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Field of Dreams 2

The first field one typically encounters early in life is the field of rationals Q.

Q can be built from the ring of integers by introducing fractions. In other
words, this is algebra by wishful thinking, we simply declare that some
mysterious object

1
a

exists for each 0 ̸= a ∈ Z, and that a · 1
a

= 1.

Of course, writing down pretty symbols is useless, we need to define arithmetic
operations on our new symbols, in a way that is consistent with the old ring
operations over Z.



Fractions 3

Here is a construction that builds fractions over an arbitrary integral domain R
in a way that guarantees that the final result extends R and is a field (actually,
the smallest field extending R).

Define an equivalence relation ≈ on R×R⋆ by

(r, s) ≈ (r′, s′) ⇐⇒ rs′ = r′s.

One usually writes the equivalence classes of R×R⋆ in fractional notation:

r

s
or r/s for (r, s) ∈ R×R⋆.

Equivalence classes are inevitable here; over Z we have

12345
6789 = 4115

2263



field of Fractions 4

Now define arithmetic operations

a

b
+ c

d
:= ad + bc

bd

a

b
· c

d
:= ac

bd

Lemma
⟨R×R⋆; +, ·, 0, 1⟩ is a field, the so-called field of fractions or quotient field of
R. Here 0 is short-hand for 0/1 and 1 for 1/1.

The proof is not hard, but one needs to check all the relevant properties. E.g.,
one has to verify that addition is associative. Character-building exercise.



Computing in a Quotient Field 5

How hard is it to implement the arithmetic in the quotient structure?

Not terribly, we can just use the old ring operations. For example, using the
asymptotically best algorithm for integer multiplication we can multiply two
rationals in O(n log n) steps (but that’s not practical).

But there is a significant twist: since we are really dealing with equivalence
classes, there is the eternal problem of picking canonical representatives.
For example, in the field of rationals 12345/6789 is the same as 4115/2263
though the two representations are definitely different.
The second one is in lowest common terms and is preferred – but requires extra
computation: we need to compute and divide by the GCD.



Rational Function Fields 6

A particularly interesting case of the quotient construction starts with an
integer domain that is a polynomial ring R[x]. If we apply the fraction
construction to R[x] we obtain the so-called rational function field R(x):

R(x) :=
{

p(x)
q(x)

∣∣∣∣ p, q ∈ R[x], q ̸= 0
}

Performing arithmetic operations in R(x) requires no more than standard
polynomial arithmetic.

Incidentally, fields used to be called rational domains, this construction is really
a classic. It will be very useful in a moment.



Fields and Numbers 7

We are ultimately interested in finite fields, but let’s start with the classical
number fields

Q ⊆ R ⊆ C

where everybody has pretty good intuition.

Q is effective: the objects are finite and all operations are easily com-
putable. Alas, upper bounds and limits typically fail to exist.

R fixes this problem, but at the cost of losing effectiveness: the carrier
set is uncountable, only generalized models of computation apply. Find-
ing reasonable models of actual computability for the reals is a wide open
problem.

C is quite similar, except that essentially all polynomials there have roots
(at the cost of losing order).



Towers 8

The scenario when one has nested fields

F1 ⊆ F2 ⊆ F3

and so on occurs with some frequency, one speaks of a tower of fields. Strictly
speaking, Fi here should be a subfield of Fi+1.

Usually one is very casual about isomorphisms, it is fine to have a field F′

isomorphic to Fi such that F′ ⊆ Fi+1. Pointing out the isomorphism gets to be
really tedious, so one simply ignores this issue.

For example, look up any formal definition of Q and R. You will find that Q is
isomorphic to some Q′ ⊆ R but, in terms of pure set theory, Q ∩ R = ∅.
Likewise for R ⊆ C.



A Challenge 9

Suppose we want to preserve computability as in Q, but we need to use other
reals such as

√
2 ∈ R. This is completely standard in geometry, and thus in

engineering.

Definition
A complex number α is algebraic if it is the root of a non-zero polynomial p(x)
with integer coefficients. α is transcendental otherwise.

