal Form 42

For ordinals α < ε0, Cantor has established the following normal form:

α = ωα1 + ωα2 + . . . + ωαk

where α > α1 ≥ α2 ≥ . . . ≥ αk.

Given this constraint on exponents, the normal form is indeed unique.

Without the condition α > α1 the normal form holds in general, but is
typically less useful.



Enumerating a Well-Order 43

Unlike arbitrary total orders, well-orders are always comparable in a very
strict sense.
Suppose ⟨A,�⟩ is a well-order. We can enumerate the elements of A by
constructing a partial function f : On → A defined by

f(0) = min
�

(A)

f(α + 1) = min
�

(A − {f(0), . . . , f(α)})

f(λ) = min
�

(A − { f(ν) | ν < λ }

Note the domain of f is an initial segment of On, so we get an order
isomorphism

f : { α ∈ On | α < β } → A



Length of a Well-Order 44

The ordinal β is uniquely determined by A, so we can propose the
following measure of the length of a well-order.

Definition
The ordinal β such that that there is an order isomorphism from
{ α ∈ On | α < β } to A is the order type or length of A.

The length of a well-order is a successor ordinal if the order has a largest
element, and a limit ordinal otherwise.

Note that any two well-orders are comparable in the sense that one must
be isomorphic to an initial segment of the other.
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Recursion and Termination 46

One application of ordinals is to show termination of recursive functions.

For simple functions like the factorial plain induction on N is sufficient.
But consider the Ackermann function A : N × N → N defined by a
double recursion:

A(0, y) = y+

A(x+, 0) = A(x, 1)
A(x+, y+) = A(x, A(x+, y))

The standard totality proof for A is by induction on x and subinduction
on y. This is fine, but a bit clunky.



Why Bother? 47

It may seem that any recursive definition along the lines of Ackermann’s
is automatically guaranteed to produce a well-defined, total function.
Alas, that’s most emphatically not the case.

f(0, 0) = 0
f(x + 1, y) = f(x, y + 1)

g(x, 0) = x + 1
g(x, y + 1) = g(x + 1, y)

g(x + 1, y + 1) = g(x, g(x, y))

Exercise
Explain what goes wrong in the definitions of f and g above.



Well-Ordering N × N 48

Recall that ω2 can be modeled by ordering N × N. lexicographically:

(a, b) ≺ (c, d) ⇐⇒ (a < c) ∨ (a = c ∧ b < d).

It is easy to see that whenever a call to (x′, y′) is nested inside a call to
(x, y) we have Y ≺ X:

(x, 0) ≻ (x − 1, 1)
(x, y) ≻ (x, y − 1), (x − 1, z)

Thus termination is guaranteed: there are no infinite descending chains.



Multiple Recursion 49

General recursive functions as defined by Herbrand-Gödel can have any
number k of recursion variables; Ackermann is an example for k = 2.

To prove termination, if it holds at all, one can either use deeply nested
subinductions, or one can use induction over ωk.

This can easily be formalized in Dedekind-Peano arithmetic, so the proofs
are not exceedingly complicated.

But: one cannot establish induction to ε0 since this would contradict
Gödel’s incompleteness theorem (it would prove consistency.



Fundamental Sequences 50

We can exploit Cantor normal form to define, for each limit ordinal
λ < ε0, a “natural” increasing sequence λ[n], where n < ω, such that
λ = lim λ[n].

For λ = ωα1 + ωα2 + . . . + ωαk we set
α[n] = ωα1 [n] + ωα2 [n] + . . . + ωαk [n].

For λ = ωα+1 we set λ[n] = ωα · n.

For λ = ωα, α limit, we set λ[n] = ωα[n].



Wainer Hierarchy 51

We can now define functions Wα : N → N for all α < ε0.

W0(x) = x + 1

Wα+1(x) = W x
α (x)

Wλ(x) = Wλ[x](x)

The first ω levels are quite similar to the classical Ackermann function.
But then all hell breaks lose.

Note that one can define Wε0 in a similar fashion, one just needs to fix a
fundamental sequence for ε0.



Wainer versus Dedekind-Peano 52

For α < β, Wβ dominates Wα: for all sufficiently large x we have
Wβ(x) > Wα(x). Much larger, indeed.

All the Wα are computable, and can be shown to be total in (DPA).

Wε0 is also total, but this is no longer provable in (DPA).
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Cardinals 54

A first attempt to define cardinals in terms of sets is to set

|A| = { x | x ≈ A }

Unfortunately, this collection of sets fails to be a set itself, it is proper
class (it has the same size as V , the collection of all sets).

One can work around this issue by using Scott’s trick: instead of
collecting all sets of the same size, only use those of minimal rank. Still,
one might try to find a better description of cardinality.

The following approach is due to von Neumann.



