
CDM

Algebra of Regular Languages

Klaus Sutner

Carnegie Mellon University



1 Kleene Algebras

2 Left Quotients

3 Language Quotients

4 2-DFA

5 FSM and Matrices



Hermann Weyl 2

Our mathematics of the last decades has wallowed in generaliza-
tions and formalizations. But one misunderstands this tendency
if one thinks that generality was sought merely for generality’s
sake. The real aim is simplicity: natural generalization simpli-
fies since it reduces the assumptions that have to be taken into
account.

Axiomatic versus Constructive Procedures in Mathematics, 1953



Definition 3

Definition
A Kleene algebra is a structure

⟨A; +, ·, ∗, 0, 1⟩

where
⟨A, +, 0⟩ is a commutative monoid
⟨A, ·, 1⟩ is a monoid (usually not commutative)
0 is a multiplicative null: 0 · x = x · 0 = 0
distributivity: x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x

sumstar identity: (x + y)⋆ = (x⋆y)⋆x⋆

prodstar identity: (x · y)⋆ = 1 + x · (y · x)⋆ · y

starstar identity: (x⋆)⋆ = x⋆

powerstar identity: x⋆ = (xn)⋆x<n

The powerstar axiom holds for all n ≥ 1 where x<n = 1 + x + x2 + . . . + xn−1



Quoi? 4

The star axioms may seem strange, but the main goal is fairly simple: we would
like to axiomatize the language semiring over Σ:

L(Σ) = ⟨P(Σ⋆); ∪, ·, ⋆, ∅, ε⟩

It is straightforward to verify that the language semiring (and, more
importantly, certain subsemirings such as the regular languages over Σ) is
indeed a Kleene algebra.

As usual, we will write xy rather than x · y. The Kleene star or asterate
operation is often used to denote the transitive closure; we will never ever do
this and write something like tcl instead.



The Difference 5

The major difference between Kleene algebras and more familiar structures
such as groups, fields or semirings is that we are dealing with in infinitary
operation. For intuition, think of the star operation as

x⋆ = 1 + x + x2 + . . .

some sort of power series.

More precisely, we can easily generalize the usual binary addition operation to a
mulitadic operation Σ:

Σ(nil) = 0
Σ(x) = x

Σ(x1, . . . , xk) = Σ(x1 + x2, . . . , xk) k ≥ 2

This is the left associative version, but since ⟨A, +, 0⟩ is associative any other
definition would produce the same result.



Going Infinite 6

Burning Question: What about Σ(x0, x1, x2, . . .)?

Note that we are not interested in analysis here, we do not want to deal with
limits and the like. As it turns out, we need to explain how our Σ operator
behaves with respect to slightly more general index sets.

Σ∅ = 0

ΣI ΣJi xj = ΣJ xj where J =
⋃

i∈I
Ji

ΣI xiΣJ yj = ΣI×J xiyj

x⋆ = ΣN xn



Order 7

It can be surprisingly useful to think of a partial order associated with any
Kleene algebra:

x ≤ y : ⇔ x + y = y

For language semirings this is just ordinary set inclusion.
For example, the equation x = ux + v has u⋆v as its least solution:

uu⋆v + v = (uu⋆ + 1)v = u⋆v

and the solution is unique when ε /∈ u.



Matrices 8

Consider the collection Kn×n of all n × n matrices over some Kleene algebra
K. We can add and multiply them in the usual way, and define the asterate via
the infinite sum.

Claim: Kn×n is again a Kleene algebra.

There is a “closed form” description of the star operation. For simplicity let
n = 2. (

a b
c d

)∗

=
(

(a + bd⋆c)⋆ a⋆b(d + ca⋆b)⋆

d⋆c(a + bd⋆c)⋆ (d + ca⋆b)⋆

)

a

b

c

d



Application: Regular Languages 9

Let M be a finite state machine over state set Q, not necessarily deterministic.
Define a Q × Q matrix A by setting

A(p, q) =
∑

(a | p
a→ q)

Let I and F be 0/1 vectors indicating the initial and final states in M.