Algebraic numbers are computable, the associated polynomials provide a handle
(though the details are quite messy).

Transcendental numbers may or may not be computable in some sense; e.g., π
and e certainly are computable in the right setting. BTW, proving that a
number is transcendental is often very difficult.



Adjoining a Root 10

Here is a closer look. We want to use a root of the polynomial

f(x) = x2 − 2 ∈ Q[x]

commonly known as
√

2 ∈ R.

We need to somehow “adjoin” a new element α to Q so that we get a new field

Q(α)

in which

α behaves just like
√

2

the extended field is fully effective.

Ideally, all computations should easily reduce to Q.



Specs 11

We want a field F such that

Q ⊆ F

F contains a root of f

F is effective

And, as always, we want to do this in the cheapest possible way (algebraically,
the field should be simple, and the algorithms for the field operations should be
straightforward and fast).



Slimy Trick 12

In this case, there is a trick: we already know the reals R and we know that f
has a root in R, usually written

√
2.

Q(
√

2) = least subfield of R containing Q,
√

2

In the standard impredicative definition this looks like

Q(
√

2) =
⋂
{K ⊆ R | Q,

√
2 ⊆ K subfield of R }

Terminology: We adjoin
√

2 to Q.



Quoi? 13

The intersection-of-all-candidates definition is very elegant, but it leaves a
number of questions wide open.

So what exactly is the structure of Q(
√

2)?

How do we actually compute in this field?

First note that since a subfield is closed under addition and multiplication we
must have p(

√
2) ∈ Q(

√
2) for any polynomial p ∈ Q[x].

Simple Observation:
√

22 = 2, so any polynomial expression p(
√

2) actually
simplifies to a + b

√
2 where a, b ∈ Q.



Adjoining Root of 2 14

We claim that Q(
√

2) is none other than

P = { a + b
√

2 | a, b ∈ Q } ⊆ Q(
√

2) ⊆ R

Clearly, P is closed under addition, subtraction and multiplication, so we
definitely have a commutative ring.

But can we divide in P ? We need coefficients c and d such that

(a + b
√

2)(c + d
√

2) = 1

provided that a ̸= 0 or b ̸= 0. Since
√

2 is irrational this means

ac + 2bd = 1

ad + bc = 0



Field Operations 15

Solving the linear system for c and d we get

c = a

a2 − 2b2 d = −b

a2 − 2b2

Note that the denominators are not 0 since a ̸= 0 or b ̸= 0 and
√

2 is irrational.

Hence P is actually a field and indeed P = Q(
√

2). The surprise is that we
obtain a field just from polynomials, not rational functions.

Moreover, we can implement the field operations in Q(
√

2) rather easily based
on the field operations of Q: we just need a few multiplications and divisions of
rationals.



Again: Killing Denominators 16

Division of field elements comes down to plain polynomial arithmetic over the
rationals. There is no need for rational functions.

a + b
√

2
r + s

√
2

= 1
r2 − 2s2 (a + b

√
2)(r − s

√
2)



Primitive Elements 17

Let F ⊆ K be a tower of fields and α ∈ K.

Definition
K is a simple extension of F if K = F(α).
In this case, α is called a primitive element for this extension.

For example, the imaginary unit i is a primitive element for the extension
R ⊆ C = R(i).

Particularly interesting is the case when α is algebraic over F, so that α is the
root of some f(x) ∈ F[x].



Adjoining Roots in General 18

Theorem
The least field containing F and a root α of f(x) ∈ F[x] is

F(α) = { g(α) | g ∈ F[x] } = F[α],

the field of fractions of F[α].

Proof.
F[α] is an integral domain, so we can form the field of fractions K, and any
field containing F[α] must contain K. By minimality, F(α) = K.

2

Again: What’s surprising here is that polynomials are enough. If we let g range
over all rational functions with coefficients in F the result would be trivial – and
much less useful.
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Is that It? 20

So far, we have a few infinite fields from arithmetic and calculus, Q, R, C, and
variants such as Q(

√
2), plus a family of finite fields from number theory: Zm

for m prime.

