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Möbius Inversion

Klaus Sutner

Carnegie Mellon University
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Necklaces 2

We already know how to deal with counting problems relating to necklaces and
bracelets.

Definition
A k-ary necklace is a word over a k symbol alphabet up to rotation. A k-ary
bracelet is a word over a k symbol alphabet up to rotation and reflection.

If you don’t like words, think colored beads.

If the words have length n then the appropriate actions are given by the cyclic
group Zn and the dihedral group Dn, respectively.
No problem.



Primitive Words 3

But here is a very closely related notion that produces a new type of counting
problem.

Definition
A non-empty word w is primitive if it is not of the form xi for any x shorter
than w. The root of a word w is the shortest word x such that xi = w and the
exponent i is then the repetition factor of w.

Thus a primitive word is its own root and has repetition factor 1.
A word of prime length is primitive unless it is of the form an.
Primitive words pop up naturally when one tries to understand commutativity
in words.



A lemma 4

Lemma
Suppose u and v are non-empty words such that uv = vu.
Then u and v have the same root.

Proof.
Use induction on |uv|, the combined length of u and v.
And draw a picture.

2

In other words, words never commute except in the trivial case.



Counting Primitive Words 5

Even if n has many factors, random words of length n tend to be primitive.

In order to count primitive words, let π(n) denote the number of primitive
words of length n over an alphabet of size k. Note that

kn =
∑
d|n

π(d)

Wishful thinking: It would be nice if we could turn this equation around:

We would like to obtain an expression for π(n) in terms of kn.



Möbius Function 6

There is a well-known method to tackle problems of this form based on the
Möbius function µ which is defined by

µ(n) =

{ 1 if n = 1,
(−1)r if n = p1 . . . pr, all distinct primes,
0 if n is divisible by p2, p a prime.

Herr Möbius’ invention is a bit strange. Since µ(n) depends
very much on the prime decomposition of n its behavior is rather erratic.



Möbius Inversion 7

Lemma (Möbius Inversion Formula)
Let f(n) =

∑
d|n g(d). Then

g(n) =
∑
d|n

µ(d)f(n/d) =
∑
d|n

µ(n/d)f(d).

In other words, if f is obtained from g by summation (over divisors), then g
can in turn be expressed by summation over f .



Why On Earth??? 8

Proposition

∑
d|n

µ(d) =
{

1 if n = 1,
0 otherwise.

Proof.
Suppose n > 1 with prime decomposition

n = pe1
1 pe2

2 . . . p
ek
k

Let n′ = p1p2 . . . pk. Clearly
∑

d|n µ(d) =
∑

d|n′ µ(d). But the latter sum is

∑
I⊆[k]

(−1)|I| =
∑
ℓ≤k

(−1)ℓ

(
k

ℓ

)
= 0.

Done. 2



Calculating 9

∑
d|n

µ(d)f(n/d) =
∑
d|n

µ(n/d)f(d)

=
∑
d|n

µ(n/d)
∑
e|d

g(e)

=
∑
e|d|n

µ(n/d) g(e)

=
∑
e|n

∑
d|n/e

µ(n/ed) g(e)

=
∑
e|n

∑
d|n/e

µ(d) g(e)

= g(n)



Standard Application: Euler’s Totient Function 10

Recall Euler’s totient function

φ(n) = #( k
∣∣ 1 ≤ k < n, gcd(k, n) = 1)

Then ∑
d|n

φ(d) = n

Hence
φ(n) =

∑
d|n

µ(d)n/d



No Free Lunch 11

Alas, computationally this is not a great step forward:

To compute φ directly, we need prime factorization.

To compute φ via µ, we need prime factorization.

This is inevitable in a way: since factorization is presumably hard, and division
is cheap, the complexity has to go somewhere else: it hides in µ.

Computationally there is no free lunch, ever. Maybe occasionally breakfast.



Application: Primitive Words 12

Fix an alphabet of size k. For the number of primitive words the Möbius
inversion formula yields

π(n) =
∑
d|n

µ(d)kn/d

Over a binary alphabet the number of primitive words up to length 12 is

2, 2, 6, 12, 30, 54, 126, 240, 504, 990, 2046, 4020



Application: Necklaces 13

Define neck(n, k) to be the number of necklaces of length n using beads of k
colors. By stringing up primitive words into necklaces we get

neck(n, k) =
∑
d|n

1
d

π(d)

= 1
n

∑
d|n

n

d

∑
e|d

µ(e)kd/e

= 1
n

∑
d|n

∑
e|n/d

µ(e)d kn/de

= 1
n

∑
D|n

∑
ed=D

µ(e)D/e kn/D

= 1
n

∑
D|n

φ(D)kn/D



Lyndon Words 14

In each necklace (considered as an equivalence class of words) we can pick the
lexicographically first as a representative.

Definition
A Lyndon word is a representative for a necklace that is also primitive.

Proposition
The number of Lyndon words of length n over a k symbol alphabet is

1
n

π(n) = 1
n

∑
d|n

µ(n/d)kd.
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Consider only functions on the postive integers.

f is additive if a⊥b implies f(ab) = f(a) + f(b).
f is strongly additive if it is additive and f(pk) = f(p) for all primes p.
f is totally additive if f(ab) = f(a) + f(b).

Examples: number of prime divisors with multiplicity, number of disctinct prime
divisors, logarithm.

f is multiplicative if a⊥b implies f(ab) = f(a)f(b).
f is strongly multiplicative if it is additive and f(pk) = f(p) for all primes p.
f is totally multiplicative if f(ab) = f(a)f(b).

