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Polynomials, Informally 2

Intuition says that a (univariate) polynomial is an expression of the form

p(x) = x3 − 2x2 + 3x − 1

There is an unknown or variable x and we

form powers xi of the variable (monomials),
multiply them by an element in some ground ring (coefficients),
add several such terms.

In the example, the ground ring is presumably Z.

We can add and multiply polynomials, but division in general does not
work (at least not without a remainder).



Coefficient Representation 3

Clearly, we can represent a polynomial by a list of its coefficients:

a = (a0, a1, . . . , ad)

represents

p(x) = a0 + a1x + a2x2 + . . . + adxd

Typically we want ad ̸= 0, so d is the degree of p.

Note that this representation has no unknown, a minor cause for concern.



Polynomials, “Defined” 4

A typical “definition,” found in may textbooks.

Definition
Let R be a commutative, unital ring. A univariate polynomial (over R) is
an expression of the form

adxd + ad−1xd−1 + . . . + a2x2 + a1x + a0

where the coefficients ai are in R and x is the unknown or variable. If
ad ̸= 0, d is the degree of the polynomial. The terms xi are monomials†.

This suggests that a polynomial is a R-linear combination of monomials.
Suggests, but it does not say that.

†The whole terms aix
i is also called a monomial.



Implicit vs Explicit 5

As stated, the last definition is next to useless, certainly

(x − 1)10

“is” also a polynomial.

We can fix the problem by admitting all algebraic expressions that can be
turned into a polynomial by expansion, and perhaps some simplifications.

That’s OK, but from a computational perspective, there is a major issue:
expanding out an implicit polynomial like the one above is not polynomial
time.



Examples 6

The product
∏

i≤5(x − ai) expands to

x5−x4a1−x4a2+x3a1a2−x4a3+x3a1a3+x3a2a3−x2a1a2a3−x4a4+x3a1a4+
x3a2a4 − x2a1a2a4 + x3a3a4 − x2a1a3a4 − x2a2a3a4 + xa1a2a3a4−

x4a5 + x3a1a5 + x3a2a5 − x2a1a2a5 + x3a3a5 − x2a1a3a5 − x2a2a3a5+
xa1a2a3a5 + x3a4a5 − x2a1a4a5 − x2a2a4a5 + xa1a2a4a5 − x2a3a4a5+

xa1a3a4a5 + xa2a3a4a5 − a1a2a3a4a5

In fact, expansion is connected to computational hardness, see below.



Evaluation 7

Suppose we have a univariate polynomial p(x) over ring R.
We can replace the unknown x by elements in R and evaluate to obtain
another element in the ring: For example,

p(x) = x3 − 2x2 + 3x − 1

produces

p(2) = 23 − 2 · 22 + 3 · 2 − 1 = 5.

Hence we can associate the polynomial p with a polynomial function

p̂ : R → R, a 7→ p(a)

This may seem like splitting hairs, but sometimes it is important to keep
the two notions apart.



Come on . . . 8

The polynomial and the associated polynomial function really are two
different objects. Consider the ground ring Z2. The polynomial

p(x) = x + x2

has the associated function

p̂(a) = 0

for all a ∈ Z2.
In fact, any polynomial p(x) =

∑
i∈I xi produces the identically 0 map as

long as I ⊆ N+ has even cardinality.

Exercise
Describe all polynomial functions over ground rings Zm.
Start with m prime, then see what changes when m is composite.



Horner’s Rule 9

Assume we have a polynomial in coefficient form a = (a0, a1, . . . , ad) we
can easily evaluate at any point b ∈ R:

f(b) = ((. . . (ad b + ad−1) b + ad−2) b + . . .) b + a0

Actually, this is a perfect example of a polynomial represented in implicit
form. This turns out to be very helpful for numerical evaluation.

Proposition
A polynomial of degree d can be evaluated in d ring multiplications and d
ring additions.



Interpolation 10

One of the uses of polynomials is to fit data. Say we want f(ai) = bi for
i = 0, . . . , n where ai < ai+1. Define the Lagrange interpolant

Ln
i (x) =

∏
j ̸=i

x − aj

ai − aj

a polynomial of degree n that has a single root at ai.

Proposition
Ln

i (ai) = 1 and Ln
i (aj) = 0 for i ̸= j.

Hence we can choose
f(x) =

∑
i<n

biL
n
i (x)

Note that f has degree bound n.



Lagrange Functions 11



Example: Primes 12

Suppose we want f(i) = the ith prime for i = 0, . . . , 5 . The Lagrange
interpolation looks like

f(x) = 2L6
0 + 3L6

1 + 5L6
2 + 7L6

3 + 11L6
4 + 13L6

5

= 1
120(240 − 286 x + 735 x2 − 425 x3 + 105 x4 − 9 x5)
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Application: Secret Sharing 13

Suppose you have a “secret” a, a natural number, that you want to
distribute over n people in such a way that no proper subgroup of the n
persons can access the secret but the whole group can.
More generally may want to distribute the secret so that k out of n
persons can access it, but not any subgroup of size k − 1.