Question:

Is that already it, or are there other fields?

In particular, are there other finite fields?

We will avoid infinite fields beyond this point.

It turns out to be rather surprisingly difficult to come up with more examples of
finite fields: none of the obvious construction methods seem to apply here.



Finite Integral Domains 21

Of course, every field is an integral domain. In the finite case, the opposite
implication also holds.

Lemma
Every finite integral domain is already a field.

Proof. Let a ̸= 0 ∈ R and consider our old friend, the multiplicative map
â : R⋆ → R⋆ , â(x) = ax.
By multiplicative cancellation, â is injective and hence surjective on R⋆. But
then every non-zero element is a unit: ab = â(b) = 1 for some b. 2



Classification 22

Instead of trying to construct finite fields right away, let’s do a bit of reverse
engineering first.

Question:
Is there a nice taxonomy for finite fields?

The analogous question for rings is hopeless, and for infinite fields it is rather
difficult. But for finite fields we can carry out a complete classification
relatively easily.

Recall that the characteristic of a finite ring R is the least k such that

0 = 1k = 1 + . . . + 1︸ ︷︷ ︸
k



Prime Subfield 23

Lemma
The least subfield of any field F, the so-called prime subfield, has the form

P =
{ ±1n

1m

∣∣∣ n ≥ 0, m > 0, 1m ̸= 0
}

Proof.
Obviously, every subfield must contain all the 1n, and thus all of P .
On the other hand, it is easy to check that P already forms a field, and our
claim follows.

2

For characteristic 0 the produces the rational numbers, P = Q.



Positive Characteristic 24

For positive characteristic p, we don’t need denominators: the prime subfield
can be simplified to

P = {1k | 0 ≤ k < p }

To see why, note that the characteristic p must be a prime, otherwise we would
have zero-divisors. So P is isomorphic to Zp

†, the ordinary modular numbers.

It is well-known that all elements other than 0 have multiplicative inverses in
this structure. Moreover, we can compute the inverse using the (extended)
Euclidean algorithm.

†Strictly speacking, this should be written Z/pZ or Z/(p), but c’mon.



Structure Theorem 25

Here is the surprising theorem that pins down finite fields completely (this
compares quite favorably to, say, the class of finite groups).

Theorem
Every finite field F has cardinality pk where p is the prime characteristic of F,
and k ≥ 1.
Moreover, for every p prime and k ≥ 1, there is a finite field of cardinality pk.
Lastly, all fields of cardinality pk are isomorphic.

From the computational angle it turns out that we can perform the field
operations quite effectively (at least for reasonable p and k), in particular in
some cases that are important for applications.



Proof Strategy 26

The proof comes in two parts:

For each p and k, construct a finite field of size pk.

Show that two fields of size pk must already be isomorphic.

Both require a bit of work.

For the existence part, we already are good for k = 1 and we know that every
finite field contains a subfield of the form Zp where p is prime, the characteristic
of the field. So the real problem is to determine the rest of the structure.

Here is the key idea.



Vector Spaces 27

Definition
A vector space over a field F is a two-sorted structure ⟨V ; +, ·, 0⟩ where

⟨V ; +, 0⟩ is an Abelian group,

The scalar multiplication · : F× V → V is subject to
a · (x + y) = a · x + a · y,

(a + b) · x = a · x + b · x,

(ab) · x = a · (b · x),

1 · x = x.

In this context, the elements of V are vectors, the elements of F are scalars.

Note that the last two axioms mean that the multiplicative group of F acts on
V on the left. In addition, 0 · x = 0, but that wrecks the invertibility condition.



The Mother of All Vector Spaces 28

Let F be any field, finite or infinite.

Consider Fn, the collection of all lists over F of length n.
In this context, these lists are always called n-dimensional vectors.
Fn is a vector space over F using componentwise operations:

u + v = (ui + vi)
a · v = (avi)

Note that this is all easy to compute, given the field operations.



