
CDM

Algebra of Regular Languages

Klaus Sutner

Carnegie Mellon University

1 Kleene’s Theorem

2 Conversion To Regular Expression

3 Equations

4 Realistic Regular Expressions

The Structure of Finite State Machines 2

We have a number of good algorithms to manipulate FSMs and to test
their properties.
Alas, these machines have one serious drawback: they don’t have any nice
internal structure and they are somewhat difficult to describe (other than
by a brute force table).
It would be nice if we could somehow build machines in some systematic
way, using only trivial basic components and a handful of reasonably sim-
ple operations.
Is there any hope for this?

For the Record: Krohn-Rhodes 3

There is a basic result from 1962, the Krohn-Rhodes Theorem, arguably one of
the most important results in automata theory.
The theorem says, in essence, that every deterministic automaton can be
decomposed into simple components.
Alas, the argument uses algebra quite heavily (the simple components are
machines corresponding to finite simple groups plus a 2-state flip-flop
automaton).
Recently, some actual implementations have been developed, but overall the
theorem seems to be mostly of theoretical value.
BTW, this is one of the rare cases where 2 PhDs were granted for one result,
Krohn at Harvard and Rhodes at MIT.

Kleene’s theorem 4

Here is another, much easier result that has many direct practical applications.

Theorem (Kleene 1956)
Every regular language over Σ can be constructed from ∅ and {a}, a ∈ Σ,
using only the operations union, concatenation and Kleene star.

Regular languages are closed under other operations such as intersection and
complement, but these are not needed to construct a regular language from the
basic ones.

Before we sketch the proof, let us introduce the notation system for regular
languages suggested by Kleene’s result.

Regular Expressions 5

Definition
A regular expression is a term constructed as follows:

Basic expressions: ∅, a for all a ∈ Σ

Operators: (E1 + E2), (E1 · E2), (E⋆).

For example,
((a · (b⋆)) + c)

is a regular expression. While correct, this is too clumsy for words: as usual in
arithmetic, one uses precedence ordering to avoid parentheses and drops the
dot for concatenation.

One often allows ε as a primitive denoting the empty word (though this is
technically redundant since ∅⋆ denotes the same language).

The Corresponding Languages 6

We can associate a language with each regular expression:

L(∅) = ∅
L(a) = {a}

L(E1 + E2) = L(E1) ∪ L(E2)
L(E1 · E2) = L(E1) · L(E2)

L(E⋆) = L(E)⋆

So by Kleene’s theorem, for every regular language L there is a regular
expression α such that L(α) = L.

Lastly, one avoids the underlines and writes things like ab⋆ + c, it’s always clear
from context what is meant. One should also be relaxed about identifying {x}
and x whenever convenient.

Regex Example 7

Example
All words containing bab: (a + b)∗bab(a + b)∗.
All words containing 3 a’s: b⋆ab⋆ab⋆ab⋆

All words not containing aaa: (ε + a + aa)(b + ba + baa)⋆

Exercise
Construct a regex for all words with an even number of a’s and b’s.

Exercise
Construct a regex for all words with an odd number of a’s and b’s.

Proof Sketch Kleene 8

One direction is easy given the results with already have.

To show that L(α) is regular for α all we need is induction on the build-up of
α:

The claim is trivial for atomic regular expressions.

For compound regular expressions use closure under union, concatenation
and Kleene star.

More on realistic implementations later.

Proof Sketch Kleene, the Hard Part 9

Suppose we have an NFA that accepts some regular language L. Assume
Q = [n]. For p, q in Q define

Lp,q = L(⟨Q, Σ, δ; {p}, {q}⟩)

Then L =
⋃

p∈I,q∈F
Lp,q and it suffices to construct regular expressions for the

Lp,q.
In order to obtain an inductive argument, define a run from state p to state q
to be k-bounded if all intermediate states are no greater than k. Note that p
and q themselves are not required to be bounded by k.
Now consider the approximation languages:

Lk
p,q = { x ∈ Σ⋆ | there is a k-bounded run p

x→ q }.