Proposition
L(M) = I · A⋆ · F .



1 Kleene Algebras

2 Left Quotients

3 Language Quotients

4 2-DFA

5 FSM and Matrices



Language Semiring 11

From now on, we will focus on one particular Kleene algebra, the language
semiring

L(Σ) = ⟨P(Σ⋆), ∪, ·, ⋆, ∅, {ε}⟩

As defined, this is an uncountable structure, but we will be mostly interested in
the case where the carrier set is just the regular languages over Σ.

In order to emphasize the algebraic angle, we will often write + instead of ∪, 1
instead of {ε}, and so on.



Atoms 12

Note that, strictly speaking, a word w is not an element of L(Σ). But the
singleton {w} is, and so it makes sense to be sloppy with notation and identify
the two.

If that sends shivers up and down your type-theoretic spine note that we can
filter out singletons using only algebra.

In any Kleene algebra, define x to be an atom if x ̸= 0 but y ≤ x implies y = 0
or y = x.

For example, 1 is an atom.

In the language semiring, atoms are exactly the singletons.



Quotients 13

How about the missing operations, subtraction and division?

For subtraction we would need an additive cancellation monoid: x + y = x + z
implies y = z. This is hopelessly false in our setting: x + x = x = x + 0.

So how about some operation resembling division? Since our multiplication is
not commutative, let’s focus on left division for the time being. Here is a
plausible approach.

Definition
Let L ⊆ Σ⋆ be a language and x ∈ Σ⋆. The left quotient of L by x is

x−1 L = { y ∈ Σ⋆ | xy ∈ L }.

So we are simply removing a prefix x from all words in the language that start
with this prefix. If there is no such prefix we get an empty quotient.



Rant on Notation 14

It is standard to write left quotients as

x−1 L

Here is the bad news: left quotients are actually a right action of Σ⋆ on L(Σ).

As a consequence, the first law of left quotients below looks backward at first
sight.

We could fix the problem by writing something like L/x but that’s awkward
since it seems to suggest that we are removing a suffix.



Algebra of Quotients 15

Lemma
Let a ∈ Σ, x, y ∈ Σ⋆ and L, K ⊆ Σ⋆. Then the following hold:

(xy)−1L = y−1x−1L,

x−1(L ⊙ K) = x−1L ⊙ x−1K where ⊙ is one of ∪, ∩ or −,

a−1(LK) = (a−1L)K + χL a−1K,

a−1L⋆ = (a−1L) L⋆.

Here we have used the abbreviation χL to simplify notation:

χL =
{

1 if ε ∈ L,
0 otherwise.

So χL is either zero or one in the language semiring and simulates an
if-then-else.



Comments 16

Note that (xy)−1L = y−1x−1L and NOT x−1y−1L. As already mentioned,
the problem is that algebraically left quotients are a right action.

Quotients coexist peacefully with Boolean operations, we can just push the
quotients inside.

But for concatenation and Kleene star things are a bit more involved; the
lemma makes no claims about the general case where we divide by a word
rather than a single letter.

Exercise
Prove the last lemma.

Exercise
Generalize the rules for concatenation and Kleene star to words.



Killer App 17

The ultimate reason we are interested in quotients is that they provide an
elegant tool to construct the minimal automaton for a regular language. And
the associated algorithms can be made very efficient.

For the time being, though, let us focus on the algebra. We write Q(L) for the
set of all quotients of a language L.

How would we go about computing Q(L)?

In general this will be difficult, but for languages described in terms of Kleene’s
operations we can use algebra (there is a little glitch, though).



YAFP 18

Abstractly, this is yet another fixed point problem: we need to compute the
least set X ⊆ L(Σ) such that

L ∈ X and
X is closed under a−1 for all a ∈ Σ.