More Examples of Vector Spaces 29

Example
Let K ⊆ F be a subfield of F. Then F is a vector space over K via scalar
multiplication a · x = ax.

Example∐
I
F and

∏
I
F are vector spaces over F, for arbitrary index sets I (including

infinite ones).

Example
The set of functions X → F using pointwise addition and multiplication is a
vector space over F. Here X ̸= ∅ is any set.



Independence 30

A linear combination in a vector space is a finite sum

a1 · v1 + a2 · v2 + . . . + an · vn

where the ai are scalars and the vi vectors, n ≥ 1. The linear combination is
trivial if ai = 0 for all i.

Definition
A set X ⊆ V of vectors is linearly independent if every linear combination∑

aivi = 0, vi ∈ X, is already trivial.

In other words, we cannot express any vector in X as a linear combination of
others. In some sense, X is not redundant.



Spanning Sets 31

Definition
Let X ⊆ V . The span ⟨X⟩ of X is the collection of all vectors in V that are
linear combinations of vectors in X. X is spanning if its span is all of V .

Clearly, spanning sets always exist: V itself is trivially spanning. In the standard
Euclidean space Rn, the collection of unit vectors ei, i = 1, . . . , n , is spanning.

Proposition
Every span ⟨X⟩ is a subspace of V .



Bases 32

Definition
A set X ⊆ V of vectors is a basis (for V ) if it is independent and spanning.

Note that independent/spanning sets trivially exist if we don’t mind them being
small/large, respectively. The problem is to combine both properties.

Theorem
Every vector space has a basis.
Moreover, all bases have the same cardinality.

Correspondingly, one speaks of the dimension of the vector space.



Digression: Proof 33

For vector spaces of the form V =
∐

I
F this is fairly easy to see: let ei ∈ V be

the ith unit vector: ei(j) = 1 if i = j, ei(j) = 0, otherwise.
Then B = { ei | i ∈ I } is a basis for V .

But how about
∏

N F? The set B from above is still independent, but no
longer spanning: we miss e.g. the vector (1, 1, 1, 1, . . .). We could try to add
this vector to B, but then we would still miss (1, 0, 1, 0, 1, . . .). Add that vector
and miss another. And so on and so on.

This sounds pretty hopeless; how are we supposed to pick the next missing
vector? And will the process ever end?

Solution: invoke the Axiom of Choice.



(AC) to the Rescue 34

Using (AC) and transfinite induction one can construct a basis in any vector
space whatsoever.

With more work one can show that this process always produces a basis of the
same cardinality, no matter which choice function we use.

A Surprise: One can also show that the existence of a basis in any vector
space already implies the axiom of choice (over ZF).

So linear algebra without (AC) is pretty weird.



Is it True? 35

The Axiom of Choice is obviously true,
the Well-Ordering Principle obviously false,
and who can tell about Zorn’s Lemma?

Jerry Bona



Coordinates 36

The importance of bases comes from the fact that they make it possible to
focus on the underlying field and, in a sense, avoid arbitrary vectors.
To see why, suppose V has finite dimension and let B = {b1, b2, . . . , bd} be a
basis for V .

Then there is a natural vector space isomorphism

V ←→ Fd

that associates every linear combination
∑

cibi with the coefficient vector
(c1, . . . , cd) ∈ Fd. Since B is a basis this really produces an isomorphism.

So, we only need to deal with d-tuples of field elements. For characteristic 2
this means: bit-vectors.



The Linear Algebra Angle 37

Back to finite fields. Given the prime subfield Zp
∼= K ⊆ F we have just seen

that we can think of F as a finite dimensional vector space over K. Hence we
can identify the field elements with fixed-length vectors of elements in the
prime field.

F ∼= Zk
p = Zp × Zp × . . .× Zp

Addition on these vectors (the addition in F) comes down addition in Zp and
thus to modular arithmetic: vector addition is pointwise.
So addition is trivial in a sense. Alas, multiplication is a bit harder to explain.