Note that Ln
p,q = Lp,q.

Proof Sketch, cont’d. 10

One can build expressions for Lk
p,q by induction on k.

For k = 0 the expressions are easy:

L0
p,q =

{∑
τ(p,a,q) a if q ̸= p,∑
τ(p,a,q) a + ε otherwise.

So suppose k > 0. The key idea is to use the equality

Lk
p,q = Lk−1

p,q + Lk−1
p,k · (Lk−1

k,k)∗ · Lk−1
k,q

Done by induction hypothesis. 2

Pseudo Code 11

foreach p = 1,..,n do
foreach q = 1,..,n do

initialize A[p,q,0];

foreach k = 1,..,n do
foreach p = 1,..,n do
foreach q = 1,..,n do

A[p,q,k] = A[p,q,k-1] + A[p,k,k-1].A[k,k,k-1]*.A[k,q,k-1];

return sum(A[p,q,n] : p in I, q in F);

Feasibility 12

The critical line is

A[p,q,k] = A[p,q,k-1] + A[p,k,k-1].A[k,k,k-1]*.A[k,q,k-1];

and assumes that we have overloaded the arithmetic operators appropriately.

Note that the expression on right is about 4 times bigger than its components,
so we are dealing with expressions of exponential size.
In reality, these expressions quickly become unmanageable even if one attempts
to simplify terms and keep things concise and short.

Finding the shortest regular expression is unfortunately PSPACE-hard.

Aside 1: Algebra 13

Note that Kleene’s theorem really establishes an algebraic result. Define the
language semiring over Σ to be

L(Σ) = ⟨P(Σ⋆), ∪, ·, ⋆, ∅, ε⟩

This is a type of algebra with 3 operations and two constants.

Then Kleene’s theorem can be interpreted thus: the least subalgebra generated
by the singletons {a}, a ∈ Σ, consists precisely of the regular languages. More
later.

Aside 2: Déjà Vu, All Over Again 14

This should look eminently familiar: logically, Floyd-Warshall’s all-pairs shortest
path algorithm is essentially the same.
The underlying algebra, the min-plus semiring, is different and simpler (loops
are irrelevant for shortest paths). The recursion for dynamic programming
looks like this:

dk
p,q = min(dk−1

p,q , dk−1
p,k + dk−1

k,q).

And, of course, we are calculating with rational numbers here, not with formal
expressions. There is no danger of expressions blowing up.

Aside 3: Simple Application 15

When arguing about properties of regular languages it is sometimes easier to
use regular expressions rather than machines.

For example, consider closure under homomorphisms.

Definition
A homomorphism is a map f : Σ⋆ → Γ ⋆ such that

f(x1x2 . . . xn) = f(x1)f(x2) . . . f(xn)

where xi ∈ Σ. In particular f(ε) = ε.

Note that a homomorphism can be represented by a finite table: we only need
f(a) ∈ Γ ⋆ for all a ∈ Σ.

Closure under Homomorphisms 16

Claim
Regular languages are closed under homomorphisms: f(L) is regular whenever
L is for any homomorphism f .

Given a homomorphism f (a finite table) define a regular expression αf over Γ
for each α over Σ:

∅ 7→ ∅ α + β 7→ αf + βf

ε 7→ ε α · β 7→ αf · βf

a 7→ f(a) α⋆ 7→ (αf)⋆

Then L(αf) = f(L(α)).

Exercise
Give a machine based proof of the claim.

1 Kleene’s Theorem

2 Conversion To Regular Expression

3 Equations

4 Realistic Regular Expressions

Machine to Regex 18

There are three basic approaches to converting a finite state machine to a
regular expression:

Kleene’s State elimination method
The proof of Kleene’s theorem provides a dynamic programming algo-
rithm.

Linear systems of equations
The machine is converted into a system of linear equations over the lan-
guage semiring. The system can then be solved using Arden’s lemma.

Eilenberg’s prefix/monoidal decomposition
An essentially unique decomposition based on prefix and monoidal lan-
guages.

