
CDM

Minimization and NFAs

Klaus Sutner

Carnegie Mellon University

1 Paige-Tarjan

2 Minimizing NFAs

3 Hardness

Nondeterministic Transitions 2

So far, all our partition refinement algorithms require transition functions rather
than relations.
Naturally, the questions arises how to deal with nondeterministic transitions.
Here is the key difference between the two situations.
Suppose we have some equivalence relation ρ on Q and sets B ⊆ A ⊆ Q. To
simplify notation, let X = Q − X for any X ⊆ Q. As before, we use the
refinement operator

ΨX(ρ) = ρ ∩ (X, X)

Suppose A is ρ-stable. In the function case we have

ΨB ◦ ΨA−B = ΨB

and one refinement step suffices.

Relation Case 3

But not in the general case: given a block D we can have up to three slices:

D+ = D ∩ τB

D− = D ∩ τB

D++ = D ∩ τ(A − B)

D+− = D ∩ τ(A − B)

But note that D− is not split by τ(A − B) (since A is stable).

Thus the challenge is to compute these pieces quickly.

Single Relation Case 4

One can slightly simplify matters by first splitting with respect to τQ: this
removes states with out-degree 0 from discussion.

Letting m = |τ | and n = |Q| we then have m ≥ n − 1. Actually, since we are
not interested in the function case we may safely assume m ≥ n.

The algorithm maintains a partition P and a split list S. The entries of S as
lists of blocks of P of length at least 2. Each block in P may occur at most
once in S.

P is initialized by the given coloring, and S = ((P1, . . . , Pr)).

Paige-Tarjan Algorithm 5

initialize P and S

while S not empty do
extract (X1, . . . , Xr) from S
assume wlog |X1| ≤ |X2|
let B = X1 and A =

⋃
X

if r ≥ 3
then add (X2, . . . , Xr) to S
foreach block D do

if D splits
then compute

D+ = D ∩ τB

D− = D ∩ τB
D++ = D ∩ τ(A − B)
D+− = D ∩ τ(A − B)

update P , S accordingly

Comment 6

Note that if we add all blocks in P missing in S to S we get a partition S′ such
that P ⊑ S′. The algorithm stops when P = S′.

The “update” part is meant to

split blocks already in S by updating the corresponding list, and
place newly split blocks into S (as a list of length 2 or 3).

Correctness 7

Let ρ be the coarsest stable refinement. Then ρ ⊑ P is a loop invariant of the
algorithm.

To see that upon completion ρ = P note that after each round P is stable with
respect to the sets in S′.

Running Time 8

Because of Hopcroft’s trick, every state is used to split at most log n times.

As before, the critical part is perform the actual splitting work without
recomputation. To this end keep counters for all X =

⋃
Xi in S:

#Xp = |pτ ∩ X|

Thus #Xp is the number of transitions with source p and target in X.
Initially #Qp is just the out-degree of p.

Splitting 9

Compute τB and #Bp for p ∈ τB.

Split blocks wrto τB

Computer ∆ = τB − τ(A − B). To this end, add p to ∆ whenever
#Bp = #Ap.

Split D+ via ∆.

One can show that one splitting round is

O(|B| +
∑
p∈B

|τp|),

leading to a total running time of O(m log n).

Results 10

Theorem (Paige, Tarjan 1987)
Refinement with respect to a single relation can be done in O(m log n) steps.

One can adapt the Paige-Tarjan algorithm to the case of multiple relations;
alas, the logarithm factor cannot be maintained.

Theorem (Fernandez 1989)
Refinement with respect to a family of relation can be done in O(mn) steps.

1 Paige-Tarjan

2 Minimizing NFAs

3 Hardness

Barriers 12

Note that for any regular language there trivially must be an NFA that
minimized the number of states.
Alas, as simple examples show, one cannot hope to transfer the uniqueness
results from DFA minimization to the nondeterministic realm.

1 2
a

a

1 2
a

a

Another Example 13

R = a+b + (aa)+c

In the minimal DFA, the states correspond to the left quotients of R:

1 a+b + (aa)+c
2 a∗b + a(aa)∗c
3 a∗b + (aa)∗c
4 ε

The NFA has a state with behavior a∗b and another with behavior (aa)∗c.
This suggests a wild idea: how about trying to use regular subsets of quotients,
rather than just the quotients themselves?

Universal Automaton 14

The universal NFA U for a language R is defined as follows:

States All non-empty intersections of left quotients.
Transitions K

a−→ L iff L ⊆ a−1K.
Initial All states K ⊆ R.
Final All states containing ε.