At any rate, it follows from linear algebra that the cardinality of F must be pk

for some k.



Cyclic Multiplicative Group 38

Lemma
The multiplicative subgroup F× of any finite field F is cyclic.

To see this, recall that the order of a group element was defined as

ord(a) = min
(

e > 0 | ae = 1
)
.

For finite groups, e always exists.
A group ⟨G, ·, 1⟩ is cyclic if it has a generator: for some element a, we have
G = { ai | i ∈ Z }. In the finite case this means G = { ai | 0 ≤ i < α } where α
is the order of a.

Proposition (Lagrange)
For finite G and every element a ∈ G: the order of a divides the order of G.



Ugly Proof of lemma 39

Let m be the maximum order in F×, n the size of F×, so m ≤ n.
We need to show that m = n.

Case 1: Assume that every element of F× has order dividing m.

Then the polynomial zm − 1 ∈ F[z] has n roots in F: letting ℓ be the order of
some element a in F× and m = kℓ we have

zm − 1 = zkℓ − 1 = (zℓ(k−1) + zℓ(k−2) + . . . + zℓ + 1)(zℓ − 1)

and it follows that a is a root.

But then n ≤ m since a degree m polynomial can have at most m roots in a
field. Hence m = n.



Odious Second Case 40

Case 2: Otherwise.

Then we can pick a ∈ F× of order m and b ∈ F× of order ℓ not dividing m.
Then by basic arithmetic there is a prime q such that

m = qsm0 ℓ = qrℓ0 s < r

where q is coprime to ℓ0 and m0.
Set

a′ = aqs

b′ = bℓ0

Then a′ has order m0, and b′ has order qr.

But then a′b′ has order qrm0 > qsm0 = m, contradiction. 2



Who Cares? 41

Given the fact that F× is cyclic, there is an easy way to generate the field:
generate F× and then add 0.

Find a generator g of F×, and

compute all powers of g.

Of course, this assumes that we can get our hands on a generator g. Note that
multiplication is trivialized in the sense that gi ∗ gj = gi+j mod |F×|.

Hence it is most interesting to be able to rewrite the field elements as powers
of g. This is known as the discrete logarithm problem and quite difficult (and
therefore useful for cryptography).



Representation Woes 42

As far as a real implementation is concerned, we are a bit stuck at this point:
we can represent a finite field as a vector space which makes addition easy. Or
we can use powers of a generator to get easy multiplication:

addition F ∼= (Zp)k (a1, . . . , ak)

multiplication F× ∼= Zpk−1 gi

So either case comes down to plain modular arithmetic. Nice, but in typical
applications we need to be able to freely mix both operations. Alas, everything
breaks when we try to mix and match: who knows what

gi + gj or (a1, . . . , ak) ∗ (b1, . . . , bk)

should be.

This is analogous to the problem of representing both addition and
multiplication in arithmetic as rational relations.



Frivolous Picture 43

A little color: pictures of the addition and multiplication tables for F25.

One can see the prime subfield in the top left corner.
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Where Are We? 45

We know that every finite field carries two apparently separate structures:
additive and multiplicative.

addition F ∼= (Zp)k (a1, . . . , ak)

multiplication F× ∼= Zpk−1 gi

The problem is that we have absolutely no idea how to unify the two.



Back to the Roots 46

Time to get serious about building a finite field.

We would like to follow the construction of Q(
√

2) from above, adjoining a
root of x2 − 2 = 0 to the rationals. But this time, we won’t rely on intuition
and prior knowledge of the reals. For example, consider the polynomial

f = x2 + x + 1 ∈ F2[x]

We can easily check that f has no root over F2.

So how do we expand F2 to a field F where f has a root?



Obstructions 47

This time:

We do not know a convenient big field like R that we can use as a safe
sandbox, and

we have no intuitive idea what a root of f looks like.