Converting a finite state machine to a regular expression is a bit of an academic
exercise. The key problem is that for all approaches to yield manageable
expressions one needs to simplify the intermediate results. There are heuristics
to do that, but in general simplification is computationally hard.

Kleene’s Method 19

The proof of Kleene’s theorem provides a direct dynamic programming
algorithm: construct expression α(p, q, k) in stages k = 0, . . . , n for
1 ≤ p, q ≤ n, assuming the state set is [n].

There are two problems this algorithm:

There are n2(n + 1) expressions to construct, which is bad but not fatal.
The expressions roughly quadruple in size in the step from level k to level
k + 1. This is a disaster.

In practice, one has to simplify the expressions to make them smaller and
choose the elimination order cleverly so that some of the expressions are not
needed (top-down versus bottom-up dynamic programming).

Top Down Elimination 20

Here is a reasonable method for small machines.

Add two new states b (begin) and e (exit) to the machine. Add ε-transitions
from b to all initial states, and from all final states to e.

Think of the edge labels as regular expressions. We will successively re-
move all states other than b and e.

To this end pick some state r ∈ Q. For all incoming transitions p
α→ r,

outgoing transitions r
γ→ q, and self-loops r

β→ r, add a new transition

p
αβ⋆γ−−−−−−−→ q

In the end, remove r and all incident transitions.

Repeat until only b and e remain.

Result 21

After all states in Q are eliminated we are left with

b
α−−−−→ e

where α denotes the language of the machine.

The proof is to show by induction that, at any point during the construction,
the “automaton” is equivalent to the original one. Here we need to generalize
the notion of automaton a little: allow regular expressions as labels rather than
just letters.

Exercise
Figure out the details.

Odd/Odd, Step 0 22

b eε

a

a

b

b

a

a

b

b

ε

Odd/Odd, Step 1 23

b eε

a

a

b

b

ba

ab

bb aa

ε

Odd/Odd, Step 2 24

b eε

ab+ ba

ab+ ba

aa+ bb
aa+ bb

ε

Odd/Odd, Step 3 25

b e

(aa+ bb)⋆(ab+ ba)
aa+ bb+ (ab+ ba)(aa+ bb)⋆(ab+ ba)

ε

Odd/Odd, Step 4 26

b e

(aa+ bb)
⋆
(ab + ba)(aa+ bb+ (ab+ ba)(aa+ bb)

⋆
(ab+ ba))

⋆

Final Result 27

The final regex is

α = (aa + bb)⋆(ab + ba)(aa + bb + (ab + ba)(aa + bb)⋆(ab + ba))⋆

It’s not completely clear that this is correct.

A little argument shows that the last part

(aa + bb + (ab + ba)(aa + bb)⋆(ab + ba))⋆

denotes all even/even words.

Then α must be correct, too: all odd/odd words consist of a (possibly empty)
prefix (aa + bb)⋆, followed by (ab + ba), followed by an even/even word.

Simplification 28

To keep the size of the expressions small it is important to apply various
simplifications. For example, the following rules seem reasonable:

∅ · α 7→ ∅
ε · α 7→ α

α + α 7→ α

ε + αα⋆ 7→ α⋆

Unfortunately, the algebra of regular expressions is complicated and there is no
simple set of rules that would produce reasonable expressions.

Basic Equations 29

Disregarding Kleene star, the basic rules are not too bad:

(α + β) + γ = α + (β + γ)
α + β = β + α

∅ + α = α

α + α = α

(α · β) · γ = α · (β · γ)
ε · α = α · ε = α

∅ · α = α · ∅ = ∅
α · (β + γ) = α · β + α · γ

(β + γ) · α = β · α + γ · α

Alas . . .

Rules for Kleene 30

But Kleene star causes huge problems. Here are some (natural?) rules:

(α + β)⋆ = (α⋆β)⋆
α⋆

(αβ)⋆ = ε + α(βα)⋆β

(α⋆)⋆ = α⋆

α⋆ = (ε + α + . . . + αn−1) · (αn)⋆

Note that the last equation is actually an infinite family of equations; it is
known that no finite family will do.
Not to mention that for simplification we need rewrite rules, not equations.

