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Interpolation 2

A standard problem:

Interpolation:
Given data points (a0, b0), . . . , (an, bn), ai < ai+1, find a
degree n polynomial p such that p(ai) = bi.

There are two classical ways of doing this:

Lagrange interpolation
Newton interpolation



Lagrange 3

Lagrange’s method uses a linear combination of special polynomials of
degree n, so-called Lagrange interpolants:

Ln
i (x) =

∏
j ̸=i

x − aj

ai − aj

Proposition
Ln

i (ai) = 1 and Ln
i (aj) = 0 for i ̸= j.

Hence we can choose
p(x) =

∑
i≤n

biL
n
i (x)

By construction, p has degree bound n.



Lagrange Interpolants 4



Example: Primes 5

Suppose we want f(i) = the ith prime for i = 0, . . . , 5 . The Lagrange
interpolation looks like

f(x) = 2L6
0 + 3L6

1 + 5L6
2 + 7L6

3 + 11L6
4 + 13L6

5

= 2 − 143x

60 + 49x2

8 − 85x3

24 + 7x4

8 − 3x5

40
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Newton 6

Lagrange interpolants all have degree n, the same as the target
polynomial. By contrast, Newton interpolants have increasing degrees:

Nk(x) =
∏
i<k

x − ai

with the understanding that N0(x) = 1.

Thus Nk has degree k and we have Nk(ai) = 0 for i < k. Hence we can
write the interpolation polynomial in the form

p(x) =
∏
i≤n

ciNi(x)

So the problem is to find the coefficients ci efficiently.



Differences 7

To this end we define divided differences ν(i, j) for 0 ≤ i ≤ j ≤ n as
follows:

ν(i, i) = bi

ν(i, j) = ν(i+1, j) − ν(i, j−1)
aj − ai

In practice, this is done by dynamic programming in quadratic time.

We get the interpolation polynomial

p(x) =
∑

ν(0, i) Ni(x)



Symbolic Coefficients 8
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−a0+a3

+
−

− −b1+b2
−a1+a2

+ −b2+b3
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The first few Newton coefficients ν(0, k).



To Falling 9

Difference computations become particularly simple when the support
points ai are equidistant, say, ai+1 = ai + h.

Even better is ai = i, i = 0, . . . , n , then

Nk(x) =
∏
i<k

x − i = xk

In this special case, Newton interpolants turn directly into falling
factorials.



Primes, Again 10

For the prime example, the Newton coefficients are

2 1 1
2

−1
6

1
8

−3
40

Producing the unexpanded polynomial

2 + x + 1
2(x − 1)x − 1

6(x − 2)(x − 1)x+
1
8(x − 3)(x − 2)(x − 1)x − 3

40(x − 4)(x − 3)(x − 2)(x − 1)x
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Polynomials in the RealWorldTM 12

Our definition of a polynomial in terms of coproducts is very elegant and
it brings out the algebraic properties of polynomials very clearly. It even
suggests an implementation in terms of (higher-dimensional) coefficient
lists.

Unfortunately, it coexists somewhat uneasily with computation. The
problem is that an expression like

(x + y)5 − 1

morally ought to be a polynomial as well: We can expand out the
expression to obtain an explicit polynomial in the strict sense.

In other words, we would like to extend our definition to capture
additional types of expressions that can be expanded to yield actual
polynomials.



Implicit Polynomials 13

To this end we need to define a class of terms that can be converted to
polynomials by straightforward algebraic manipulations.

Since polynomials are nicely closed under addtion, it suffices to handle
multiplication. Any expression

P1 · P2 · P3 · . . . · Pk−1 · Pk

where all the Pi are polynomials should be considered to be an implicit
polynomial.

This convention also covers exponential terms (with exponents in N) as
in the example from the last slide.



Old Hat 14

We have used this implicit representation in several places already,
without any protest from the audience.

The expressions c(x − a1)(x − a2) . . . (x − an) encountered in the
root decomposition.

The description of the determinant of a Vandermonde matrix∏
i<j(xj − xi).

Using interpolation and evaluation to retrieve the secret in Shamir’s
method.



Expansion 15

Obviously we can recover the explicit polynomial (i.e. the coefficient list)
from these implicit representations. E.g., the implicit polynomial

p = (x1 − x2) (x3 − x4) (x5 − x6)

expands to

x1 x3 x5 − x2 x3 x5 − x1 x4 x5 + x2 x4 x5 − x1 x3 x6 + x2 x3 x6 + x1 x4 x6 − x2 x4 x6

in coefficient list form.

It is a healthy exercise to formalize this method, but the basic idea is
perfectly natural:

Use distributivity to flatten out the products.
Then use cancellation to remove monomials with coefficient 0 and
collect terms as usual.



The Problem 16

Expansion is straightforward in principle, but there is an efficiency
problem:
It may take exponential time to perform the necessary operations.