So, we can’t just do

Q(
√

2) = { a + b
√

2 | a, b ∈ Q } ⊆ R

But: we can try to lift this construction to our new setting. To wit, we applied
the simplification rule

x2 ⇝ 2

to all polynomials over Q. This produces expressions a + bx, a, b ∈ Q, that turn
out to form a field (the “unknown” x works just like the root we are after).



Generalizing 48

We want x2 + x + 1 = 0, so we use the simplification rule

x2 ⇝ x + 1

and apply it to all polynomials in F2[x]. We are in characteristic 2, so plus is
minus.

With luck, we might wind up with a finite field that has a root for f .



Wordprocessing 49

Here is one of the occasions where it is useful to think of a polynomial as an
expression, a term in some formal language.

On that view, we can apply the rewrite rule x2 ⇝ x + 1 to try to simplify the
expression. More precisely, we use this rule plus all the standard simplifications
we can apply to our terms (associativity, commutativity, cancellation, . . . ).

For those concerned about the StringWorld approach to life, not to worry, we
will unearth the actual algebraic meaning behind this rewrite process in a
moment.



The Rewrite Rule 50

So what happens to an arbitrary polynomial p(x) ∈ F2[x] if we apply this rule
systematically? Essentially, we can smash all the higher powers of x. Here is an
example.

x6 + x3 + x + 1⇝ (x + 1)3 + x(x + 1) + x + 1
⇝ (x3 + x2 + x + 1) + (x2 + x) + x + 1
⇝ x(x + 1) + (x + 1) + 1
⇝ x + 1

Proposition
xk reduces to 1, x, x + 1, depending on k mod 3.

So x6 + x3 + x + 1⇝ 1 + 1 + x + 1 = x + 1.



Warning 51

The simplification process is highly nondeterministic, there are many choices
along the way.

This might cause a huge headache: if we apply the rules in one particular way,
we get a different result from when we apply the rules in another way.

One really needs to make sure the process is confluent: application order does
not matter, the final result is always the same. More later.



Simplification, Algorithmically 52

In general, if we start with a polynomial f ∈ F[x] of degree d, we get a
simplification rule

xk ⇝ ak−1xk−1 + ak−2xk−2 + . . . + a1x + a0

But then we can reduce all polynomials down to polynomials of degree at most
d− 1. If the coefficient field has size q, the collection of polynomials of degree
less than d, F<d[x], has size qd.

In particular if F = Zp for some prime p we get pd reduced polynomials.



And Operations? 53

We want to use F<d[x] as the carrier set for our extension field F ⊆ K. What
are the operations?

Addition is simply addition of polynomials in F[x].

Multiplication is multiplication of polynomials in F[x] followed by a re-
duction: we have to apply the simplification rule until we get back to a
polynomial of degree less than d.



Quotients 54

We have an algorithm, but we need to work out the algebraic meaning of all of
this.

Our simplification process induces an equivalence relation on F[x]: two
polynomials are equivalent if they reduce to the same polynomial in F<d[x].

In fact, we get a congruence ≈: our simplification is compatible with the field
operations.

So we can form a quotient ring, which turns out to be exactly the field we are
looking for:

K = F[x]/ ≈



Ideals 55

Definition
Let R be a commutative ring. An ideal I ⊆ R is a subset that is closed under
addition and under multiplication by arbitrary ring elements: a ∈ I, b ∈ R
implies ab ∈ I.

So an ideal is much more constrained than a subring: it has to be closed by
multiplication from the outside. Ideals are hugely important since they produce
congruences and thus allow us to form a quotient structure:

a = b (mod I) iff a− b ∈ I.

As a consequence, arithmetic in this quotient structure is well-behaved: E.g.

a = a′, b = b′ (mod I) ⇒ a + b = a′ + b′, a b = a′b′ (mod I)



Modular Arithmetic for Polynomials 56

Suppose F is a field and consider an irreducible polynomial f(x) and the
principal ideal

(
f(x)

)
= f(x)F[x] that it generates.