Horror Example 31

Here is the result running a conversion algorithm with some degree of
simplifications on the even/even example (which is easier than odd/odd):

ϵ + b(bb)⋆b + (a + b(bb)⋆ba) (aa + ab(bb)⋆ba)∗ (a + ab(bb)⋆b) +(
b(bb)⋆a + (a + b(bb)⋆ba) (aa + ab(bb)⋆ba)∗ (b + ab(bb)⋆a)

)(
a(bb)⋆a + (b + a(bb)⋆ba) (aa + ab(bb)⋆ba)∗ (b + ab(bb)⋆a)

)∗(
a(bb)⋆b + (b + a(bb)⋆ba) (aa + ab(bb)⋆ba)∗ (a + ab(bb)⋆b)

)
It takes quite a bit of effort just to check that this expression describes the
even/even language.

Eilenberg’s Method 32

The dynamic programming approach to the construction of an equivalent
regular expression has the disadvantage that the choice of the next vertex to be
eliminated is arbitrary, leading to many possible expressions.
However, there is another approach due to Eilenberg (1973) that produces an
expression that is essentially unique (up to associativity and commutativity).

The key is a complexity measure that is slightly different from ordinary state
complexity. Suppose M is the minimal DFA for some language L. If M has a
sink, remove it; call the resulting automaton the minimal partial DFA
(MPDFA).

γ(L) = # transitions in MPDFA for L

Note that this counts transitions, not states as in ordinary state complexity.

Unitary Languages 33

A language is unitary if its minimal DFA has exactly one final state.

Clearly, every regular language has a unique decomposition as a disjoint union
of unitary languages.

L =
⋃

Li

Just pick a single final state in the minimal DFA for each component.

Prefix Languages 34

A language L is prefix (or prefix-free) if no proper prefix of a word in L belongs
to L.

Clearly, “prefix-free” makes sense and “prefix” does not, but there is nothing
you can do about established terminology.

What can we say about the DFA for a prefix language?
There cannot be a path from any final state back to a final state. So in the
MPDFA there are no transitions with source a final state. Note that this is if
and only if.
A prefix language is either empty or unitary.

Monoidal Languages 35

A language L is monoidal if L⋆ = L.

Proposition
A language L is monoidal iff ε ∈ L and L L ⊆ L.

Proof. Assume L is monoidal. Then ε ∈ L⋆ = L and L L ⊆ L⋆ = L.

For the opposite direction note that L L = L since ε ∈ L. By induction
Lk = L for all k ≥ 1, so L⋆ = ε +

∑
i≥1 L = ε + L = L (super idempotency).

2

More Monoidal Languages 36

Proposition
A monoidal language L can be written uniquely as L = K⋆ where K is prefix.

Proof. Consider the minimal PDFA M for L: the unique final state must also
be the initial state: M = ⟨Q, Σ, δ; p, {p}⟩.
Define a new PDFA M ′ as follows:

Remove p from Q and add q0 and q1.
q0 is initial and q1 is final.
For p

a−→ q introduce q0
a−→ q.

For q
a−→ p introduce q

a−→ q1.
For p

a−→ p introduce q0
a−→ q1.

Then K = L(M ′) is prefix and K⋆ = L. 2

Prefix/Monoidal Decomposition 37

Proposition
A unitary language L can be written in the form L = AB where A is prefix and
B is monoidal. Moreover, this decomposition is unique.

Proof. Let M be the minimal PDFA for L.
Let A be the language accepted by the partial DFA obtained by removing all
transitions coming out of the final state.
Let B be the language accepted by the partial DFA obtained by making the
final state also the initial state.
Uniqueness can be verified. 2

Now What? 38

Using both results we have a representation as a disjoint union

L =
⋃

AiBi
⋆

where Ai and Bi both are prefix.
We need to further decompose these pieces.