Note that the universal NFA contains a copy of the minimal DFA for R: the
part generated by initial state R and using only the “maximal” transitions

K
a−→ L ⇐⇒ L = a−1K

Lifting Computations 15

More generally, any computation in U

π : L0
a1−→ L1

a2−→ . . .
an−→ Ln

can be lifted to a computation

π̂ : L0
a1−→ K1

a2−→ . . .
an−→ Kn

where Ls ⊆ Ks = (a1 . . . as)−1L0.

This has the immediate consequence

Proposition
The universal NFA for R accepts R. More precisely, state K in U has behavior
K.

Properties 16

Theorem
Let U be the universal NFA for R and A any NFA such that L(A) ⊆ L(U).
Then there is an epimorphism f : A → U .

Proof. Define
f(p) =

⋂
{ u−1R | A : I

u−→ p }

Suppose p
a−→ q is a transition in A. Then

f(q) = a−1f(p) ∩
⋂

w−1R

where w ranges over all words I
w−→ q that are not captured by the first term.

2

Properties II 17

Theorem
Let U be the universal NFA for R and A any NFA such that L(A) ⊆ L(U).
Suppose there is an epimorphism f : U → A . Then f is an isomorphism.

Proof.
Note that p = JpKU = Jf(p)KA, so f must be injective.

2

1 Paige-Tarjan

2 Minimizing NFAs

3 Hardness

Minimization Problems 19

Suppose C and D are two classes of finite state machine acceptors.

Problem: C-D Minimization
Instance: A machine A in class C.
Solution: An equivalent machine A′ in class D of minimal state complexity.

As usual, it is more convenient to consider the decision version of the problem:

Problem: C-D Minimization
Instance: A machine A in class C, a bound B.
Question: Is there an equivalent machine A′ in class D of state complexity

at most B?

Hardness of Minimization 20

Theorem
DFA-DFA Minimization is polynomial time.

Theorem
NFA-DFA Minimization is PSPACE-complete.

Theorem
NFA-NFA Minimization is PSPACE-complete.

NFA Universality 21

Theorem (Stockmeyer, Meyer 1973)
NFA Universality is PSPACE-complete.

Proof.
Suppose A is an NFA. Since PSPACE is closed under complement we can
instead check that L(A) ̸= Σ⋆. Note that a witness x ∈ Σ⋆ − L(A) may have
exponential length. However, since PSPACE = NPSPACE, we can simply
guess x letter by letter and verify that x is duly not accepted by A. This is
clearly in linear space.

For hardness, suppose T is a nondeterministic Turing machine with polynomial
space complexity p(n). Let x be some input of size n. We may safely assume
that the instantaneous descriptions (IDs) of T in all computations on x have
size exactly p(n) and can be written as

a1a2 . . . al p b1b2 . . . br

Here the ai and bi are symbols from some tape alphabet Σ, and p is a state in
Q (assumed to be disjoint from Σ).

For our purposes, it is slightly easier to work with two directed copies of the
tape alphabet:

Σ′ = {�a,�a | a ∈ Σ }

An ID is coded as a word over the alphabet Γ = Σ′ ∪ Q ∪ {#, $}, where #
and $ are new separator symbols, and has the form

#�a�a . . .�a p�b�b . . .�b

A whole computation looks like

W = #I0#I1 . . . #Im$

For the proof we construct an NFA A of size polynomial in n that accepts all
words over Γ iff T does not accept x.

There are two basic reasons why W may not code an accepting computation:

W is syntactically wrong, it fails to code a computation.
W does code a computation, but it is not accepting.

Testing syntactical correctness is fairly straightforward: we match against the
pattern

(# �Σ
⋆ Q �Σ

⋆)⋆ $

Thus, a correct string may contain a factor �a p or p�a, but neither �a p nor p�a.
Similarly, it may contain blocks �a�b and �a�b, but not �a�b or �a�b.

In fact, we can check in addition that all # symbols are at distance p(n) (and
likewise for the endmarker $).

To check syntactically correct strings that do not represent accepting
computations one has to test the disjunction of three properties:

The first ID in W is not the initial ID for input x.
The last ID in W is not an accepting ID.
Two consecutive IDs in W do not represent one step in a computation.

The first two are straightforward. For the last, we have to rule out e.g. factors
of the form

. . . a p b . . . # . . .︸ ︷︷ ︸
p(n)+1

a q b′ . . .

whenever there is no transition (p, b) 7→ (q, b′, 0) in T . Note that this is a
strictly local property; we only need to focus on three consecutive letters at
distance p(n) + 1.