Here is a simple idea for the n = k problem:
We may safely assume that a is a m-bit number. Generate n − 1 m-bit
numbers ai and give number ai to person i, i = 1, . . . , n − 1 . Person n
receives

an = a ⊕ a1 ⊕ a2 ⊕ . . . ⊕ an−1

where ⊕ is bit-wise xor.
Clearly all n secret sharers can compute a, but if one is missing they are
stuck with a random number.



Using Polynomials 14

A more flexible approach is built on the following idea. Construct a
polynomial f that has a as its lowest coefficient, so f(0) = a. All other
coefficients are chosen at random.
The secret sharers are given not the coefficients of f but pieces of the
point-value description of f , which are obtained by repeated evaluation.
If all n agree, they can use their information to reconstruct the coefficient
representation of f by interpolation.
Once f is reconstructed a can be found be a simple evaluation.
But for any proper subset f will be underdetermined, and a cannot be
recovered.

It is not hard to generalize this method to k < n.



Shamir’s Method 15

More precisely, pick a prime p > a, n. We will use the ground ring Zp.
Generate random numbers 0 < ai < p for i = 1, . . . , n − 1 .
Define the polynomial

f(x) = a + a1x + . . . + an−1xn−1

f is completely determined by the n point-value pairs (i, bi),
i = 1, . . . , n .
By interpolation we can retrieve f from the point-value pairs, hence we
can determine a = a0.

An important point is that n − 1 persons can obtain no information
about the zero coefficient; every coefficient is equally likely.



1 Polynomials

2 Polynomials: Definition

3 Polynomials: Applications

4 Roots



Defining Polynomials 17

The informal “definition” of a polynomial looks something like this.

A polynomial is an expression of the form

adxd + ad−1xd−1 + . . . + a1x + a0

No problem, right?

x is the mysterious “unknown,” the xi are monomials, the ai are
coefficients (from some ring), the aix

i are terms and d is the degree
(assuming an ̸= 0).



Ancient Wisdom 18

If you come across an alleged definition of the kind

A foobag is an expression of the form blah-blah-blah.

run for the hills.

Most of the time, all you get is one example of the expressions in
question, often containing at least one ellipsis.

There is no explanation of the underlying language, no explanation of
what exactly an expression is, certainly no formal grammar that defines
everything.



StringWorldTM Rant 19

Here is the “definition” of a real number from an otherwise great
introductory analysis text.

Alas, there is nothing formal about this alleged definition. According to
the author, a real number literally is an expression, an infinite string in
this case. On that understanding, the real number π is just the string

+3.141592653589793238462643383279502884197 . . .

where we have omitted a few digits at the end to save paper.



Rant, Continued 20

Sorry, this is just malpractice. The reals are not a bunch of “expressions”
like the ones in the definition. No way, never, ever.

The only justification for this line of attack is that the author does not
want to get involved with a real definition, based on Cauchy sequences or
Dedekind cuts. That’s fine, the text is about analysis after all, but it
should be clearly stated, with links to an actual definition.

And, for crying out loud, don’t call it “formal,” it’s anything but.



Rant, Amended 21

Just to be clear, intuition is the power that drives everything. And, the
StringWorldTM approach can be helpful to get one’s intuition going. In
fact, it is often the right place to start. To paraphrase Knuth:

Premature formalization is the root of all evil.

But, but, but . . .

One absolutely, totally cannot stop there. Wishy-washy land is where
algorithms go to die–to compute, we need to build data types, and those
need to refer to an actual definition, not just some vague appeal to
intuition and analogy.



Coproducts 22

We start with a definition that tries to home in on the critical algebraic
properties of a polynomial.

Let R be a commutative ring with 1 throughout.

Definition
Given a ring R, the N-coproduct of R is defined by∐

N
R = { (an) ∈ RN | only finitely many an ̸= 0 }

An element of the coproduct is a sequence (ai)i≥0 of elements of R,
where an = 0 for all n ≥ m, for some threshold m.

So, in a way, we are still dealing with finite sequences.



Fudging it 23

Since almost all the terms an are 0, it makes sense to write

a0 + a1x + . . . + adxd

instead of (a0, a1, . . . , ad, 0, 0, 0, . . .).

In fact, one often insists that ad is the last non-zero element in the
sequence (or d = 0 if they all are 0).

Note that the “unknown” x is nothing but syntactic sugar, all we really
have is a sequence with finite support. We might as well use X, y, z,
fred, whatever.



