CDM

Fast Minimization

KLAUS SUTNER

CARNEGIE MELLON UNIVERSITY
FaLL 2024

D080

[ay

N

Partition Refinement

Hopcroft’s Algorithm

Valmari-Lehtinen

Equivalence Testing

* Characterizations of Recognizability

Battleplan

Minimization is a good example where efficient computation forces one to think
more carefully than in math alone.

We have a quadratic time (worst case), linear space algorithm that works fairly
well as long as the machines are not too large. If one tries to break through the
quadratic barrier, a reasonable target is log-linear.

So the challenge is to come up with a log-linear algorithm for minimization, or
come up with plausible arguments as to why such an algorithm does not exist.
To be clear: it does exist, but it's much more complicated than Moore's
algorithm.

Towards Algorithms

Mathematical Thinking: behavioral equivalence. Once the concept of be-
havior is clear, there is a straightforward algorithm for mini-
mization. And, it's even polynomial time.

Algorithmic Thinking: refinement of equivalence relations. A better al-
gorithm is obtained by thinking clearly about computing with
equivalence relations (Moore). The reward is a clean, quadratic
time algorithm (which is often much better than quadratic).

Smart Algo Thinking: baby-steps vs. giant-steps. Now things get tricky:
all sub-quadratic algorithms require a much more careful argu-
ment and deeper algorithmic methods. A bit of creative insight
is required to get down to log-linear. And doing things ele-
gantly and efficiently is quite difficult.

Total Recall

Recall our abstract scenario: we have an equivalence relation p C Q x @ and
an endofunction f: Q — Q.

We want to find the coarsest refinement p of p that is compatible with f:
ppa= f(p)p f(a)

This is accomplished by repeated application of a refinement operator ref;:

pprq< f(p)p flq)

refs(p) = pMpy

In other words: p is the fixed point of p under ref.

Moore’s Algorithm

The refinement operator in Moore's algorithm works by representing all
relations as canonical selector functions (aka int arrays), each round requires a
scan of the whole array.

So each refinement step is ©(n)—with good constants but still linear in n.
The good news is that, quite often, the algorithm uses fewer than n rounds, so

the total time complexity may well be sub-quadratic.

Alas, there are cases when Moore requires @(n) rounds, producing quadratic
running time overall.

Standard Example

Here is the standard example that demonstrates that Moore's algorithm may be
quadratic: the minimal DFA for {a}=".

. a M\ a S\ a D a) a =
© @ @ ® @® ®

For this automaton, a single Moore round will split off only one state from the
right end of block D = {0,1,...,r}, at a cost of ©(n) steps.

The split occurs only because of some block B = {p}, nothing else matters.

Potential Speedup

Critical Idea:
Maybe we could get mileage out of trying to guide the refinement
by single blocks, instead of blindly hitting the whole carrier set.

We only want to touch the the blocks in the partition that are currently
“relevant,” not just blindly every state in the machine. E.g., in the last
machine we want to touch only {0,...,p — 1}.

Local Splitting, Backwards

Suppose p is a partition of @), and consider two blocks C' and B. Let
f:Q — @ be some endofunction.

We say that C splits B if

BNnfYC)#0 and B-—f'(C)#0.

In other words, f(B) intersects both C and @ — C and is not f-compatible yet:
stopping the refinement process at this point would produce a nondeterministic
machine. We need further refinement.

Giants versus Babies

Let's define a new, more complicated refinement operator p’ = ref(p, B, C) as
follows:

ppq <= (p,a¢BAppq) V

(r,ae BA(f(p) € C & f(g) €C))

In other words: outside of block B we keep the old p. Inside of B we check for
C-equivalence of children.

So refs(p, B,C) is a indeed a refinement of p: block B is potentially split in
two (or may be unchanged).

Correctness

Proposition
o refs(p) C refs(p, B,C).

o refs(p) # p implies that ref ¢ (p, B, C) # p for some B and C.

In other words, we make no mistakes and we can't get stuck.

Proof.
refs(p) is [1o g refs(p, B, C) and thus finer than each part.

If refs(p) # p there must be some block B and p, ¢ € B such that
~(f(p) p £(q))-
Let C be the block containing f(p), done.

10

But Why? 11

Of course, from a complexity perspective this may not sound too promising: we
are breaking one giant step into multiple baby steps. It is not unreasonable to
suspect that this might even increase running time.

But: The baby steps provide much better control over the selection of the next
refinement step: we can choose the blocks involved at will.