A priori, it is not clear how decompose prefix languages. Note that we have to
make sure γ-complexity does not increase.

Decomposing Prefix Languages 39

We have already seen left quotients a−1L: remove a prefix a whenever possible.
By symmetry, we could also remove a suffix a. Let’s write L/a for these right
quotients.

Claim
Let L be prefix. Then

L =
⋃

a∈Σ

(L/a) · a

and the decomposition is unique.

Proof. Well, if you knock of an a you’ve got to put it back. 2

Pulling Things Together 40

It is a labor of love to check that in each of our decomposition steps the new
languages have smaller γ-complexity than the old ones except for the
monoidal-to-prefix step: there the complexity stays the same.

For example, for L prefix we have

γ(L/a) < γ(L)

for all a ∈ Σ.

Exercise
Check that γ is decreasing in our decomposition.

Example: Even/Even 41

4 3

1 2

a

a

a

a

b

b

b

b

The minimal DFA for the even/even
language L.

Note that L is already monoidal, so
the first step is to find a prefix L1 such
that L = L1

⋆.

Prefix L1 42

a

a

b

b

a

ab

b

Splitting the initial/final state and redi-
recting transitions.

The new language is duly prefix.
Next step is to decompose L1 = L2 ·
a + L3 · b.

First Quotient of L1 43

a

a

b

b

ab

The quotient L2 = L1/a.

L2 is unitary, so the next step is to
decompose L2 = L4 · L5.

Prefix Part of L2 44

a

a

b

ab

The prefix part L4 of L2.

Note that L4/a = {ε}, so the end is in
sight.

Monoidal Part of L2 45

a

a

b

b

The monoidal part L5 of L2.

It is clear that the prefix part of L5 is
b(aa)⋆b.

Putting it All Together 46

After a few more steps we find the regular expression(
(a + ba(aa)⋆b)(b(aa)⋆b)⋆

a + (b + ab(bb)⋆a)(a(bb)⋆a)⋆
b
)⋆

Compare this to the first expression we have for L. There is no similarity
whatsoever.

(aa + bb + (ab + ba)(aa + bb)⋆(ab + ba))⋆

In light of examples like this it is not too surprising that equivalence of regular
expressions is PSPACE-hard.

1 Kleene’s Theorem

2 Conversion To Regular Expression

3 Equations

4 Realistic Regular Expressions

Arden’s Lemma 48

Yet another conversion algorithm can be based on the algebra of regular
languages. Consider a linear language equation of the form

X = A · X + B.

where A, B ⊆ Σ⋆ are arbitrary languages, though we will be mostly interested
in the case where A and B are finite or perhaps regular. We are looking for a
solution X0 ⊆ Σ⋆.

As it turns out, linear equations are rather easy to solve.

Lemma (Arden’s Lemma)
Let A and B be languages over Σ. Then the equation X = A · X + B has a
solution X0 = A⋆B. Moreover, if ε /∈ A, then this solution is unique. In any
case, X0 it is the smallest solution (with respect to set-theoretic inclusion).

Proof 49

To see that X0 = A⋆B is a solution note that

AX0 + B = AA∗B + B = (A+ + ε)B = A∗B = X0.

Now let Z be any solution, so Z = AZ + B. Then for all k ≥ 0:

Z = Ak+1Z + (Ak + . . . + ε)B.

Hence X0 ⊆ Z.
Lastly suppose ε /∈ A and let x ∈ Z; set k = |x|. Then x /∈ Ak+1Z, whence
necessarily x ∈ (Ak + . . . + ε)B ⊆ X0 and we are done. 2

In the applications of interest to us ε /∈ A so that the solution is unique.

Fixed Point Perspective 50

Recall the Knaster-Tarski theorem: a monotonic map on a complete lattice has
a fixed point (in fact, the collection of fixed points is a complete sublattice).
The lattice we are interested in here is the powerset of Σ⋆:

⟨P(Σ⋆), ∪, ∩⟩

Note that this lattice is trivially complete: the union of any family of languages
is again a language (though possibly a very complicated one).