Operations on Coproducts 24

Again, there is no “unknown” in the definition of the coproduct. That
makes it easier to give clean definitions of the algebraic structure.
Addition is easy:

(an) + (bn) = (an + bn)

The sum (an) + (bn) is again an element of the coproduct and it is not
too hard to check that this operation is associative and commutative.

But multiplication is somewhat more complicated (Cauchy product):

(an) · (bn) =
( ∑

i+j=n

ai · bj

)

Proposition
The product (an) · (bn) is an element of the coproduct.



More Arithmetic 25

Write 0 and 1 for the sequences (0, 0, 0, . . .) and (1, 0, 0, . . .).
We have a + 0 = a so that 〈∐

R; +, 0
〉

is a commutative monoid and even a group.

Likewise 1 · a = a · 1 = a and〈∐
R; ·, 1

〉
is also a commutative monoid (assuming that R is commutative).



The Unknown 26

Here is a much more interesting element: let

x = (0, 1, 0, 0, 0, . . .)

Then x2 = (0, 0, 1, 0, 0, . . .), x3 = (0, 0, 0, 1, 0, . . .) and so forth.

This justifies the all the syntactic sugar in the notation

a0 + a1x + . . . + adxd

instead of the actual coproduct element

(a0, a1, . . . , ad, 0, 0, . . .)

We have quietly used the fact that we can embed all of R in the
coproduct:

a 7→ (a, 0, 0, . . .)

Moreover, this map is trivially a ring monomorphism.



The Polynomial Ring 27

Lemma
⟨
∐

R; +, ·, 0, 1⟩ is a ring. This ring is commutative whenever R is.

This is unsurprising, but note that a proof requires a bit of work: we have
to verify e.g. that multiplication as defined above really is associative.
We ignore the details.

Definition
The ring ⟨

∐
R; +, ·, 0, 1⟩ is the polynomial ring with coefficients in R

and is usually written R[x].

In calculus one studies R[x].
For our purposes, Q[x], Z[x], Zm[x] or F[x] where F is a finite field will
be more important.



More Abstraction 28

The last definition may seem fairly abstract, but one can push even
further ahead.
Note that N was not just used to define the coproduct (a sequence is a
map N → R) but that addition on N was used in the definition of
multiplication:

(ai) · (bi) = (
∑

r+s=i

ar · bs)

What we are really using here is not just any old countable set but the
monoid

⟨N, +, 0⟩

The fact that the equation r + s = i has only finitely many solutions in
this monoid was crucial.

So? Everybody knows kindergarten arithmetic. Why make a fuss about
it?



Generalization 29

Suppose we have a commutative monoid

⟨M ; +, 0⟩

where equations x + y = m have only finitely many solutions.

Then we can define a ring R[M ] on the carrier set∐
M

R = { a : M → R | only finitely many non-zeros }

in the exact same way as before.

We need at least one example for M (other then N) that makes this
construction interesting. It is probably good to stay close to N. Z won’t
work since it violates the finiteness conditions.
How about M = N × N?



Arithmetic in R[M ] 30

Let p, q ∈
∐

M R. For any k ∈ M we have

(p + q)(k) = p(k) + q(k)

(p · q)(k) =
∑

i+j=k

p(i)q(j)

For a generator r of M we get a “variable”

xr(k) =
{

1 if r = k
0 otherwise.

OK, but we need at least one example for M (other then N) that makes
this construction interesting. It is probably good to stay close to N. Z
won’t work since it violates the finiteness conditions.



Bivariate Polynomials 31

Instead of sequences we now have a grid of coefficients (a
two-dimensional array instead of a one-dimensional one).

a00 a01 a02 . . . a0j . . .
a10 a11 a12 . . . a1j . . .
a20 a21 a22 . . . a2j . . .

...
. . .

ai0 ai1 ai2 . . . aij . . .
...



Addition in R[N × N] is essentially the same as before (since it does not
depend on the algebraic structure of M , just the carrier set).

But multiplication becomes more interesting.



Multiplication 32

Let x =
( 0 0 0 ...

1 0 0 ...
0 0 0 ...
...

...
...

. . .

)
and y =

( 0 1 0 ...
0 0 0 ...
0 0 0 ...
...

...
...

. . .

)
.

Then for R = Z7 the products (x + y)5 and (1 + x)5(2 + y)5 look like
this (all other entries are 0).



A Finite Monoid 33

Another benefit of the monoid approach: We could also use M = Zm to
build a polynomial ring.

Here there is one generator 1 ∈ Zm and the corresponding variable is

x(k) =
{

1 if k = 1
0 otherwise.

One can check that

xe(k) = 1 ⇐⇒ k = e mod m

so that xm = x0: the powers wrap around.

