CDM

Bisimulations

KLAUS SUTNER
CARNEGIE MELLON UNIVERSITY @

1 Bisimulations

Transition Systems

By a transition system 7 we mean an edge-labeled digraph (where we allow
multiple edges and loops). More precisely, consider a set @ of vertices, F of
edges and alphabet X' together with three maps

sre, trg: E — @
lab: £ — X
We will always assume that distinct edges differ either in source, target or label.

Hence we can think of E as a ternary relation: £ C Q x X x @, the transition
relation of 7. We call (src(e), lab(e), trg(e)) a transition and often write

a,

p—q for src(e) = p,lab(e) = a,trg(e) = q

We are mostly interested in the case where @ is finite, but the definitions make
perfect sense in general.

States and Actions

Intuitively we can think of

@ (@ as a set of (process) states,
@ Y as a set of permissible actions, and

@ — as the specification of possible transitions.

It is often necessary to filter out transitions labeled by a € X:
a
E.={p-qlp—qeL}

Hence, we may write a transition system as

T= <Q7E7(1>)a€2>

Paths

A path in a transition system is a sequence ™ = e, ..., e, of edges such that
src(eir1) = trg(es). n > 1 is the length of the path, src(e1) is its source and
trg(en). We allow an empty path p € @ of length 0, with p being its source
and target. We write Path(7") or Patht for the collection of all paths in 7.
Likewise, Path(7,p) or Path7(p) denotes the paths with source p.

Note that there is a natural partial concatenation operation on Path(7): paths
7 and 7’ can be joined to form a new path 77’ as long as src(n’) = trg(n).
Thus we have a partial monoid.

The label or trace of a path 7 is the sequence of its edge lables, considered to
be an element of the free monoid X*:

lab(7) = lab(e1)lab(ez) ... lab(en)

The label of the empty path is g, the unit in X*.

Simulations and Bisimulations

Definition
A simulation from 77 by 72 is a binary relation p C @1 X Q2 such that for all
p p q the following holds:

p—p implies 3¢5¢(pq)

A bisimulation is a simulation p such that p~' is also a simulation.

This is the most natural framework for simulations: one system, here 73, can
mimick another, here 71. For more general systems such as Turing machines or
cellular automata the details can be very complicated, but for transition system
things are fairly straightforward.

Two systems with a bisimulation are in some sense equivalent.

Diagrams

Transitions starting at equivalent states can be extended on the other side.

p—a>p' p77ﬂ7>p’
| |
) I3 I p

a ‘/ a ‘/
G- -2 —>¢ g ——>¢q

P

This generalized immediately to whole computations.

po—2 > 2 op Pl —2 S

qo - @ i q2 -1 —" o gy

Single System

This is slightly counterintuitive, but it turn out to be technically easier to deal
with bisimulations on a single transition system. There is no loss in generality:
we can simply consider the disjoint sum of the two systems, with state set

Q=0Q1YQ:.

In this setting, one can express the conditions for a bisimulation nicely in terms
of relational composition:

a
— O

)
o
le
N

—1 a aq

p
p o%Q—)op71

Make sure to prove that this definition is equivalent to our original one.

Basics

Lemma

Bisimulations are equivalence relations.
Bisimulations are closed under union. Hence there is a uniquely determined
maximum bisimulation.

Write 67 for this unique maximum bisimulation on 7. In terms of equivalence
relations this is the coarsest partition that is a bisimulation.

This suggests one might try to use a partition refinement algorithm to compute
07. The starting partition depends on the specific context.

Application: Equivalence Testing

A standard problem in automata theory is to test whether two DFA are
equivalent (accept the same language). One way to do this is to minimize both
machines and check for isomorphism.

A better approach is to try to construct a bisimulation. Suppose the two given

DFAs have disjoint state sets (1 and Q2 and set Q = Q1 U Q2. For simplicity
write ¢ for 61 U d2.

In the following description, we assume p to be an implementation for dynamic
equivalence relations: union/find is the standard approach.

Algorithm

push (qo1, goz) into S
initialize p to (qo1, qo2)

while S # () do

pop (p,q) from S
if =p p g then
add (p,q) to p
forall a € X do
add (4(p,a),d(q,a) to S

return p saturates F; U Fb

In practice, one would exit with answer No as soon as a bad pair (p, q) is
encountered.

Running time is near-linear and better than any minimization-based algorithm.

10

Vertex Labels

As the equivalence testing example indicates, in applications to finite state
machines, one often has to deal with states of different kinds (final and
non-final states in the example).

This can be modeled by a partition of the nodes, usually expressed in terms of
node labels, a function

A:Q—C

where C' is a finite set of “colors.”

We are then interested in bisimulations that refine the give partition. In other
words, the bisimulation has to saturate the given partition.

11

No Labels 12

Given a node-labeled transition system 7 = (Q, X, E; \), we can reduce the
computation of the maximum bisimulation to a system with a one-symbol
alphabet; really, just an unlabeled, directed graph. To this end,

o Split each transition p = ¢ in T into two directed edges

p— (p,a,q) (p,a,q) —q

@ This produces a new (unlabeled) system with states Q' = QU E.
@ Extend the label function by setting)’ (p) = A(p), N (p,a, q) = (A\(p), a).

Then construct the maximum bisimulation for 7' = (Q’, X, »; X').

Mildly Frivolous Example 13

Define an acyclic rooted digraph (ARD) to be an acyclic digraph G together
with a special point 7 (the root), such that all of G is reachable from 7.

Every well-founded pure set S can be represented by an ARD G(S5):

e If S = (), then G(S) has a single node 7.

e If S = {S1,...,Sn}, then G(S) is obtained by choosing a new root node
r, and attaching the roots of the G(.S;) as children of .

Similarly we can translate any ARD G into a set S(G). Both conversions are
single-valued, but note that there can be many different APGs that produce the
same set.

Von Neumann 5 14

Sets representing finite ordinals (aka natural numbers) can be defined by

No=0
No = {No, N1, ..., Nu_1}

Here is the set representing the natural number 5.

{0, {03, {0,{0}}, {0, {0}, {0, {033}, {0, {0}, {0, {03}, {0, {0}, {0, {0} } } }}

In textual form, a nightmare, but the structure is not too bad in tree
representation:

Neumann Ordinal 5

Ha

DTN

o O

Colors correspond to rank, and it is natural to partition the nodes into leaves
and interior nodes.

24—k

There are paths from the root to a rank k point.

15

Half Merged

16

Fully Merged

The number of paths from the root to a rank k point is still

24—k,

17

Block Splitting 18

Suppose we have two blocks B and C in a partition II.

If there are nodes b and b’ in B such that b — ¢ for some ¢ € C, but no such
edge exists for b’, we must split B by C:

BT ={beB|3ceC(-c)}
B ={bcB|VcecC® Ac)}

We keep on splitting until no further splits are possible.

The details are quite messy, but in the acyclic case it is fairly straightforward to
organize this method efficiently.

ARD Algorithm

Input: ARD G, partition II¢ (the color partition).

Precomputation: compute the rank of each vertex.

refine I by rank, order blocks by increasing rank
say I = B1,...,Bn,

fori=1,...,m do
for j =i+1,...,m do
split B; by B;
return [

Note that m will increase during the execution of this algorithm.

19

Efficiency 20

Claim: The splitting algorithm for ARDs is linear time.

Sketch of proof.
This requires a little fumbling.
The key observation that an edge can be used only once in the splitting process.

A clever data structure is needed to represent the partition (various arrays with
pointers).

O

	Bisimulations