Equations and Monotonicity 51

Now consider the following map on the powerset lattice:

f(Z) = A · Z + B

f is trivially monotonic, so it must have a fixed point. In fact, we can construct
the least fixed point inductively:

Z0 = ∅
Zi+1 = A · Zi + B

Then
⋃

i
Zi is the least fixed point (X0 on the last slide).

Regularity 52

Note that Arden’s lemma implies that equation X = A · X + B has a regular
solution X0 = A∗B whenever A and B are regular. Moreover, if A does not
contain ε this is the only solution. If A and B are given as rational expressions
we obtain a rational expression for the solution.

Example
The equation X = bX + a has b∗a as its unique solution.
By contrast, the equation X = b∗X + a has infinitely many solutions
Xk = b∗(a + a2 + · · · + ak) and X1 = b∗a is the least solution. Indeed, there
are uncountably many solutions b∗ · L where a ∈ L ⊆ a∗ is arbitrary.

Even/Even Example 53

Let’s return to the even/even language. The canonical DFA looks like so:

4 3

1 2

a

a

a

a

b

b

b

b

We convert the DFA into a system of equations.

Corresponding System 54

X1 = ε + aX2 + bX4 (1)
X2 = aX1 + bX3 (2)
X3 = aX4 + bX2 (3)
X4 = aX3 + bX1 (4)

Substituting (2) and (4) into (1) and (3) we get

X1 = ε + (aa + bb)X1 + (ab + ba)X3 (5)
X3 = (aa + bb)X3 + (ab + ba)X1 (6)

Applying Arden’s lemma to (6) we get

X3 = (aa + bb)⋆(ab + ba)X1 (7)

The Solution 55

Substituting (7) into (5)

X1 = ε + ((aa + bb) + (ab + ba)(aa + bb)⋆(ab + ba))X1

Applying Arden’s lemma one more time we get

X1 = (aa + bb + (ab + ba)(aa + bb)⋆(ab + ba))⋆

which solution makes intuitive sense.

It is important to note, though, that we tacitly did quite a bit of cleanup along
the way, writing the expressions in a simplified form. Remember the horror
example, from above.

Another Example 56

Needless to say, solving systems of equations does not always produce a neat
solution either. Consider the system

X = aX + bY

Y = ε + aX + ba∗

If we solve for X in the first equation, X = a∗bY , and substitute in the second
and then solve for Y and resubstitute we get

X = a∗b(a+b)∗(ε + ba∗)
Y = (a+b)∗(ε + ba∗)

So far, so good.

A Different Approach 57

However, we could also first substitute the second equation into the first and
solve for X.
This leads to solutions

X ′ = (a + b(ab)∗aa)∗b(ab)∗(ε + ba∗)
Y ′ = (ab)∗ (aa(a + b(ab)∗aa)∗b(ab)∗(ε + ba∗) + ε + ba∗)

Unless we made a mistake, these expressions must be equivalent to X and Y ,
but this is certainly not obvious from looking at them.

What is sorely missing here is a simplification algorithm that brings a regular
expression into a normal form. We can check for equivalence by converting to
finite state machines and then testing these for equivalence.

Matrix Method 58

The even/even system from above could also be written as

X = A · X + B

where

A =

0 a 0 b
a 0 b 0
0 b 0 a
b 0 a 0


and B = (1, 0, 0, 0).

Here we have written 0 and 1 instead of ∅ and {ε} for legibility.

Matrix Method, II 59

One can then define the Kleene star of A

A⋆ = I + A + A2 + . . . + An + . . .

and it is not hard to see that the solution is of the form

X = A⋆B

Of course, to make this truly useful we need to find a way to compute A⋆.
In simple cases one can determine an approximation

∑
i≤n

Ai for some small n

and then make an educated guess as to what A⋆ might be.