Von Neumann Cardinals 55

We can use ordinals to define cardinals.

Clearly, any well-order of order type ω requires a countably infinite carrier
set. But countable sets suffice to build well-orders of higher order types
such as ω + ω, ω · ω, ωω. Even ε0 can easily be squeezed into a
countable carrier set.

This suggests the following definition.

Definition
An ordinal κ is a cardinal if the carrier set of any well-order of length κ is
larger than the carrier set of any well-order of length α < κ.



No Injections 56

This may sound a bit complicated, but it all comes down to insisting that
there is no injection

κ → α

for any α < κ in On.

Informally, cardinalities jump when the length of a well-order reaches κ.
Thus, all countable ordinals map to ω, but the first uncountable one does
not and is thus a cardinal.



Alephs 57

What can we say about cardinals Card ⊆ On?
First off, there are the finite cardinals which consist of all ordinals less
than ω – if you like, you can identify these with the natural numbers.
The first infinite cardinal is ω, though in its capacity as a cardinal rather
than just plain ordinal it is often written

ℵ0 aleph naught

This notation is, of course, due to Cantor.
But things do not end there. In fact, one can show that Card is a
well-ordered subclass of On, so we actually have a sequence

ℵ0, ℵ1, . . . ℵω, . . . ℵω+ω, . . . ℵω2 , . . . ℵε0 , . . . , ℵℵ1 , . . .

If you find this vertigo-inducing you are quite right.



An Absurdly Large Aleph 58

Note that for our examples, ℵα is always much, much larger than α.

Alas, one can prove in ordinary set theory that there is a cardinal κ such
that

ℵκ = κ

To wit, κ can be chosen to be the least ordinal larger than f(n) for all
n < ω where f(0) = 0 and f(n + 1) = ℵf(n).
Take a moment to figure out what this means. This number is
mind-numbingly large.



Actually, not all that big . . . 59

In modern set theory, κ would be considered fairly small.

It is standard to study inaccessible cardinals α = ℵα:

for all β < α: 2β < α,
α is regular: no sequence of length λ < α has limit α.

Note that our κ from the last slide is the limit of a sequence of puny
length ω.

One huge difference here is that ZFC cannot prove the existence of an
inaccessible cardinal (otherwise ZFC could prove its own consistency,
contradicting Gödel’s theorem).



Cantor’s Number Classes 60

This never-ending stream of alephs is important in axiomatic set theory,
but for us only the first few items are relevant.
The natural numbers (aka finite ordinals) form the first number class.
The countable ordinals form the second number class. Thus ℵ1 is the
least uncountable ordinal, the least ordinal that does not belong to the
second number class.
One can show that

ℵ1 ≤ |R|

but equality, Cantor’s famous Continuum Hypothesis, the other top entry
on Hilbert’s list, cannot be settled in the framework of standard set
theory. So it is safe to assume that ℵ1 = |R| or that ℵ1 < |R|. Unlike
with the Axiom of Choice, neither option seems to be particularly natural
or consequential, so the Continuum Hypothesis has not been adopted as
a standard axiom.



Cardinal Arithmetic 61

One should note the arithmetic of cardinals is different from the
arithmetic of ordinals. We won’t give a detailed definition of the
arithmetic operations; they are supposed to represent the effect on
cardinality of disjoint union, Cartesian product and function space
formation. For example, ℵ0 + ℵ0 = ℵ0: it is easy to construct a bijection
between N and two disjoint copies of N.

One can show that addition and multiplication of cardinals are
associative, commutative operations. Moreover

Lemma
Let λ and κ be two cardinals, at least one of them infinite and neither 0.
Then

λ + κ = λ · κ = max(λ, κ).

Note that exponentiation is not mentioned here; in fact 2κ > κ for all
cardinals κ as Cantor’s diagonal argument shows.



Inequalities 62

One can also derive some basic properties of inequalities between
cardinalities.

Lemma
Let λ ≤ κ and λ′ ≤ κ′. Then

λ + λ′ ≤ κ + κ′ and λ · λ′ ≤ κ · κ′

Unless λ = λ′ = κ = 0 < κ′ we also have

λλ′
≤ κκ′

.



König’s Theorem 63

There are also infinitary version of the arithmetic operations. Here is one
famous result. Let I be an arbitrary index set.

Theorem (König 1904)
Let λi < κi for all i ∈ I. Then∑

i

λi <
∏

i

κi

This requires the Axiom of Choice.



Cofinality 64

One interesting property of the second number class is that all its
elements can be approximated by sequences of length ω.

Definition
Define the cofinality of a limit ordinal α to be the length of a shortest
sequence that is cofinal in { β ∈ On | β < α }. Ordinal α is regular if it
has cofinality α.
In symbols: cof α.