The corresponding monotonic operation F : P(L(Σ)) → P(L(Σ)) mapping
families of languages to families of languages is

F (X ) = X ∪ { a−1X | X ∈ X , a ∈ Σ }

and we are looking for the least fixed point of {L} under F . The fixed point
exists by Knaster-Tarski.



Quotients Example 1 19

Using the lemma, we can compute the quotients of a∗b.

a−1 a∗b = a∗b

b−1 a∗b = ε

a−1 ε = ∅

b−1 ε = ∅

a−1 ∅ = ∅

b−1 ∅ = ∅

Thus Q(a∗b) consists of: a∗b, ε and ∅.



Quotients Example 1, Contd. 20

Note that these equations between quotients really determine the transitions in
a finite state machine:

a−1 a∗b = a∗b a∗b
a→ a∗b

b−1 a∗b = ε a∗b
b→ ε

a−1 ε = ∅ ε
a→ ∅

b−1 ε = ∅ ε
b→ ∅

a−1 ∅ = ∅ ∅ a→ ∅

b−1 ∅ = ∅ ∅ b→ ∅



Quotients Example 2 21

Sometimes it is important to keep track of the words that produce a particular
quotient. E.g., let L be the finite language {a, aab, bbb}.

This time Q(L) has size 6, with witnesses as follows:

x x−1 L

ε {a, aab, bbb}
a {ϵ, ab}
b {bb}
bb {b}

aab {ϵ}
ab ∅

Of course the witness x is not uniquely determined, for example
(abz)−1 L = (baz)−1 L = ∅ for any z. The table lists the length-lex minimal
witness in each case (which is the appropriate order for many algorithms).



Quotients Example 2.5 22

Moreover, there happens to be a “natural” DFA for L that has six states.

0

1

2

3 5

4

a

b

a

b
b

a

a

b

a, b

a, b

Could this be coincidence? Nah, more later . . .



Quotients Example 3 23

A slightly larger example, L = L1 = a∗b∗ ∪ bab.

a−1L1 a∗b∗ L2
b−1L1 b∗ ∪ ab L3
a−1L2 L2
b−1L2 b∗ L4
a−1L3 b L5
b−1L3 L4
a−1L4 ∅ L6
b−1L4 L4
a−1L5 L6
b−1L5 ε L7

a−1L6/7 L6
b−1L6/7 L6

Exercise
Verify this table.



Quotients Example 4 24

An even larger example, L = L1 = a∗ba∗ ∪ b∗ab∗.

a−1L1 a∗ba∗ + b∗ L2 b−1L5 b∗ L8
b−1L1 b∗ab∗ + a∗ L3 a−1L6 b∗

a−1L2 a∗ba∗ L4 b−1L6 b∗ab∗

b−1L2 a∗ + b∗ L5 a−1L7 b∗

a−1L3 a∗ + b∗ b−1L7 ∅ L9
b−1L3 b∗ab∗ L6 a−1L8 ∅
a−1L4 a∗ba∗ b−1L8 b∗

b−1L4 a∗ L7 a−1L9 ∅
a−1L5 a∗ b−1L9 ∅

Exercise
Verify this table.



Quotients Example 5 25

Here is a very different scenario:

L = { aibi | i ≥ 0 } = {ε, ab, aabb, aaabbb, . . .}

This time there are infinitely many quotients.

(ak)−1L = { aibi+k | i ≥ 0 }

(akbl)−1L = {bk−l} 1 ≤ l ≤ k

(akbl)−1L = ∅ l > k

This is no coincidence: the language L fails to be regular, unlike all the
previous examples.



An Algorithm? 26

The tables from above suggest that for regular languages we can actually
compute the quotients in a purely algebraic manner. We simple apply the
algebraic rules from the lemma over and over, until no new quotients appear.

Is this really true?

Yes and no. In order for this to work, we need to be able to test whether two
algebraic expressions are equivalent, whether they denote the same language.

This turns out to be decidable, but it is quite difficult: the problem is
PSPACE-complete in general. We will find better algorithms based on finite
state machines in a while.