With a little effort this feature can be exploited sufficiently to speed up the
whole process.

2 Hopcroft’s Algorithm

Hopcroft’s Algorithm, Single-Letter Case

Suppose we have X = {a} and we want to insure compatibility with J, (see
below for the general case). In addition, we have an initial partition

(F,Q — F). The algorithm maintains two data structures, both are initialized
by the given partition.

@ a partition P of @), representing the equivalence relation,

@ a split list S with entries some of the blocks in the partition.

We refer to the blocks C' in S as active: those are the blocks that we will use
at some point to try to refine P by a='C.

The algorithm extracts an active block from the split list and tries to refine the
blocks in the partition accordingly.

It then updates the split list in a clever way, and stops when the split list
becomes empty.

13

Getting Started 14

Initializing P is straightforward, just the given partition.

The split list S only gets the smaller of the two blocks (we are dealing with the
single-function case here, see below on how to handle larger alphabets).

Since we are interested in the case where f = §,, let us lighten notation a bit
and write a~'C rather than §;*(C).

Incidentally, for some application one needs to allow initial partitions with more
than 2 blocks; everything we do here easily generalizes.

Hopcroft’s Algorithm

initialize partition P and split list S

while S not empty do
extract C from S
compute C=a"'C
foreach block B split by C' do

B*=BnC
B~ =B-B*
replace B by B* and B~ in P // update partition
if Bisin S // update split list

then replace B by BY, B~ in S
else replace B by the smaller of BY, B~ in S
end

15

Missing Work? 16

At first glance it may seem like we are not doing enough work: in the last case
it feels like both BT and B™, the parts of B obtained by splitting wrto the
critical block C, should be added to the split list.

Otherwise we might miss out on splitting some other block that is not split by
B but split by BT or B™. The algorithm might stop without having produced
an f-compatible relation.

The correctness proof hinges on showing that this cannot happen: in the critical
case, if BT splits some block, then so does B~, and the other way around.

By picking the smaller of the two blocks, we get the desired speedup while sill
producing the right result.

Hopcroft’s Proposition

The following observation by Hopcroft makes this idea of “no-missing-work"
more formal. Suppose we have 2 blocks B, C' in partition P. Write

B/C

for the partition induced by splitting B via ¢ 'C: BT = Bna*C and
B~ =B-a'C.

Let X be a block.

Proposition

X/Bn X/B"=X/Bn X/B” =X/B"™ n X/B~

17

Correctness 18

Call a set Z C @ of states safe for partition P (or simply P-safe) if f=*(Z)
does not split any block in P.

We will show that the following assertion is a loop invariant:
VX eP-S3TCS <X ulJr P—safe>

In other words, Z = X itself may split some blocks, but if we pad it out with a
few blocks in S (and thereby inflate f~'(Z)) no splits occur.

Before and After

This assertion holds before the loop ever executes: there are only two blocks
X,Y in P and one, say, Y in S (the smaller of the two). Since
FFUXUY) = Q) = Q, no splits occur.

After the loop terminates with S = (), the claim
vXeP (X P—safe)

meaning the every block is safe. Done.

19

Notation 20

As is customary, we indicate the value of a variable after one more execution of

the loop-body by attaching a prime: so P’ is the partition after one more
round.

In the following we argue about the state of affairs at the end of a round. We
need to show that

YXecP-S3TCS <XUUT P—safe)

implies that

VXeP-S3rcs (X U UT P’—safe)

So assume we have some arbitrary block X € P’ — 5.

Aside 21

Induction arguments about procedural code are typically messy because one
has to distinguish between changes in state; in particular variables change their
values over and over again.

The resulting arguments can get quite involved combinatorially and are often
quite messy.

Casel: XeP,XeS 22

In this case, X is an old block that has just been removed from the split list.

Since X is old, it has not been split in the last round, yet was removed from
the split list.

The only way this can happen is that C' = X is the critical block, and was
removed after splitting blocks wrto a™*C'. But then safety is a direct result of
the construction.

Case2: X e P, X ¢S 23

By induction hypothesis: Z = X U|JT is P-safe for some T'C S.

Case 2.1: C ¢ T

In this case we can replace split blocks in the padding set T replace Y by Y+
and Y~ (which are both active) and we have Z = X U|JT" is P-safe. It is
easy to check that Z is also P’-safe.

Case 2.2: CeT

Again, we can replace split blocks in the padding set T, producing T”.
However, we can no longer use the critical block C' ¢ S’, we can only pad with
T" =T' — C. But no block in P’ can be affected by this: it was already split
wrto f~(C) during the round.