It is a labor of love to check that one can indeed build an NFA A =
⋃

Ai of
size polynomial in n that accepts exactly all strings that fail to represent an
accepting computation on x.
But then T accepts x iff L(A) ̸= Γ ⋆ and PSPACE-hardness follows.

2

It follows immediately that the NFA-DFA and NFA-DFA minimization problems
are PSPACE-complete.

DFA Intersection 27

Here is a version of the Emptiness Problem using multiple DFAs:

Problem: DFA Intersection
Instance: A list A1, . . . , An of DFAs.
Question: Is

⋂
L(Ai) empty?

Note that n, the number of machines, is not fixed. Of course, we can check
Emptiness on the product machine A =

∏
Ai. The Emptiness algorithm is

linear, but it is linear in the size of A, which is itself exponential. And, there is
no universal fix for this:

Theorem (Kozen 1977)
The DFA Intersection Problem is PSPACE-complete.

Warning 28

It might be tempting to re-purpose the argument for NFA Universality. The
idea there was to construct a collection of NFAs Ai such that

Γ ⋆ =
⋃

L(Ai) ⇐⇒ T does not accept.

It follows that
⋂

(Γ ⋆ − L(Ai)) = ∅ if the Turing machine does accept.
Hence it would suffice to construct a polynomial size DFA for Γ ⋆ − L(Ai).

Alas, there appears to be no way to convert all the NFAs from the previous
argument to DFAs without encountering exponential blowup. And we do not
know how to complement without determinization.

The Proof 29

The problem is clearly in PSPACE.
As before, let T be a Turing machine with polynomial space bound and
consider IDs encoded as strings

#a1a2 . . . al p b1b2 . . . br

A whole computation has the form

#I0#I1 . . . #Im−1$

and we may safely assume that the length of each ID is exactly p(n) and that
m is even.

The idea is to construct a family of DFAs that make sure that I2i → I2i+1 is
correct, and another family that checks I2i+1 → I2i+2. We will only deal with
the first case.

Here is machine Ak, where 0 ≤ k ≤ p(n) − 3.

It reads #Σkxyz and remembers x, y and z;

It then skips p(n) − k − 3 letters, reads a # and skips k more letters.

Then the machine reads the next three letters x′, y′, z′ and checks that
they are compatible with the transition relation of the Turing machine.

Lastly, it skips another p(n)−k−3 letters, and either reads a # and starts
all over, or reads $ and accepts.

For example, if x = p, y = a and δ(p, a) = (b, q, +1) then x′ = b, y′ = q and
z′ = z. Of course, there may be multiple possibilities.

2

Determinization 31

The conversion of a nondeterministic automaton A to an equivalent
deterministic A′ relies on the standard Rabin-Scott power automaton
construction. We are only interested in the case when A′ is accessible.
Even so, we only have the exponential bound

sc(A′) ≤ 2sc(A)

Unfortunately, this bound is tight in general. It remains tight when one
considers only semiautomata where Q = F = I, even when they are nearly
deterministic and co-deterministic.

Blow-Up Example 2 32

Here is a 6-state semiautomaton.

X = b: machine is deterministic
and co-deterministic, so the power
automaton has size 1.

X = a: the power automaton has
maximal size 26.

a

a

a

a

a

a

X

b
b

b

b
b

Tip of an Iceberg 33

The example generalizes to a whole group of circulant machines on n states
with diagram C(n; 1, 2).

Start with a labeling where the edges with stride 1 are labeled a and the edges
with stride 2 are labeled b.

Then change exactly one of these edge labels: the resulting nondeterministic
machines have power automata of size 2n and the power automata are already
reduced.

Exercise
Full blow-up means that for any subset P ⊆ [n] there is some word x such that
δ([n], x) = P . Determine such a word x.

Exercise
Prove that full blow-up occurs for all these NFA.

Determinization and Reachability 34

We can dress up the determinization process as a decision problem:

Problem: Power Automaton Reachability
Instance: An NFA A, a state set P ⊆ Q.
Question: Is P a state in P(A)?

A deterministic algorithm like DFS requires potentially exponential space (to
keep track of marked nodes).

But the problem can easily be solved nondeterministically by an LBA: guess a
witness string x ∈ Σ⋆ (one symbol at a time) and verify that I

x−→ P in A.