We can get the same effect by factoring the ring R[x] by the ideal
(xm − 1).



Multivariate Polynomials 34

One can easily show that any element in R[N × N] has the form

a =
∑

i,j≥0
ai,jxiyj

where only finitely many coefficients are non-zero and addition and
multiplication work as one would expect. So we really have a rock-solid
definition of bivariate polynomials. And, of course, using the monoid

M = ⟨Nn; +, 0⟩

we can get multivariate polynomials in general.

Definition
The ring of polynomials over R in n variables is defined by

R[x1, . . . , xn] = R[Nn]



Normal Form 35

There is a natural way to write down a multivariate polynomial analogous
to the univariate and bivariate case. A monomial is a term of the form

xe = xe1
1 xe2

2 . . . xen
n .

where e = (e1, . . . , en) ∈ Nn. Then any multivariate polynomial can be
written as a sum of monomials, multiplied by the appropriate coefficients.

p(x) =
∑

ae xe

And, arithmetic works as expected.
Note that the sum is naturally ordered (use the natural lex order on the
exponents).

Note: Some authors consider the coefficient to be part of the monomial.



Multvariate Degrees 36

Definition
The degree of a monomial xe is

∑
ei. The degree of a polynomial is the

largest degree of any of its monomials. If the polynomial is zero its
degree is −∞.

Lemma
Let R be an integral domain and p, q ∈ R[x]. Then
deg(pq) = deg(p) + deg(q).

Note that if R be an integral domain then by the lemma R[x] is again an
integral domain.

The lemma fails without the integral domain assumption: Let R = Z4
and consider p(x) = q(x) = 2x.



Hold It 37

Why not simply define, say, bivariate polynomials by saying they are
expressions like

p(x, y) = x2y2 + 3x − y + 1

Or, if you want more precision, since the operation R 7→ R[x] works for
any ring R, we can simply repeat it to get multivariate polynomials:

R[x1, . . . , xn] = R[x1, . . . , xn−1][xn]

All true, but these “definitions” obscure a lot of things.

What is R[x][x], what R[x, x]?
What is the difference between R[x], R[X] and R[y]?
What is the difference between R[x, y], R[y, x]?
What is the role of evaluation?



Clarity 38

One might argue that R[x][x] and R[x, x] simply make no sense.

R[x] and R[y] are isomorphic, so in a sense they are the same.

For a human being (a mathematician) these difficulties are usually
irrelevant: one can determine from context what is meant, or even
correct the author if need be.

But if one wants to implement polynomial algebra things are more
problematic. For example, if evaluation is done by rewrite rules, the name
of the variable does play a huge role. Here R[x] and R[y] can behave
very differently.



One Ring To Bind Them All 39

We can get around these question by sidestepping the “a polynomial is
an expression . . . ” model, and focusing on the abstract meaning of a
polynomial ring in multiple variables.

To wit, we can implement R[Nn], and we need to do this just once: to
connect this to the usual variables approach, one has to implement
R[Nn] only once, and keep a list of variable names such as x1, . . . , xn,
X1, . . . , Xn, z1, . . . , zn and so on.

Again, this is just syntactic sugar.



Evaluation 40

We have avoided one important topic so far: What is evaluation?

The answer is clear in the term model: Replace the variables by concrete
ring elements and then evaluate the corresponding ground term.

It is tempting to ask whether one can express this idea within our purely
algebraic framework, without mentioning terms and substitutions.

An elegant way to do this is to think of evaluation as a ring
homomorphism:

eval : R[x] −→ (R → R)
p 7−→ λr.p(r)

Fine and good, but the critical point is that once we fix the value of the
unknown(s), everything else is determined, too.



Uniqueness 41

More precisely, suppose f : R → S is some ring homomorphism.
Consider the set of all ring homomorphisms from R[x] to S that agree
with f on R:

H = { h : R[x] → S | h ↾ R = f }

Then the map

H → S h 7→ h(x)

is a bijection.



Universal Property 42

Another way of saying the same thing:

For any homomorphism f : R → S and any element a ∈ S there is
exactly one homomorphism h : R[x] → S such that

h ↾ R = f and
h(x) = a.

Exercise
Give a similar result for multivariate polynomials.

Exercise
Show that this property in fact characterizes polynomial rings.



Degrees 43

Definition
The degree of a monomial xe is

∑
ei. The degree of a polynomial is the

largest degree of any of its monomials. If the polynomial is zero its
degree is −∞.

Lemma
Let R be an integral domain and p, q ∈ R[x]. Then
deg(pq) = deg(p) + deg(q).

Note that if R be an integral domain then by the lemma R[x] is again an
integral domain.