Case 3: XeP —P 24

So block X is new and was created by splitting a block Z in the last round.

Say, X = Z% and ZU|JT is P-safe for some T C S.

As before we can handle split blocks in T

Case3.1: C¢T

Then X U|JT" U Z~ is P'-safe as in Case 2.1. Note that indeed Z~ € S’ by
construction.

Case 3.2: CeT
In this case, X U UTo U Z~ is P’'-safe as in Case 2.2.

Time Complexity 25

Each block in P is represented by a doubly-linked list.

We maintain an array of pointers to these lists for P and similarly for S. We
also keep track of the cardinality of each block.

Furthermore, we have an array of pointers so that pos[p] points to the list
node containing p, plus information about the current block containing p.

The key part of each round is the computation of C=a"'C. We may assume
that f~'(p) has been precomputed for each state p. We can traverse C in time
linear in |C.

When a block B is hit for the first time, we start splitting it into two lists BT
and B™. If, in the end, B~ =) we simply replace B by BT.

All this can be handled in time O(la™'CY).

Active States

Let us say that a state p is active if p € | J.S, inactive otherwise.

At level 0, at most half of all states are active.

Each state in the critical block C' becomes inactive, but maybe reactivated
later. Hence we can naturally assign activation levels 0, 1, 2, ...to all active
states.

Recall that we only reactivate at most half the states in a block, so no state
can be activated more than logn times. But then the total work computing
pre-images of active states during the whole execution is just O(nlogn).

Hence the running time of the whole algorithm is bounded by O(nlogn).

26

The Paper

J. Hopcroft
A N log N Algorithm for Minimizing States in a Finite Automaton
STAN-CS-71-190

This is a seminal paper that will bring tears to your eyes.

27

http://www.cs.cmu.edu/~cdm/resources/Hopcroft1971.pdf

Multiple Functions

We modify the split list in the algorithm to contain entries
(a,C) € S

where C is a block and a € X: the intent is that we later refine via a7 1C.
Of course, (a, X) is than (a,Y) if | X| < |Y].

Note that we need to add (a, X) for all a € X, which produces a running time
of O(knlogn).

28

Hopcroft Example 29

The following example uses a machine over alphabet {a, b} with 15 states. The
transition matrix is

‘ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
al2 4 6 8 10 12 14 8 10 12 14 8 10 12 14
b3 5 7 9 11 13 15 9 11 13 15 9 11 13 15

The final states are {12,13, 14, 15}.
The following table shows the element extracted from the split list in the first
column and the blocks in the second.

Note that split list entry (a,) means: use the ith block in the current partition
with respect to f = dq.

The Diagram

30

31

Sample Run

© <

< <

S

SHEECY

I~IEYoR S S

<SS S S

AR RCEES
SIS SIS
NN NS S
SESESESES)

N HENN S S
SIS SIS

— Y s
SIS TSI

)
)
)
)
)

[\ Te}

(6,7,10,11,14,15) and we split both

In the first step, a~*(12,13, 14, 15)

existing blocks.

This trace only shows steps where the partition changes. Note there are many

useless” steps at the end.

“

Implementation Warning

The algorithm is quite messy to implement correctly, as can be seen from the
following papers:

D. Gries
Describing an algorithm by Hopcroft
Acta Informatica, 2 (1973) 97-1009.

T. Knuutila
Re-describing an algorithm by Hopcroft
Theoretical Computer Science, 250 (2001) 333-363.

Exercise
Implement Hopcroft's algorithm, correctly.

32

http://www.cs.cmu.edu/~cdm/resources/Gries1972.pdf
http://www.cs.cmu.edu/~cdm/resources/Knuutila2001.pdf

Hopcroft’s Algorithm

Theorem (Hopcroft 1971)

Hopcroft’s algorithm minimizes a DFA in O(knlogn) steps, where n is the
state complexity of the DFA and k the size of the alphabet.

Gries gives a very careful description (and slight improvement) of the
algorithm, really proves correctness and analyzes running time in detail.

Knuutila pointed out in 2001, one can produce cubic (in n) running time when
k =n/2 and a poor method of choosing the “smaller” block is used. OK, but
how is this relevant?

33

Nondeterminism

Note that Hopcroft's algorithm is nondeterministic in several ways.

@ We can extract any element from the split list (e.g., could use a stack,
queue, ...).