More Algebra 60

A better way is to take a closer look at the underlying algebraic structure:

L(Σ) = ⟨P(Σ⋆), ∪, ·, ⋆, ∅, ε⟩

This is one example of a closed semiring: intuitively, a semiring that also
supports an infinite sum operation:

x∗ =
∑
i≥0

xi = x0 + x1 + x2 + . . .

Of course, this is a little problematic: the “. . . ” don’t really have any precise
meaning.

Closed Semiring Axioms 61

Let S be an idempotent semiring with an additional infinitary operation∑
i∈I

ai. S is a closed semiring if this infinite summation operation behaves
properly with respect to finite sums, distributivity and reordering of the
arguments. More precisely, we require

∑
i∈[n]

ai = a1 + . . . + an,

(
∑
i∈I

ai)(
∑
j∈J

bj) =
∑

(i,j)∈I×J

aibj ,

∑
i∈I

ai =
∑
j∈J

(
∑
i∈Ij

ai)

Consequences 62

Note the arbitrary index sets floating around in these axioms. They are
inherently more complicated than traditional, purely equational axioms for
standard structures such as groups, rings or fields.

At any rate, one can still derive general results from these axioms:

Lemma
In any closed semiring we have

(x + y)∗ = (x∗y)∗x∗

(xy)∗ = 1 + x(yx)∗y

The Language Semiring 63

It is easy to check that L(Σ) is a closed semiring.
More importantly, the collection of all n × n matrices over L(Σ) is again a
closed semiring:

L(Σ)n×n = ⟨P(Σ⋆)n×n, ∪, ·, ⋆, 0, 1⟩

where 0 denotes the null matrix (all entries ∅) and 1 denotes the identity
matrix ({ε} along the diagonal).
The additive operation is simply pointwise, and multiplication is standard
matrix multiplication. Star is defined as above by an infinite sum.

Computing Star 64

So far all we have is a clean framework. Algorithmically, we still need to find a
way to calculate a star in L(Σ)n×n.
To this end consider a matrix

X =
(

A B

C D

)
where the pieces have size n/2 (put floors and ceilings in the right places).
Then there is a divide-and-conquer algorithm to compute X⋆.

Computing Star II 65

Let Y = (A + BD⋆C)⋆ and Z = (D + CA⋆B)⋆. Then

X⋆ =
(

Y Y BD⋆

ZCA⋆ Z

)

Since the dimension of the component matrices shrinks by 1/2 there are only
log n levels in the recursion. Of course, the expressions can still get ugly.

Example 66

Let’s compute the star of

X =

0 a 0 b
a 0 b 0
0 b 0 a
b 0 a 0


So the submatrices are

A = D =
(

0 a
a 0

)
B = C =

(
0 b
b 0

)

A moment’s thought shows(
0 x
x 0

)⋆

=
(

(xx)⋆ x(xx)⋆

x(xx)⋆ (xx)⋆

)

Example II 67

But then

Y = Z = (A + BA⋆B)⋆ =
(

b(aa)⋆b a + ba(aa)⋆b
a + ba(aa)⋆b b(aa)⋆b

)⋆

Since we are only interested in the top/left entry of X⋆ we can apply the
decomposition one more time to obtain yet another regular expression for the
even/even language:

X⋆(1, 1) =
(
b(aa)⋆b + (a + ba(aa)⋆b)(b(aa)⋆b)⋆(a + ba(aa)⋆b)

)⋆

Three Expressions 68

We now have tree different but equivalent expressions for the even/even
language, obtained by different methods:

(aa + bb + (ab + ba)(aa + bb)⋆(ab + ba))⋆(
(a + ba(aa)⋆b)(b(aa)⋆b)⋆

a + (b + ab(bb)⋆a)(a(bb)⋆a)⋆
b
)⋆(

b(aa)⋆b + (a + ba(aa)⋆b)(b(aa)⋆b)⋆(a + ba(aa)⋆b)
)⋆

Exercise
Make sure you understand how these three expressions work.