The lemma fails without the integral domain assumption: Let R = Z4
and consider p(x) = q(x) = 2x.



Roots 44

Definition
A ring element a ∈ R is a root of p(x) ∈ R[x] if p(a) = 0.

In other words, a root is any solution of the equation p(x) = 0.

Finding roots of polynomial equations is often very difficult, in particular
when several variables are involved.
For univariate polynomials over the reals good numerical methods exist,
but over other rings things are problematic.
For example, computing square roots, i.e. solving x2 − a = 0, over Zm is
surprisingly difficult. Of course there is a brute-force algorithm, but think
of modulus m having thousands of digits.
And for Z[x1, x2, . . . , xn] it is even undecidable whether a root exists.



Polynomials and Division 45

Definition
Given two polynomials f and g, g divides f if for some polynomial q:
q · g = f .

For the integers, the most important algorithm associated with the
notion of divisibility is the Division Algorithm: we can compute quotient
q and remainder r such that a = qb + r, 0 ≤ r < b.
The situation for polynomials is very similar.

Theorem (Division Algorithm)
Assume that F is a field. Let f and g be two univariate polynomials over
F , g ̸= 0. Then there exist polynomials q and r such that

f = q · g + r where deg(r) < deg(g).

Moreover, q and r are uniquely determined.



Proof Sketch 46

For existence consider the set of possible remainders

S = { f − qg | q ∈ F [x] }.

If 0 ∈ S we are done, so suppose otherwise.
Trick: let r ∈ S be any element of minimal degree, say r = f − qg.
Write m = deg(r) and n = deg(g), so we need m < n.
Assume m ≥ n and define

r′ = r − am/bn xm−n g

where am and bn are the leading coefficients of r and g, respectively.
But then deg(r′) < deg(r) and r′ ∈ S, contradicting minimality.

Uniqueness is left as an exercise.



The Actual Algorithm 47

Though the theorem is often referred to as “Division Algorithm” it’s just
an existence and uniqueness result. However, with a little work one can
turn the proof into an algorithm.
Write lc(h) for the leading coefficient of a polynomial h. Suppose g is
monic, so that lc(g) = 1.
Here is an abstract version, to be called on f .

remainder( f, g ) {

r = f;
while( deg(r) >= deg(g) ) {

c = lc( r );
k = deg(r) - deg(g);
r = r - c * xˆk * g;

}
return r;

}



Another Version 48

Often one needs to compute both q and r, here is an array-based version
which does that. Assume deg(f) = n and deg(g) = m.

r = f;

for i = n-m downto 0 do
if( deg r = m + i )

q[i] = lc(r);
r = r - q[i] * xˆi * g;

else
q[i] = 0;

return q[];

Note that sparseness is a tricky issue here: divide xn+1 − 1 by x − 1.



Application: GCD 49

An important application of the Division Algorithm for integers is the
Euclidean algorithm for the GCD.
Likewise we can obtain a polynomial GCD algorithm from the Division
Algorithm for polynomials.
In fact, essentially the same algorithm works, just replace Z by Z[x].

For example, we can obtain cofactors s and t such that

gcd(f, g) = sf + tg.



Local Views 50

Consider the polynomial

p(x) = x4 − 8x3 + 23x2 − 28x + 12

We can read off immediately that p(0) = 12 and that the tangent at that
point has slope −28.
But what about the polynomial around x = 1? Here it is convenient to
use Taylor expansion to rewrite p in the form

p(x) = (x − 1)4 − 4(x − 1)3 + 5(x − 1)2 − 2(x − 1)

We can see that x = 1 is a root and the tangent has slope −2.



More Local Views 51

Similarly

p(x) = (x − 2)4 − (x − 2)2

p(x) = (x − 3)4 + 4(x − 3)3 + 5(x − 3)2 + 2(x − 3)

so it is clearly useful to consider polynomials in non-expanded form.

Exercise
What conclusions can you draw from the various representations of p(x)?



Bounds 52

On rare occasions one can also easily establish bounds given the “right”
representation of a polynomial. For instance,

p(x) = x4 − 4x3 + 7x2 − 10x + 10

appears to be positive over R.

One can prove this by tediously checking the behavior over the intervals
with endpoints −∞, −1, 1, 3/2, 2, ∞. Alternatively, one can use
differentiation to find the global minimum of p.

Or one can note that p(x) = (x2 − 1)2 + (x − 3)2.



A Strange Automorphism 53

Consider some polynomial ring R[x].

The discrete shift E is defined on R[x] by

En p(x) = p(x + 1)

Claim: E is an automorphism of R[x] that leaves R fixed.

As a consequence, p is irreducible iff E p is irreducible.

More generally, E preserves divisibility properties: p | q iff E p | E q. We
will use this fact countless times.