Careful, though: Just because the obvious method takes exponential time
does not necessarily mean there is a computational hardness issue—even
though it is far from clear how one could speed things up.

As we will see, there is a close connection between 3-colorability, a
well-known NP-hard problem, and expanding polynomials.



Colorability 17

Recall that an undirected graph G = ⟨V, E⟩ is k-colorable iff one can
assign k colors to the vertices so that no edge is monochromatic.

2-Colorability is special: it means the same as being bipartite and can be
checked in polynomial time.

Theorem
It is NP-complete to test if a graph is 3-colorable.

So k = 3 is a threshold, things are already as bad as they could be.



Complex Colors 18

A k-coloring is typically expressed as a map

γ : V −→ [k]

Of course, we could also use red, green, blue and so on.

In our case, a good choice of colors is a subset C ⊆ C, |C| = k.

γ : V −→ C ⊆ C

In particular let ω be a kth root of unity, say, ω = e2iπ/k.
We will use colors Ωk = {1, ω, ω2, . . . , ωk−1}.



Graph Polynomials 19

For simplicity assume V = [n]. Define the graph polynomial
PG ∈ Z[x1, x2, . . . , xn] by

PG(x) =
∏

ij∈E

xi − xj

We assume i < j in the product.

Clearly, PG does not vanish since our graph has no loops.

There is a simple connection to colorability: if G is not k-colorable and
S ⊆ C has cardinality k, then PG vanishes on S:

∀ a ∈ Sn
(
PG(x) = 0

)



Smashing Exponents 20

We will use the smash operator Rk:

xe1
1 xe2

2 . . . xen
n ⇝ xe1 mod k

1 xe2 mod k
2 . . . xen mod k

n

After smashing, each variable has degree at most k − 1.

Smashing all monomials will typically result in cancellations.

Also, in general, evaluating p(a) produces different results from
evaluating Rk(p)(a).



Colorability Polynomial 21

The next step is to associate PG(x) with a colorability polynomial QG,k

that encodes the k-colorability of graph G more directly.

To this end, multiply out the graph polynomial to get a sum of 2m,
m = |E|, monomials of the form

± z1z2 . . . zm zi ∈ {x1, . . . , xn}

Collect the variables to get the standard form

± xe1
1 xe2

2 . . . xen
n 0 ≤ ei ≤ deg(i)

Then smash the polynomial via Rk.

The result is the colorability polynomial QG,k(x) ∈ Z[x].
In fact, we have just computed the coefficient list of QG,k.



Example: Petersen Graph 22

A famous and surprisingly useful small graph: Petersen graph.

https://en.wikipedia.org/wiki/Generalized_Petersen_graph


A 3-Coloring 23

Clearly, the graph is not 2-colorable.



Petersen Graph Polynomial 24

The graph polynomial here has 15 terms:

(x1−x3)(x1−x4)(x2−x4)(x2−x5)(x3−x5)(x1−x6)(x2−x7)(x6−x7)
(x3 − x8)(x7 − x8)(x4 − x9)(x8 − x9)(x5 − x10)(x6 − x10)(x9 − x10)

Not bad at all. Alas, the expanded polynomial with cancellation has
18,800 terms and it would take some 400 slides to display:

x3
1x3

2x2
3x4x5x2

6x7x8x9 −x2
1x3

2x3
3x4x5x2

6x7x8x9 −x3
1x2

2x2
3x2

4x5x2
6x7x8x9−

x2
1x3

2x2
3x2

4x5x2
6x7x8x9 + . . . ⟨18792⟩ . . . + x1x3x4x2

5x6x2
7x2

8x2
9x3

10+
x2x3x4x2

5x6x2
7x2

8x2
9x3

10 + x1x2
4x2

5x6x2
7x2

8x2
9x3

10 − x3x2
4x2

5x6x2
7x2

8x2
9x3

10
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After smashing with R2, all terms cancel out and QG,2 vanishes.

But R3 produces a polynomial with 12,940 terms. Here is a small
sample, somewhere in the middle:

. . . − 4x2
1x2x3x4x2

7x8x10 − 2x1x2
2x3x4x2

7x8x10 + x2
1x2

3x4x2
7x8x10+

3x1x2x2
3x4x2

7x8x10 + x2
2x2

3x4x2
7x8x10 − x2

1x2x2
4x2

7x8x10+
2x2

1x3x2
4x2

7x8x10 + 3x1x2x3x2
4x2

7x8x10 − 2x1x2
3x2

4x2
7x8x10 + . . .

QG,3 emphatically does not vanish.



The Theorem 26

Theorem (Alon, Tarsi 1992)
The graph G is k-colorable iff its colorability polynomial QG,k does not
vanish.

One direction is easy: If the graph is k-colorable, then for some coloring
γ : [n] → Ωk we have PG(γ) ̸= 0. But then QG,k = RkPG cannot
vanish since ωe = ωe mod k.

The opposite direction is hard.
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