1 Kleene’s Theorem

2 Conversion To Regular Expression

3 Equations

4 Realistic Regular Expressions

Extended Regex 70

Our definition of regular expressions directly mimics Kleene’s theorem.
Sometimes it is convenient to enhance regular expressions a bit. There are two
types of enhancements:

More compact ways to describe regular languages.

Describing non-regular languages.

Type 1 comes down to notational convenience, but may have radical effects on
the running time of the conversion algorithm. For example, we know that
regular languages are closed under intersection and complement. If we were to
add corresponding regular expressions for these operations we would still
describe regular languages. However, the conversion process based on BEAs
now fails: the only way we can perform, say, complementation is by converting
to a DFA first. This conversion may carry an exponential cost.
Type 2 requires a redesign of the acceptance testing algorithm: finite state
machines are no longer sufficient, though the modifications may turn out to be
fairly easy to do from an algorithmic point of view.

Intersection 71

As an example, consider the addition of a new operation symbol ∩ for
intersection to regular expressions.

What has to change in the conversion algorithm? We need to add a product
automata construction.

From the implementation perspective this is not too bad, but it breaks
polynomial bounds on the size of the machine constructed from a regex. The
following theorem shows that there is little hope for a simple remedy.

Theorem
Suppose M1, . . . , Mn is a list of DFAs (over the same alphabet). It is
PSPACE-hard to check whether there is a string that is accepted by all the
Mi.

Complement 72

Similar problems arise when a complementation operation ¬ is added. In the
RealWorldTM complementation can often be kludged by piping.

fgrep foo file.txt | fgrep -v foobag

But to do this in general we have to construct a machine for the complement
of a regular language – and that requires to build a DFA first, at a potentially
exponential cost.

Also note that complement together with union automatically produces
intersection, so the hardness result from above applies.

Iteration 73

A very handy feature in most regular expression matchers generalizes
concatenation and Kleene star.

notation number of matches
* ≥ 0
+ ≥ 1
? = 0, 1
{n} = n
{n,} ≥ n
{n,m} ≥ n, ≤ m

So one can write things like

egrep -e ’0\.[0-9]{5}’

to find all decimal numbers starting with 0 with exactly 5 digits after the
decimal point.

No DFAs 74

Grep maintains nondeterministic machines and performs the final matching
phase with these machines, there is no determinization nor minimization.

For example, there is no problem in looking for an a in position −100.

egrep -e ’ˆ[a-z]*a[a-z]{99}$’

The corresponding minimal DFA has 2100 states.

Non-Regular Extensions 75

Many pattern matchers allow the user to specify repetitions of previously
matched parts of a string.
The standard egrep for example allows

egrep -e ’ˆ([a-z]*)\1$’

which will match words of the form ww with lower-case letters. It is not hard
to see that this is non-regular language.

The \1 is a so-called back-reference and matches whatever string has already
matched the expression in parens.

Back-References 76

In general, \n refers to the string that has already matched the mth paren pair,
which has to occur before the back-reference.

Also note that one actually has to understand the matching mechanism in
greater detail (greedy versus lazy).
Usually the longest match possible is chosen.

For example, the expression

(((a|b)*)c\2)*

matches all words in
{ xcx | x ∈ {a, b}⋆ }⋆

Primality 77

Here is a beautiful way to check primality, albeit in unary.

The file prime.txt contains strings of a’s up to length 25, one on each line.

> egrep -ve ’ˆa$|ˆ(aa+)\1\1*$’ prime.txt
aa
aaa
aaaaa
aaaaaaa
aaaaaaaaaaa
aaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaa

It is fast up to 23, then slows down miraculously. I have no idea why.

Warning 78

Careful, though, the fancy stuff in regular expression matchers sometimes does
not work at all.

The expression (.?) means: match at most one single character and remember
it. So the following is supposed to match all palindromes of even length up to
8:

egrep -e ’(.?)(.?)(.?)(.?)\4\3\2\1’

It does, but it also accepts aaaabbbb and crashes on odd length strings (this is
GNU grep-2.5.2).

	Kleene's Theorem
	Conversion To Regular Expression
	Equations
	Realistic Regular Expressions