Examples: multiplicative τ , σ, Φ, µ

Φ(m)/m is a strongly multiplicative, a power function nk is a totally
multiplicative.



Möbius Meets Algebra 17

What is really going on? Our proof, while correct, offers no insights. A good
proof should explain why the result holds, not just establish its formal
correctness.

Definition
An arithmetic function is a function f : N+ → C from the positive integers to
the complex numbers.
The Dirichlet product or convolution of two arithmetic functions f and g is
defined as

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d) =
∑

xy=n

f(x)g(y).

Thus, an arithmetic function is just an infinite sequence of numbers. Often the
numbers are integers or rationals, but we might as will deal with the more
general case.



Properties of the Dirichlet Product 18

Let ε by the arithmetic function defined by

ε(n) =
{

1 if n = 1,
0 otherwise.

The following is easy to see.

Proposition

The Dirichlet product is associative: f ∗ (g ∗ h) = (f ∗ g) ∗ h and commutative:
f ∗ g = g ∗ f .
Moreover, ε is a neutral element: f ∗ ε = ε ∗ f = f .

So, we are dealing with a commutative monoid.



Inverse Elements 19

Which arithmetic functions f have an inverse f−1 such that For example
ε−1 = ε.

Lemma
f has an inverse iff f(1) ̸= 0.

Proof.
Suppose g is the inverse of f . Then

1 = (f ∗ g)(1) = f(1)g(1)

so that f(1) ̸= 0.
For the opposite direction let f(1) ̸= 0. We can construct the inverse g directly
by induction.

g(n) =

{
1

f(1) if n = 1,
−1

f(1)
∑

1<d|n f(d)g(n/d) otherwise.

2



Zeta and Möbius Function 20

Definition
The zeta function is defined by ζ(n) = 1.
Its inverse is called the Möbius function µ.

This is justified by the lemma; ζ is indeed invertible.

Note that convolution with ζ is essentially just a summation

(f ∗ ζ)(n) =
∑
d|n

f(d)

so with g = f ∗ ζ we have f = g ∗ µ: exactly what we wanted.



Partial Orders 21

Since we are not summing over intervals i = 1, . . . , n but over the divisors of n
we need to talk about partial orders.

30

6 10 15

2 3 5

1



Intervals 22

For any partial order P define intervals by

[ a, b ] = { x ∈ P | a ≤ x ≤ b }

and int(P ) the collection of all non-empty intervals over P .

Now consider two functions f, g : int(P ) → R . The convolution of f and g is

(f ∗ g)([ a, b ]) =
∑

a≤x≤b

f([ a, x ])g([ x, b ])



Technicalities 23

For this to work we have to assume that P is locally finite: all intervals [ a, b ]
must be finite.

Also note that these intervals are not necessarily linearly ordered, the picture
from above is the interval [ 1, 30 ].

The notation f([ a, b ]) is technically correct, but really an atrocity.
One usually just writes f(a, b) instead.



Incidence Algebra 24

Definition
⟨int(P ), ∗⟩ is the incidence algebra (over the partial order P ).
The delta function is defined to be δ(x, x) = 1, and 0 otherwise.

Proposition
The incidence algebra is a monoid: convolution is an associative operation, and
δ is a neutral element.

Proof is a standard exercise in summation.



Inverse Elements 25

One might wonder what elements possess an inverse in the incidence algebra:

f ∗ g = g ∗ f = δ

and what these inverses might look like.

Lemma
An element f of the incidence algebra is invertible iff f(x, x) ̸= 0 for all x.

Proof. Necessity is easy.

1 = δ(x, x) = (f ∗ g)(x, x) = f(x, x)g(x, x).



Proof, contd. 26

For sufficiency we will define g explicitly.

g(x, y) =

{
1

f(x,x) if x = y,
−1

f(x,x)
∑

x<z≤y
f(x, z)g(z, y) otherwise.

This definition uses induction on the size of the intervals. By brute force,
f ∗ g = δ.
Note that g also has the property from the lemma, so let h be its right inverse.

g ∗ f = (g ∗ f) ∗ (g ∗ h) = g ∗ (f ∗ g) ∗ h = g ∗ h = δ.

So, g is also a left inverse.
2



Zeta Function 27

Definition
The zeta function is defined by ζ(x, y) = 1.

From the lemma, ζ is invertible.
Its inverse is called the Möbius function µ of int(P ).

Note that convolution with ζ is essentially just a summation

f ∗ ζ(a, b) =
∑

a≤z≤b

f(a, z)

so with g = f ∗ ζ we have f = g ∗ µ: exactly what we wanted.



The Theorem 28

Theorem
Let g(x, y) =

∑
x≤z≤y

f(x, z). Then

f(x, y) =
∑

x≤z≤y

µ(z, y) · g(x, z).

This is very pretty, but the problem is that we need to compute µ.

There are techniques to do this for interesting cases (using products of partial
orders), but we won’t go there.

For the divisibility order on the natural numbers we get the classical Möbius
function – sort of.



Another Technicality 29

In our applications, the partial order is divisibility on the natural numbers.

30

6 10 15

2 3 5

1

However, we are really dealing with functions of the form f0 : P → R : the
argument ranges over the partial order, not the incidence algebra.

Easy to fix: set f(x, y) = f0(y) or f(x, y) = f0(x).



Summary 30

τ(n): number of divisors of n

σ(m): the sum of divisors of n

Φ(n): Euler totient function
µ(n): Möbius function

Φ = µ ∗ I

τ = ζ ∗ ζ

σ = ζ ∗ I

inversion: g = ζ ∗ f implies f = µ ∗ g
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