Quotients and Machines 27

Suppose A is a DFA for a regular language L. Define the behavior of a state p
to be

JpK = L(A(p, F ))

In other words, move the initial state to p but leave the automaton unchanged
otherwise. In particular Jq0K = L.

Proposition
For any word w, Jq0 · wK = w−1L.

It follows immediately that every regular language has only finitely many
quotients. In fact, the size of any DFA for the language is a bound on this
number. The next result establishes the opposite direction: finitely many
quotients implies regular.



The Quotient Machine 28

Suppose L is some language with a finite set of quotients. We can exploit
Q = Q(L) as the state set of a DFA for L.

QL = ⟨Q, Σ, δ; q0, F ⟩

where

δ(K, a) = a−1 K

q0 = L

F = { K ∈ Q | ε ∈ K }

A simple induction shows that δ(q0, w) = w−1L, so this works as advertised.
Since every quotient occurs only once in QL there cannot be a smaller DFA for
L.



1 Kleene Algebras

2 Left Quotients

3 Language Quotients

4 2-DFA

5 FSM and Matrices



Asymmetry 30

Left quotients are a powerful tool in the analysis of regular languages.
Unfortunately, they are subject to an annoying asymmetry: write

δ(L) = number of left quotients of L

Claim: There can be an exponential gap between δ(L) and δ(Lop).

Direction should not matter at all in a way, yet the differences occur even for
very simple languages: the go-to example are the kth position languages:

δ(La,k) = k + 2

δ(La,−k) = 2k



Why? 31

For La,k = Σk−1aΣ⋆ the quotients are

Σk−1aΣ⋆, Σk−2aΣ⋆, . . . , aΣ⋆, Σ⋆, ∅

But for La,−k = Σ⋆aΣk−1 the quotients are

Σ⋆ + c1Σk−1 + c2Σk−2 + . . . + ck ci = 0, 1

This follows easily from a−1L = L + Σk−1 and b−1L = L for all b ̸= a.



Generalizing Quotients 32

Given two languages K and L, we can naturally make sense out of

K−1L = { y | ∃ x ∈ K (xy ∈ L) }

In other words,
K−1L =

⋃
x∈K

x−1L

It follows that a language L is regular iff the number of language quotients is
finite. We write

∂(L) = number of left language quotients of L

Clearly, δ(L) ≤ ∂(L).



Example: Even/Even 33

Consider the language of all even/even strings over {a, b}.

Then the four word quotients are the languages

even/even even/odd odd/even odd/odd

These are all pairwise disjoint, so the number of language quotients is 16.

Exercise
Figure out the number of language quotients for the complement of even/even.



Properties 34

K−10 = 0

K−11 = χK .

K−1a =


0 if a /∈ K, ε /∈ K
1 if a ∈ K, ε /∈ K
a if a /∈ K, ε ∈ K
a + 1 if a ∈ K, ε ∈ K

K−1(L1 + L2) = K−1L1 + K−1L2

K−1(L1L2) = (K−1L1)L2 + (L−1
1 K)−1L2

K−1L⋆ = ((L⋆)−1K)−1L L⋆ + χK



More Properties 35

0−1L = 0

w−1L = . . .

(K1 + K2)−1L = K−1
1 L + K−1

2 L

(K1K2)−1L = K−1
2 K−1

1 L

Note that language quotients are not well-behaved with respect to other
Boolean operations, though. For example, in general K−1L ̸= K−1L.

Exercise
Prove all these properties. Establish counterexamples to all the missing claims
regarding Boolean operations.



Conway Factorizations 36

Fix some language L once and for all.

Definition
A k-subfactorization of L (or subfactorization of order k) is a k-tuple of
languages Xi, 1 ≤ i ≤ k, such that

X1 · X2 · . . . Xk−1 · Xk ⊆ L

For emphasis, we write X1:X2: . . . :Xk for a subfactorization.
A k-factorization is a k-subfactorization where every term is maximal.