Proof 54

E is obviously compatible with the ring operations and leaves R fixed.

Let p =
∑

i≤d aix
i. Then

E p =
∑
i≤d

( ∑
i≤j≤d

(
j

i

)
aj

)
xi

Now suppose E p = E q, so deg(p) = deg(q). Comparing the two sides
starting with the leading coefficient, one can see that p = q.

ad = bd, ad−1 +
(

d
1
)
ad = bd−1 +

(
d
1
)
bd and so on.



And Back . . . 55

For degree 4, the coefficient transformation is given by the matrix
1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1


and the inverse matrix is

1 −1 1 −1 1
0 1 −2 3 −4
0 0 1 −3 6
0 0 0 1 −4
0 0 0 0 1





Assorted Definitions 56

Let p = (ai) and q = (bi) be two polynomials over R.

The degree deg(p) is the maximum d for which ad ̸= 0.
For convenience, let deg(0) = −∞.

The leading coefficient lc(p) is ad, d = deg(p).

p is monic if lc(p) = 1.

q divides p, q | p, if p = q · s for some s ∈ R[x].

p is irreducible if no polynomial of degree d, 1 < d < deg(p), divides p.
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Polynomials 58

Informally, a (univariate) polynomial is an expression of the form

x3 − 2x2 + 3x − 1

There is an unknown or variable x and we

form powers xi of the variable (monomials),
multiply them by an element in some ground ring (coefficients),
add several such terms.

Of course, division is not allowed.
The ground ring supplies the coefficients of the polynomials.
In the example, it is presumably Z.



Coefficient Representation 59

Hence we can represent a polynomial by a vector of its coefficients:

a = (a0, a1, . . . , an−1)

represents

p(x) = a0 + a1x + a2x2 + . . . + an−1xn−1

If an−1 ̸= 0 then n − 1 is the degree of p.

In general, p(x) has degree bound n (note that this is a strict bound; this
notion will be useful later in several algorithms).
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Suppose we have a univariate polynomial p(x) over ring R.
We can replace the unknown x by elements in R and evaluate to obtain
another element in the ring: For example,

p(x) = x3 − 2x2 + 3x − 1

produces

p(2) = 23 − 2 · 22 + 3 · 2 − 1 = 5.

Hence we can associate the polynomial p with a polynomial function

p̂ : R → R, a 7→ p(a)

This may seem like splitting hairs, but sometimes it is important to keep
the two notions apart.



Come on . . . 61

The polynomial and the associated polynomial function really are two
different objects. Consider the ground ring Z2. The polynomial

p(x) = x + x2

has the associated function

p̂(a) = 0

for all a ∈ Z2.
In fact, any polynomial p(x) =

∑
i∈I xi produces the identically 0 map as

long as I ⊆ N+ has even cardinality.

Exercise
Describe all polynomial functions over ground rings Z2 and Z3.



Horner’s Rule 62

Assume we have a polynomial in coefficient form a = (a0, a1, . . . , ad) we
can easily evaluate at any point b ∈ R:

f(b) = ((. . . (ad b + ad−1) b + ad−2) b + . . .) b + a0

Actually, this is a perfect example of a polynomial represented in
compressed form.

Proposition
A polynomial of degree d can be evaluated in d ring multiplications and d
ring additions.



Interpolation 63

Suppose we wish to construct a polynomial f that evaluates to given
target values at certain points. Say we want f(ai) = bi for
i = 0, . . . , n − 1 . Define the Lagrange interpolant

Ln
i (x) =

∏
j ̸=i

x − aj

ai − aj

Proposition
Ln

i (ai) = 1 and Ln
i (aj) = 0 for i ̸= j.

Hence we can choose
f(x) =

∑
i<n

biL
n
i (x)

Note that f has degree bound n.
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Suppose we want f(i) = the ith prime for i = 0, . . . , 5 . The Lagrange
interpolation looks like

f(x) = 2L6
0 + 3L6

1 + 5L6
2 + 7L6

3 + 11L6
4 + 13L6

5

which, after expansion and simplification, produces

1
120(240 − 286 x + 735 x2 − 425 x3 + 105 x4 − 9 x5)



Secret Sharing 66

Suppose you have a “secret” a, a natural number, that you want to
distribute over n people in such a way that no proper subgroup of the n
persons can access the secret but the whole group can.
More generally may want to distribute the secret so that k out of n
persons can access it, but not any subgroup of size k − 1.

Here is a simple idea for the n = k problem:
We may safely assume that a is a m-bit number. Generate n − 1 m-bit
numbers ai and give number ai to person i, i = 1, . . . , n − 1 . Person n
receives

an = a ⊕ a1 ⊕ a2 ⊕ . . . ⊕ an−1

where ⊕ is bit-wise xor.
Clearly all n secret sharers can compute a, but if one is missing they are
stuck with a random number.