@ Likewise we can place the new entries anywhere in the split list.
@ When B and B~ have the same size, we can pick either one.
None of these choices effect correctness, but they may well influence running

time. As a consequence, any detailed analysis taking into account possible
strategies is quite complicated.

34

Actual Running Time

It should be noted that the algorithm often takes far fewer than nlogn steps.

Given a reasonable implementation, every round is linear. It turns out to be
quite difficult to construct inputs where the algorithm requires log n many
rounds.

The best result known today is that there are some DFAs such that the
algorithm takes n logn steps for a certain choice of active blocks in the main
loop.

Alas, for these machines a different choice of active blocks results in linear
running time.

35

Research Problems

@ When is the running time £2(nlogn) regardless of the chosen split list
protocol? (A unary example is known where the execution sequence is
essentially unique and reaches the log-lin bound.)

@ What is the average complexity of Hopcroft's algorithm (average with
respect to input automaton and/or split list protocol)?

@ Is Hopcroft faster than Moore on average? For the uniform distribution,
Moore has expected behavior O(nlogn) and it may be that the constants
are smaller (Bassino, David, Nicaud 2009).

36

3 Valmari-Lehtinen

Partial DFAs 38

There are many examples where the number of transitions m in a partial DFA
is much smaller than k - n, k the size of the alphabet and n the number of
states. This leads naturally to an algorithmic question:

Is there a O(mlogn) minimization algorithm that deals directly
with partial transition functions?

This would also nicely encapsulate problems with alphabet size in a parameter
that really reflects the size of the data structure: unused symbols do not inflate
the transition function.

Splitters, Again 39

The high-level logic is similar as in Hopcroft's algorithm: one maintains a
partition of and tries to refine the partition by splitting with sets of the form

5, ' (B)
The choice of B is a bit more complicated, though. Special care is taken to

avoid unnecessary computation when preimages of blocks are computed.

New Idea:
Maintain and refine a second partition of the transitions.

The transition partition helps to speed up pre-image computation.

Partition Refinement Data Structure (PRDS) 40

Important implementation detail: the partition data structure is all array-based
(unlike Hopcroft's algorithm).

Suppose we wish to maintain a partition of n'. Keep track of r, the number of
blocks, and maintain two maps (arrays)

lo,hi:r —n

plus an array P[n] such that

By, the block number d, is located in P[lo[d], hi[d] — 1]

We also have location and block-number maps

loc:n —n

bnum: n —r

such that P[loc[p]] = p, loc[P[i]] =4 and p € Bpnum(p]-

fWrite n for {0,1,...,n — 1}.

Splitting 41

It is convenient to subdivide the splitting process into three phases:

@ Pre-splitting: initialize offset pointers mrk[d] = lo[d] for all blocks, create
empty hit list.

o Splitting: process a sequence of elements, swap each to the “marked”
part P[lo[d], mrk[d] — 1] of their respective blocks. If block By is encoun-
tered for the first time, add to hit list.

@ Post-splitting: walk through blocks in hit list and update to maintain in-
variants.

It is straightforward to arrange the post-splitting phase so that whenever B
splits into By and Bz, the larger part replaces B and the smaller part receives
the higher block index (the current value of r).

The Algorithm 42

As already mentioned, the minimization algorithm uses two PRDS:

@ P: represents a partition of Q; initialized to (F,Q — F'), as usual.

o T': represents a partition of the transitions; initialized to blocks containing
all transitions with the same label.

The main loop of the algorithm looks like this:

foreach T-block C do
split blocks in P via C
foreach P-block B do
split blocks in T" via B

New blocks are “appended” in both partitions, so the traversals end when all
blocks have been processed.

Two Splitting Procedures

pre-split P

foreach transition p — ¢ in block C' do
mark source p in P-partition

post-split P

pre-split T’
foreach state p in block B do
foreach transition ¢ : ¢ — p do
mark ¢ in T-partition
post-split T’

43

Auxiliary Transition List 44

Note that for the transition splitting operation one needs to be able to traverse
all transitions with a fixed target.

To this end one precomputes two arrays

trn: m —m

fst:n —m

such that for each state p

the transitions with target p are located in trn[fst[p], fst[p + 1] — 1]

This is easy via counting sort.

Correctness a5

Recall that bnum(p) is the block number of state p. By abuse of notation,
bnum(¢) is the block number of transition ¢.