Note that . . . :X:Y : . . . is a subfactorization iff . . . :XY : . . . is a
subfactorization, albeit of order k − 1. Alas, the corresponding claim for
factorizations is wrong, in either direction.

We are mostly interested in the case k = 2, 3.



Factors 37

There is a natural partial order on subfactorizations by pointwise set inclusion
Y1:Y2: . . . :Yk ⊆ X1:X2: . . . :Xk if Yi ⊆ Xi for all i. So a factorization is a
maximal element in this order.

A factor is a term that appears in some place in some factorization. A
left/right factor is one that appears at the left/right end of a factorization.

Question: For a regular language L, what can we say about its factors?

There is a surprisingly detailed answer, but we need to build up a few tools
first.



Basics 38

Claim 1: Every subfactorization can be extended to a factorization. Maximal
terms are preserved in the process.

Proof. For simplicity consider a 2-factorization X:Y . We can saturate, say,
the left term via X ′ =

⋃
{ Z | ZY ⊆ L }. Then X ′:Y is still a subfactorization,

dominates X:Y ⊆ X ′:Y , and X ′ is maximal. Repeat for Y . 2

But note that the process does not commute: the final result depends on the
saturation order. For example, for most L, we could extend 0:0 to either Σ⋆:0
or 0:Σ⋆. In fact, there are many other ways we can saturate the components
by adding words in some fairly arbitrary manner.

Exercise
Figure out a general algorithm to extend 0:0 to all possible factorizations.



More Basics 39

Claim 2: There is a one-one correspondence between all left factors and all
right factors.

Proof. Suppose X is a left factor and let X:Y be a corresponding
factorization. Since Y is maximal there can be no other right factor matching
X. The same argument works in the opposite direction, done. 2

We write ρ(X) for the right factor corresponding to left factor X, and λ(Y ) for
the inverse function. For example, for L = a⋆ ⊆ (a + b)⋆ we have ρ(0) = Σ⋆,
ρ(a⋆) = a⋆ and ρ(Σ⋆) = 0.



All Factors 40

Now saturate the middle term in X:0:Y , X and Y left/right factors, and write
Z = Z(X, Y ) for the result. From Claim 1 we have that all factors occur as
one of these Z(X, Y ).

Claim 3: The language L itself is a right factor ρ(X ′) as well as a left factor
λ(Y ′). Moreover, all left factors are of the form Z(X ′, Y ), and all right factors
are of the form Z(X, Y ′). Lastly, Z(X ′, Y ′) = L.

Proof.
1:L is a subfactorization and uniquely saturates to X ′:L, so that X ′ = λ(L).
By symmetry, Y ′ = ρ(L).
By our choice of X ′, X ′:λ(Y ):Y is a subfactorization and even a factorization
(check). The claim about enumerating left factors follows; right factors are
analogous. Lastly, X ′:L:Y ′ is a factorization, and we are done. 2



Regular Case 41

Theorem
The number of factors of L is finite iff L is regular. Moreover, the number of
left/right factors is ∂(L) in this case.

Proof. To see why, let X:Y be a factorization of L. We have
Y =

⋂
w∈X

w−1L. To saturate the left term we choose X maximal so as to
maintain the intersection. More precisely, by complementing we get

Y =
⋃

w∈X

w−1L = X−1L

But L is regular iff the number of quotients (word or language) is finite.
2

Careful, though: in general ∂(L) ̸= ∂(L), unlike with δ. It follows that there
are at most 2δ(L) many left/right pairs.



Computation 42

Suppose A is the minimal DFA for L. As just mentioned, we need to determine
all intersections

Y =
⋂

p∈P

JpK

where P ⊆ Q. Let’s call P critical if P produces Y in this manner, and P is
maximal such. Note that P must actually be maximum (just take unions).