The Digraph 35

The graph in question is determined by the NFA A: its nodes are subsets of Q
and edges are determined by

(P, P ′) ∈ E ⇐⇒ ∃ a ∈ Σ (P · a = P ′).

Note that this is a succinct representation of the graph: as a consequence, the
counting problem now shoots up to NSPACE from NL.

In practice, succinct representations of finite state machine by, say, Boolean
Decision Diagrams are quite important.

Power Automaton Size 36

Write π(A) for the size of the accessible part of the power automaton of A. So
we would like to solve the following function problem:

Problem: Power Automaton Size
Instance: An NFA A.
Solution: Compute π(A).

As usual, it is convenient to consider a decision version:

Problem: Power Automaton Size Bound
Instance: An NFA A, a bound β.
Question: Is π(A) < β?

If there were a fast algorithm for this problem, we could use it to avoid trying
to determinize NFAs where blow-up occurs. Alas, getting a bound on the size
of the power automaton is just as hard as constructing the whole machine.

A Bound 37

The complement of the Power Automaton Size problem can be solved
nondeterministically by an LBA: the LBA will

guess β-many subsets P ⊆ Q, say, in lexicographic order, and

guess a string x ∈ Σ⋆ and verify that I
x−→ P in A.

By Immerman-Szelepsényi, the Power Automaton Size problem itself is also in
linear nondeterministic space.

In fact, one can change the query to ≤ β by ≥ β, = β, < β and so forth,
without affecting complexity.

The version that is most convenient for the hardness argument is π(A) ≥ β.

Hardness 38

The proof uses the DFA Intersection emptiness problem: let A1, . . . , Ar be
DFAs over some alphabet Σ. From Kozen’s proof, we may assume that the
DFAs are unitary.

Let Γ = Σ ∪ {a, b, c}, a, b, c three new symbols.

Let ni be the size of Ai. Assume r ≥ 4 and that ni ≤ ni+1. Let pi be the
least prime larger than 7, r, ni, pi−1, and such that ni + 2ni ≤ 2pi , for
i = 1, . . . , r .

We construct new machines A′
i by attaching a pointed cycle labeled b of length

pi to Ai.
Each cycle node except the base-point has a self-loop labeled by c. The unique
final state of Ai has a cone labeled b to the whole cycle Ci.
Lastly, we attach a self-loop labeled a to the initial state of A.

The semiautomaton A =
⋃

A′
i ∪ C is the union of all the modified DFAs plus

an extra pointed cycle C:
C has length m = 7 and is b labeled; each node has a self-loop labeled by Σ
and c. The loop at the base-point is in addition labeled a. There are no
transitions from or to C from any other part of A.

The state set of A is Q =
⋃

Qi ∪
⋃

Ci ∪ C. Write Q′ for
⋃

Qi and C′ for⋃
Ci.

Terminology: elements of Q are points, subsets are states.

We have to count the number of states in P(A) that are reachable from Q.

For X ⊆ [r] let α(X) =
∏

i∈X
2pi .

For x ∈ Σ⋆ let
A(x) = { i ∈ [r] | Ai accepts x }

and α(x) = α(A(x)).

Let us say that an input string is proper if it is of the form

Σ⋆ a Σ⋆ b Γ ⋆.

Consider proper inputs w = a x b, x ∈ Σ⋆.
One can check that one can generate m α(x) states from Q · axb.
Hence, all proper inputs uaxbv produce at least m α(x) states.

Non-proper words are of one of the following mutually exclusive forms, together
with bounds on the number of corresponding states.

Σ⋆
∏

2ni

Σ⋆ a Σ⋆ m
∏

ni

Σ⋆ a Σ⋆(a + c)Γ ⋆ m
∏

2pi

Σ⋆ (b + c)Γ ⋆ m
∏

2pi

Hence the number of states reachable from Q is bounded from above by

γ = 3α([r]) + m
(
1 +

∑
x

α(x)
)
,

where the summation is over suitably chosen factors x ∈ Σ⋆ in proper inputs.

Hardness 42

Now consider the bound β = m · α([r]).

If the Kozen automata have non-empty intersection, at least β states are
reachable, as required.

If the intersection is empty, then A(x) has cardinality at most r − 1 and we have

γ/β ≤
3α([r]) + m(1 +

∑
x

α(x))
m · α([r])

= 3/m +
∑

x

α(x)/α([r]) + 1/α([r])

< 1/2 +
∑

i

2−pi + 2−
∑

pi < 1.

Thus, γ < β, and we are done.

	Paige-Tarjan
	Minimizing NFAs
	Hardness