We identify two polynomials when their difference is divisible by f :

h(x) = g(x) (mod f(x)) ⇐⇒ f(x) | h(x)− g(x)

Let d be the degree of f . Then any polynomial h is equivalent to a polynomial
g of degree less than d: write h(x) = q(x)f(x) + g(x) by polynomial division.



Generating Ideals 57

What is the smallest ideal containing elements a1, . . . , ak ∈ R?

All we need is linear combinations: the ideal generated by a1, . . . , ak is

(a1, . . . , ak) = { r1a1 + . . . + rkak | ri ∈ R }

In particular for k = 1 we have

(a) = { ra | x ∈ R }

This is the principal ideal generated by a.

The ideals {0} and R are called trivial, all others are proper.

Note that a field is a commutative ring that has no proper ideals.



Principal Ideal Domains 58

Definition
A principal ideal domain (PID) is an integral domain, all of whose ideals are
principal.

Important examples of PIDs are

the integers Z (think GCD)

the Gaussian integers Z[i]

a polynomial ring F[x] where F is a field

Counterexamples: Z[x] and F[x, y] both fail to be PIDs.



Minimal Polynomials 59

Suppose we have an extension F ⊆ K with α ∈ K algebraic over F. Let

I = { f ∈ F[x] | f(α) = 0 }

Then I is an ideal and we must have I = (g).
The polynomial g has minimal degree among all the annihilators of α, and we
may safely assume that g is monic.

Definition
This polynomial g is the minimal polynomial of α over F.



Digression: Proper Substructures 60

In algebra it is important to come up with the right notion of substructure: just
picking a subset that is closed under the algebraic operations is often not very
interesting.

For groups, normal subgroups are arguably more important than plain
subgroups.

For rings, ideals are arguably more important than subrings.

But for vector spaces, sub-vector-spaces are just the right notion.



Irreducible Polynomials 61

Ideals provide the right type of equivalence relation for the construction of a
finite field from a polynomial ring. Alas, the ideals cannot be chosen arbitrarily,
we need to start from special polynomials, in analogy to the modulus being
prime in the integer case.

Definition
A polynomial is irreducible if it is not the product of polynomials of smaller
degree.

Irreducibility is necessary when we try to construct a field F[x]/(f): otherwise
we do not even get an integral domain.
For suppose f(x) = f1(x)f2(x) where both f1 and f2 have degree at least 1.
Then 1 ≤ deg(fi) < deg(f), so neither f1 or f2 can be simplified in F[x]/(f).
In particular both elements in F[x]/(f) are non-zero, but their product is zero.
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Fix some prime p.

Question:
How many irreducible polynomials of degree m are there in Fp[x]?

Let’s write Ip
m for this number, so trivially Ip

m ≤ pm.

Lemma (Gauss)

Ip
m = 1

m

∑
d|m

µ(m/d) pd
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Recall the Möbius function µ:

µ(n) =

{ +1 if n square-free, even number of prime factors
−1 if n square-free, odd number of prime factors
0 otherwise.

One can show that

(pm − 2pm/2)/m ≤ Ip
m ≤ pm/m

E.g., I2
50 = 22517997465744, about 2 percent.

Here are some numerical values for characteristic 2.

1−5 2 1 2 3 6
6−10 9 18 30 56 99
11−15 186 335 630 1161 2182
16−20 4080 7710 14532 27594 52377
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x, 1 + x

1 + x + x2

1 + x2 + x3, 1 + x + x3

1 + x3 + x4, 1 + x + x4, 1 + x + x2 + x3 + x4

1 + x3 + x5, 1 + x2 + x5, 1 + x2 + x3 + x4 + x5, 1 + x + x3 + x4 + x5

1 + x + x2 + x4 + x5, 1 + x + x2 + x3 + x5

All irreducibles in F2[x] up to degree 5.
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Lemma

xpk

− x =
∏(

f | f monic, irreducible, deg(f) | k
)

There is a fairly good test for irreducibility that assumes we have access to the
prime factors of m (a reasonable assumption).