Note that ω + ω, ω2 and the like all have cofinality ω.

Lemma
All limit ordinal in the second number class have cofinality ω. But ℵ1 is
regular.



Cofinality and König 65

Lemma
Let ℵ0 ≤ κ and 2 ≤ λ. Then

1. κ < κcof κ

2. κ < cof λκ

Proof.
Let αν < κ, ν < cof κ, be a sequence of ordinals with limit κ. By König

κ =
∑

αν <
∏

κ = κcof κ

For the secone part, set µ = λκ and assume cof µ ≤ κ. Then by part (1)

µ < µcof µ ≤ µκ = (λκ)κ = λκ = µ

contradiction. 2



Continuum Hypothesis 66

One of the reason the last lemma is interesting is that it shows

ℵω ̸= 2ℵ0

The Continuum Hypothesis asks about the value of c = 2ℵ0 .

Solovay has shown that this constraint (and analogous ones obtained in a
similar manner) are the only obstructions to choosing a value for c,
anything else can be realized in suitable models for ZFC.



Implementing Ordinals 67

So far we have carefully avoided explaining how to represent ordinals and
cardinals as sets and instead used concepts such as “stage of
construction”, “well-ordering” and so on. Here is one way to represent
ordinals as ordinary pure sets due to von Neumann. All the assertions we
have made above can then be proven in set theory.
We want to define a set Nα for each ordinal α that represents α in some
natural way.
First off, what is meant by natural here is that the structure

⟨Nα, ∈⟩

ought to be a well-ordering of order type α.
So, for any well-ordering ⟨A, <⟩ there is an isomorphic order of the form
⟨Nα, ∈⟩ , we don’t need any order relation more complicated than ∈.



Transitivity 68

If we use ∈ as the underlying order we must have the following (order
relations are transitive):

z ∈ y ∈ x implies z ∈ x.

This property warrants a definition of its own.

Definition
A set x is transitive if z ∈ y ∈ x implies z ∈ x.

Thus, x is transitive iff
⋃

x ⊆ x iff x ⊆ P(x).

Structures that can be represented by transitive sets together with ∈ play
an important role in set theory, but we won’t pursue the issue here.
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As an aside, we note that for any set x we can construct the least
transitive superset y, by induction on ∈.

Definition
The transitive closure of x is defined to be

TC(x) =
⋂

{ y ⊇ x | y transitive }.

We can define the transitive closure operator in by recursion along ∈:

TC(∅) = ∅

TC(x) = x ∪
⋃
z∈x

TC(z)



Exercise
Show that y ⊆ x implies TC(y) ⊆ TC(x).

Exercise
Show that the recursive definition works as advertised.
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So, what should the von Neumann ordinals look like?
Needless to say, we start with N0 = ∅.
The successor function on sets is defined by

S(x) = x ∪ {x}

and S(Nα) is the successor of Nα.
So the question is what to do with limit ordinals. The answer is fairly
simple: take the union of all earlier von Neumann ordinals. So

Nλ =
⋃

α<λ

Nα

Exercise
Show that the von Neumann ordinals are in fact well-ordered by ∈.
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The leaves correspond to ∅, the edges indicate membership. This tree
emphatically does not share common subexpressions.
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Not every transitive set represents an ordinal, but there is a nice way to
characterize these sets.

Lemma
The von Neumann ordinals are precisely the transitive sets that are
well-ordered by the element relationship ∈.

Proof. An easy induction shows that all von Neumann ordinals are
well-ordered by ∈.
For the opposite direction use induction on α to show that the element in
⟨A, ∈⟩ of rank α must be Nα (transitivity is crucial). 2

Exercise
Show that every element of a von Neumann ordinal is a von Neumann
ordinal using as definition “transitive and ∈-well-ordered”.
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The last lemma is rather neat; to represent well-orders in set theory we
can dispense with specific order relations and just use ε. The only thing
that changes is the carrier set, which has rather nice properties itself.

We note that some authors define ordinals in terms of their set-theoretic
implementation. While formally correct, this approach is rather dubious
since it obscures the intended properties of ordinals – they all have to be
tediously discovered after the fact. Some would also gripe that this
method over-emphasizes set theory.

At any rate, the crucial idea is to generalize inductive proofs and/or
definitions to well-orderings other than just the natural numbers.
Ordinals represent the stages in these arguments and constructions.



Summary 75

Ordinals capture the notion of stages in an inductive process, in-
cluding the transfinite case.

Alternatively, we can think of them as the order types of all well-
orderings.

Ordinals can be implemented in set theory as transitive sets that are
well-ordered by ε.

Using transitive induction, one can define ordinal arithmetic which
corresponds naturally to operations on the well-orderings.

Cardinals are special types of ordinals, and carry their own, rather
messy arithmetic.
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