Given P critical for right factor Y we obtain the corresponding left factor λ(Y )
as

X = L(A(q0, P ))

Hence we can construct a list

X1:Y1, X2:Y2, . . . , Xm:Ym

of all left/right pairs where Yi = ρ(Xi).



More Computation 43

Suppose U, V ⊆ Q are critical, and let X be the left factor for U , and Y the
right factor for V . To determine Z = Z(X, Y ) note that

w /∈ Z ⇔ ∃ x ∈ X, y ∈ Y (xwy /∈ L)

⇔ ∃ q ∈ U, y ∈ Y (q · wy /∈ F )

⇔ ∃ q ∈ U (Y ̸⊆ Jq · wK)

⇔ ∃ q ∈ U (q · w /∈ V )

But then Z is the language of A(U, V ).

Together with the list of left/right pairs we now have a coordinate system and
can organize the collection of all factors into a m × m matrix F with entries
Zij = Z(Xi, Yj).



Example: a⋆b⋆c⋆ 44

The star-free language L = a⋆b⋆c⋆ has 5 left/right factors:

left Σ⋆ L a⋆b⋆ a⋆ 0
right 0 c⋆ b⋆c⋆ L Σ⋆

Factor matrix F = (Zij):

0 c⋆ b⋆c⋆ L Σ⋆

Σ⋆ Σ⋆ 0 0 0 0
L Σ⋆ c⋆ 0 0 0
a⋆b⋆ Σ⋆ b⋆c⋆ b⋆ 0 0
a⋆ Σ⋆ L a⋆b⋆ a⋆ 0
0 Σ⋆ Σ⋆ Σ⋆ Σ⋆ Σ⋆



The Factor Matrix 45

Theorem
Consider the m × m factor matrix F = (Zij). Then

ZijZjk ≤ Zik

X1X2 . . . Xs ≤ L iff Xj ≤ Zij -1 ij for some ij ∈ [m], j ∈ [s], where
i0 = λ(L) and is = ρ(L).

Proof. By definition, XiZijYj ≤ L, so that XiZij ≤ Xj . Hence
XiZijZjkYk ≤ XjZjkYk ≤ L, and our claim follows.

It suffices to prove the binary case: XY ≤ Zik iff there is some j such that
X ≤ Zij and Y ≤ Zjk.
To see this, note that (XiX)(Y Yk) ≤ L, so that XiX ≤ Xj and Y Yj ≤ Yj for
some j. But then XiXYj ≤ L and XJ Y Yk ≤ L, and the claim follows.



More 46

This may seem obvious, but we now have a proof that the factors of a factor
are again factors of the original language. OK, a bit anticlimactic . . .

Recall that F itself lives in another Kleene algebra and thus has a star. We
have F⋆ = F.

Exercise
Extract this information from the last theorem.



Reversal Symmetry 47

Back to our original complaint: the lack of invariance under string reversal.

Theorem (Conway)
Let L be a regular language. Then ∂(L) = ∂(Lop).

Proof.
Consider all 2-factorizations X:Y of L.

As we have just seen, there are ∂(L) choices for X.

By symmetry, there are ∂(Lop) choices for Y .

But we already know that these two numbers agree.
2



1 Kleene Algebras

2 Left Quotients

3 Language Quotients

4 2-DFA

5 FSM and Matrices



Left-To-Right 49

From the definition of a Turing machine, the read-only input tape can be
scanned repeatedly and the tape head may move back and forth over it.

As it turns out, one can assume without loss of generality that the read head
only moves from left to right only: at each step one symbol is scanned and
then the head moves right and never returns.

Theorem (Rabin/Scott, Shepherdson)
Every decision problem solved by a constant space two-way machine can
already be solved by a constant space one-way machine.