Theorem (Rabin)
Suppose f ∈ Fp[x] is a monic polynomial of degree m. Then f is irreducible iff
f divides xpd

− x but f and xpd/q

− x are coprime for all prime divisors q of m.
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Over F2, the polynomial
f(x) = x3 + x + 1

is irreducible. Let I =
(
f(x)

)
be the ideal generated by f .

The first few powers of x modulo I are:

1, x, x2, x + 1, x2 + x, x2 + x + 1, x2 + 1

These are actually all polynomials of degree less-than 3, except 0.

So F<3[x] forms an integral domain, and hence a field, if multiplication is
understood modulo I.

OK, but where is the root of f?
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We write α for (the equivalence class of) x for emphasis, α = x mod f(x).

Then α ∈ K is a root of f in the extension field K.

Why? We have by brute force

f(α) = x3 + x + 1 = 0 (mod I)

Yes, this is a bit lame. One would have hoped for some kind of fireworks, some
clever way of writing down the root in terms of some fancy polynomial.

But, it’s really no different from the
√

2 example, just less familiar.
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Again, algebraically, it is best to think of the extension field F2 ⊆ K as a
quotient structure, as the polynomials modulo f :

K = F2[x]/
(
f(x)

)

With a view towards algorithms, we can make things more combinatorial by
keeping track of coefficient vectors, in this case

c2x2 + c1x + c0 ⇝ (c2, c1, c0)

where ci ∈ F2 is just a single bit.
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In this setting the additive structure is trivial: it’s just componentwise addition
of these triples mod 2.

(c2, c1, c0) + (c′
2, c′

1, c′
0) = (c2 + c′

2, c1 + c′
1, c0 + c′

0)

As observed before, the additive group of these fields is just a Boolean group.
Note that this operation is trivial to implement (xor on bit-vectors, can even be
done in 32 or 64 bit blocks).

For other characteristics, though, we have to use modular numbers.
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How about multiplication? Since multiplication increases the degree, we can’t
just multiply out, but we have to simplify using our rule x3 → x + 1 afterwards.
The product

(c2, c1, c0) · (c′
2, c′

1, c′
0) = (d2, d1, d0)

is given by the coefficient triple

d2 = c2 c′
0 + c1 c′

1 + c0 c′
2 + c2 c′

2

d1 = c1 c′
0 + c0 c′

1 + c2 c′
1 + c1 c′

2 + c2 c′
2

d0 = c0 c′
0 + c2 c′

1 + c1 c′
2

This is a bit messy, and it gets more messy when we deal with larger degree
polynomials. Still, we could hard-wire a circuit.
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Recall that α is the equivalence class of x. We have already checked that α is
the generator of F×. Here are the corresponding vector representations.

α0 = 1 = (0, 0, 1)
α1 = α = (0, 1, 0)
α2 = α2 = (1, 0, 0)
α3 = α + 1 = (0, 1, 1)
α4 = α2 + α = (1, 1, 0)
α5 = α2 + α + 1 = (1, 1, 1)
α6 = α2 + 1 = (1, 0, 1)
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Careful, though, it is in general not the case that α generates the whole
multiplicative group.

For this to work, we need to choose particular irreducible polynomials in our
construction, so-called primitive polynomials.

For example, there are 9 monic irreducibles of degree 6 in F2[x]:

1+x5 +x6, 1+x3 +x6, 1+x2 +x4 +x5 +x6, 1+x2 +x3 +x5 +x6, 1+x+x6,

1+x+x4+x5+x6, 1+x+x3+x4+x6, 1+x+x2+x5+x6, 1+x+x2+x4+x6

But 3 of them fail to be primitive:

1 + x3 + x6, 1 + x + x2 + x4 + x6, 1 + x2 + x4 + x5 + x6
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We really obtain a field this way, not just some ring.

h h−1

1 1 1
2 α 1 + α2

3 α2 1 + α + α2

4 1 + α α + α2

5 1 + α2 α
6 α + α2 1 + α
7 1 + α + α2 α2

This table duly defines an involution: (h−1)−1 = h.
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