Using Polynomials 67

A more flexible approach is built on the following idea. Construct a
polynomial f that has a as its lowest coefficient, so f(0) = a. All other
coefficients are chosen at random.
The secret sharers are given not the coefficients of f but pieces of the
point-value description of f , which are obtained by repeated evaluation.
If all n agree, they can use their information to reconstruct the coefficient
representation of f by interpolation.
Once f is reconstructed a can be found be a simple evaluation.
But for any proper subset f will be underdetermined, and a cannot be
recovered.

It is not hard to generalize this method to k < n.



Shamir’s Method 68

More precisely, pick a prime p > a, n. We will use the ground ring Zp.
Generate random numbers 0 < ai < p for i = 1, . . . , n − 1 .
Define the polynomial

f(x) = a + a1x + . . . + an−1xn−1

f is completely determined by the n point-value pairs (i, bi),
i = 1, . . . , n .
By interpolation we can retrieve f from the point-value pairs, hence we
can determine a = a0.

An important point is that n − 1 persons can obtain no information
about the zero coefficient; every coefficient is equally likely.
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Roots and Divisibility 70

Lemma
Let F be a field and f ∈ F [x].
If a is a root of f then (x − a) divides f(x).
If f is non-zero, then it has at most deg(f) many roots.

Proof.
Write

f = q(x − a) + r

where deg(r) < 1. But then r must be 0, done.

Use the last result and induction on the degree.
2



Decomposition 71

So if deg(f) = n and f has n roots we decompose f completely into
linear terms:

f = c(x − a1)(x − a2) . . . (x − an)

Of course, there may be fewer roots, even over a rich field such as R:
f = x2 + 2 has no roots.

This problem can be fixed by enlarging R to the field of complex numbers
C (the so-called algebraic completion of R).



Vieta 72

Suppose p(z) = anzn + an−1zn−1 + . . . + a0 ∈ C[z] has complex roots
x1, . . . , xn, not necessarily distinct. Then∑

I⊆[n]
|I|=k

∏
i∈I

xi = (−1)k an−k

an

In particular

x1 + . . . + xn = −an−1/an

x1 · . . . · xn = (−1)na0/an

Proof. Expand the linear decomposition. 2
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For polynomials p(z) = anzn + an−1zn−1 + . . . + a0 with integral
coefficients it is often necessarty to determing whether any of the roots
are rational.

Plugging in a term p/q (in lowest common terms) one finds that

p divides a0

q divides an

Thus, there are only finitely many cases to check. Unfortunately, this
works only for univariate polynomials (it is not known whether the
existence of rational solutions to a Diophantine equation is decidable).



More Roots 74

Note that over arbitrary rings more roots may well exist.
For example over R = Z15 the equation x2 − 4 = 0 has four roots:
{2, 7, 8, 13}.
But of course

(x − 2)(x − 7)(x − 8)(x − 13) = 1 + 7x2 + x4 ̸≡ x2 − 4

Exercise
Using the Chinese Remainder theorem explain why there are four roots in
the example above. Can you generalize?
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The fact that a non-zero polynomial of degree n can have at most n
roots can be used to show that the interpolating polynomial

f(x) =
∑

i

bi

∏
j ̸=i

x − aj

ai − aj

is unique: suppose g is another interpolating polynomial so that
g(ai) = bi.
Then f − g has n + 1 roots and so is identically zero.

Hence we have an alternative representation for polynomials: we can give
a list of point-value pairs rather than a list of coefficients.
To the naked eye this proposal may seem absurd: why bother with a
representation that is clearly more complicated? As we well see, there are
occasions when point-value is computationally superior to coefficient list.



Multiplying Polynomials 76

Suppose we have two univariate polynomials f and g of degree bound n.
Using the brute force algorithm (i.e., literally implementing the definition
of multiplication in

∐
R) we can compute the product fg in Θ(n2) ring

operations.
Now suppose we are dealing with real polynomials. There is a bizarre way
to speed up multiplication:

Convert f and g into point-value representation where the support
points are carefully chosen.
Multiply the values pointwise to get h.
Convert h back to coefficient representation.
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It may seem absurd to spend all the effort to convert between coefficient
representation and point-value representation. Surprisingly, it turns out
that the conversions can be handled in Θ(n log n) steps using a
technique called Fast Fourier Transform.

But the pointwise multiplication is linear in n, so the whole algorithm is
just Θ(n log n).

Theorem
Two real polynomials of degree bound n can be multiplied in Θ(n log n)
steps.

Take a look at CLR for details.



Vandermonde Matrices 78

Here is another look at conversions between coefficient and point-value
representation, i.e., between evaluation and interpolating.