The original proof of this result is quite messy, see Rabin/Scott 59. Here is a
sketch.

http://www.cs.cmu.edu/~cdm/resources/RabinScott1959.pdf


2-DFA 50

Right moves of the 2-DFA are easily simulated by the new DFA, so consider a
left move. Say, the current configuration is xpa and δ(p, a) = (p, L). Then the
machine enters the block x and we need to keep track of the state q it is in
when it leaves the block to the right. Of course, this may never happen: the
machine may have fallen off the left end of x, or may be stuck in an infinite
loop. To deal with this issue, we augment Q by an additional state ⊥. We also
abuse ⊥ to keep track of the state of the actual computation of the 2-DFA.
More formally, we define state vectors Vx : Q⊥ → Q⊥ for all non-empty words
x as follows:

Vx(p) =

{
q if w = ua, upa ⊢ uaq, p ∈ Q
q if w = ua, q0w ⊢ wq, p = ⊥
⊥ otherwise.



Simulation by DFA 51

It is not hard to check that these vectors have the property that Vx = Vy

implies Vxa = Vya. Hence, they can be used to define a right semigroup action,
giving rise to a one-way DFA. Let V be the set of all state vectors and add an
extra initial state ⊤. Define a transition function γ on V⊤ by

γ(⊤, a) = Va

γ(Vx, a) = Vxa

and final states by

F ′ = { Vx | Vx(⊥) ∈ F }

If necessary, we can adjust to deal with ε.



Small 2-DFA 52

Consider the finite languages

Ln = { #abe1 abe2 a . . . aben ckbek # | ei, k ∈ [n] }

There is a linear size 2-dfa for Ln, but every 1-dfa has exponentially many
states.



Application: Roots 53

Consider a regular language L ⊆ Σ+ and define

root(L) = { x ∈ Σ+ | x+ ∩ L ̸= ∅ }

We want to show that root(L) is again regular. This can be done using a
monoid automaton, but a very simple argument can be based on 2-DFAs.

Using endmarkers, we can build a 2-DFA that scans x and checks if it lies in L;
if so, it accepts. Otherwise, it stores the current state q of the DFA for L, and
rescans x, this time starting in state q. Rinse and repeat. If x is in root(L),
this will lead to acceptance; otherwise, the 2-DFA is stuck in an infinite loop.

If you find this offensive, keep track of all states q seen so far at the end of a
scan, and reject whenever a duplicate appears.



Monoid Automaton 54

Let A be a DFA. We can define an equivalent DFA Asgr whose state set is the
monoid of maps Q → Q. The right action, initial and final states are given by

f · a = f ◦ δa

q0 = I

F ′ = { f | f(q0) ∈ F }

This machine is useful for conceptual purposes such as establishing a link
between finite state machines and monoids, but is obviously problematic from
an algorithmic perspective (even if we restrict the state set to the monoid
generated by the δa.



Roots 55

As and example, consider L ⊆ Σ+ and define

root(L) = { x ∈ Σ+ | x+ ∩ L ̸= ∅ }

Proposition
root(L) is regular whenever L is so regular.

Proof.
Change the final states in the monoid automaton for L to be

F = { f : Q → Q | orb+(q0; f) ∩ FA ̸= ∅ }

The new automaton accepts x iff there is some k ≥ 1 such that xk ∈ L, as
required. 2



First Principle of FSM 56

Figure out what the darn states are.



1 Kleene Algebras

2 Left Quotients

3 Language Quotients

4 2-DFA

5 FSM and Matrices



Matrices 58

There are many ways one can associate a matrix with a finite state machine.
Say, we are dealing with a DFA A.

Probably the most obvious approach is to consider the transition function of A
as a matrix ΣQ×Σ . This is useful from a data structure perspective, but not
particularly interesting.

Much more useful is to consider square matrices MQ×Q that live in some
monoid, with matrix multiplication as the operation. In particular we can
associate every input symbol to a Boolean matrix

φ : Σ → 2Q×Q

giving rise to a monoid homomorphism. We have

x ∈ L ⇐⇒ I · φ(x) · F = 1

where I and F are Boolean vectors indicating the initial and final states.


	Kleene Algebras
	Left Quotients
	Language Quotients
	2-DFA
	FSM and Matrices