Definition
Define the n by n Vandermonde matrix by

VM(x0, x1, . . . , xn−1) =


1 x0 x2

0 . . . xn−1
0

1 x1 x2
1 . . . xn−1

1
1 x2 x2

2 . . . xn−1
2

...
...

...
...

1 xn−1 x2
n−1 . . . xn−1

n−1



Lemma

|VM(x)| =
∏
i<j

xj − xi
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It follows that the Vandermonde matrix is invertible iff all the xi are
distinct. Now consider a polynomial

f(x) = c0 + c1x + . . . + cn−1xn−1

To evaluate f at points a = (a0, . . . , an−1) we can use matrix-by-vector
multiplication:

b = VM(a) · c

But given the values b we can obtain the coefficient vector by

c = VM(a)−1 · b



Polynomial Identities 80

A task one encounters frequently in symbolic computation is to check
whether two polynomials are equivalent, i.e., whether an equation
between polynomials

f(x1, x2, . . . , xn) = g(x1, x2, . . . , xn)

holds in the sense that for all x1, x2, . . . , xn ∈ R.

Definition
Two polynomials f(x) and g(x) are equivalent if for all a ∈ R:
f(a) = g(a). In particular f is identically zero if f(x) and 0 are
equivalent.

In other words, two polynomials f(x) and g(x) are equivalent iff
f̂(x) = ĝ(x).
Notation: f(x) ≡ g(x).



Zero Testing 81

Note that the polynomial identity f ≡ g can be rewritten as f − g ≡ 0.

Problem:
How can we check whether a multivariate polynomial f ∈ F [x] is
identically zero?

Note: The polynomial may not be given in normal form, but as in the
example in a much shorter, parenthesized form. We want a method that
is reasonably fast without having to expand out the polynomial first.



Using Roots 82

Assume that the ground ring is a field F .

Suppose f has degree d. As we have seen, in the univariate case there
are at most d roots and d roots determine the polynomial (except for a
multiplicative constant).
So we could simply check if the polynomial vanishes at, say,
a = 0, 1, 2, . . . , d: f will vanish on all d + 1 points iff it is identically zero.

Requires only d + 1 evaluations of the polynomial (in any form).

Unfortunately, the roots for multivariate polynomials are a bit more
complicated.



A Quadratic Surface 83
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The Key lemma 84

Lemma
Let f ∈ F [x1, . . . , xn] be of degree d and S ⊆ F a set of cardinality s.
Then f is not identically zero then f has at most dsn−1 roots in Sn.

Proof.
The proof is by induction on n.

2

The set S here could be anything. For example, over Q we might choose
S = {0, 1, 2, . . . , s − 1}.



Schwartz’s Method 85

The main application of the lemma is to give a probabilistic algorithm to
check whether a polynomial is zero.
Suppose f is not identically zero and has degree d.
Choose a point a ∈ Sn uniformly at random and evaluate f(a). Then

Pr[ f(a) = 0 ] ≤ d

s

So by selecting S of cardinality 2d the error probability is 1/2.

Note that the number of variables plays no role in the error bound.



Certainty 86

With more work we can make sure the f really vanishes.

Corollary
Let f ∈ F [x1, . . . , xn] be of degree d and S ⊆ F a set of cardinality
s > d. If f vanishes on Sn then f is identically zero.

But note that for finite fields we may not be able to select a set of
cardinality higher than d.
Recall the example over Z2: in this case we can essentially only choose
S = Z2, so only degree 1 polynomials can be tackled by the lemma.
That’s fine for univariate polynomials (since any monomial xi simplifies
to x) but useless for multivariate polynomials.



Application 87

Recall that a perfect matching in a bipartite graph is a subset M of the
edges such that the edges do not overlap and every vertex is incident
upon one edge in M .
There is a polynomial time algorithm to check whether a perfect
matching exists, but using Schwartz’s lemma one obtains a faster and
less complicated algorithm.
Suppose the vertices are partitioned into ui and vi, i = 1, . . . , n .
Define a n × n matrix A by

A(i, j) =
{

xij if (ui, vj) ∈ E,
0 otherwise.

Note that the determinant of A is a polynomial whose non-zero terms
look like

±x1π(1)x2π(2) . . . xnπ(n)



Testing Perfect Matchings 88

Proposition
The graph has a perfect matching iff the determinant of A is not
identically zero.

Proof.
If the graph has no perfect matching then all the terms in the
determinant are 0 (they all involve at least one non-edge).
But if the graph has a perfect matching it must have the form
M = { (ui, vπ(i)) | i ∈ [n] } where π is a permutation.
But then the determinant cannot be 0 since the corresponding monomial
cannot be canceled out.

2
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