Proposition

@ States:
bnum(p) # bnum(q) implies [p] # [q]

o Transitions:
bnum(s) # bnum(t) and lab(s) = lab(¢) implies [trg(s)] # [trg(t)]

Correctness |l 46

Proposition

Let s, t be two transitions in the same T-block.
If src(s) and src(t) are in different P-blocks, then at least one of the blocks is
unprocessed.

Proposition

Let p, q be two states in the same P-block and s : p — p', t : ¢ — ¢’ two
transitions in different T-blocks. Then at least one of these blocks is
unprocessed.

If s:p—= p' and there is no a-transition with source g, then s is in an
unprocessed T-block.

Correctness Il

Theorem
The algorithm correctly minimizes a trim partial DFA in O(mlogn) steps.

Proof.

It follows from the propositions that two states have the same behavior iff,
upon completion, they are in the same P-block.

For running time, note that since we are dealing with a trim automaton, we
have n < m + 1.

As in Hopcroft's algorithm, each state can be active at most logn times and,
likewise, a transition can be active at most logm times.

So the total running time is O(mlogn).

47

The Paper 48

Antti Valmari
Fast brief practical DFA minimization

Information Processing Letters 112 (2012) 213-217

This is another paper that will bring tears to your eyes, but for entirely different
reasons.

http://www.cs.cmu.edu/~cdm/resources/Valmari2012.pdf

4 Equivalence Testing

Equivalence, Again

Let's return to our old problem of testing two DFAs for equivalence.

Problem: Equivalence
Instance: Two DFAs M; and Ms.
Question: Are the two machines equivalent?

This is of course decidable, but the interesting question is whether there are
any fast algorithms.

50

Déja Vu All Over 51

Mathematical Thinking. Directly apply the fact that we have an effective
Boolean algebra, plus a simple Emptiness algorithm.

Algorithmic Thinking. Exploit the particular normal form for DFAs, and the
fast algorithms that can be used to compute it.

Smart Algorithm Thinking. Compute a direct comparison between the two
given machines, exploiting Union/Find.

Isomorphism Testing 52

Two DFAs M; and My are isomorphic if there is a bijection f : Q1 — Q2 such
that

f(q0) = g20
f(61(p,a)) = 62(f(p),a)
f(F) =F

As usual, there is an associated decision problem.

Problem: Isomorphism of DFA
Instance: Two DFAs M; and Mo.
Question: Are M; and M isomorphic?

Isomorphism Testing

To check whether two DFAs are isomorphic one can use a variant of
depth-first-search. We may safely assume the machines have the same size.

Set f(qo1) = qo2-
Extend the domain of f according to d1, and the range according to J2.

Stop with failure if there ever is a clash (new point on one side, old point
on the other; two different old points).

Check if f maps the final states properly.
If so, return Yes, otherwise return No.

Exercise

Figure out the details of this isomorphism testing algorithm.

53

Equivalence Testing

Theorem

Given two DFAs one can test whether they are equivalent in log-linear time.

Proof.

Given M; and M> we can compute the corresponding minimal automata M
and M3 in log-linear time. Then we can check in linear time whether M and
MY are isomorphic.

Note that even using Moore's algorithm this will often produce sub-quadratic
running time.

54

O

Better Equivalence Testing

Since isomorphism testing part of our algorithm is very fast, the real cost is
incurred in minimization.

Wild Idea: Can we somehow avoid minimization?

Of course, we also want to avoid a product machine construction.

Suppose the two given DFAs have disjoint state sets (1 and Q2 and set
Q = Q1 U Q2. For simplicity write ¢ for 61 U d2.

We could try to define an equivalence relation E on @ that will tell us (among
other things) whether the two initial states have the same behavior. And do it
fast.

55

Computing F

set E = identity;
set active = ((g01,902));

while(active != empty)
(p,q) = active.extract();
if(!'pEq) {
set p E q;
foreach a in S do
set (delta(p,a),delta(q,a)) active;

56

Algorithm Details 57

The algorithm returns false whenever two states p € Q1 and g € Q2 are defined
to be equivalent under E but

p € Fy xor g € F>.
Otherwise we return true.

We can use a simple stack for the active list, the interesting question is how to
maintain the equivalence relation F.

Note that this is the dynamical situation: initially F is just the identity relation,
but as we go along we discover more related pairs.

So really we need to compute the equivalential closure of all the pairs (p, q) we
have discovered. Union/Find is perfect for this and produces essentially linear
running time.

Algorithm Explained

By initialization qo1 E qo2.
If p € Q1 and ¢ € Q2 such that p E q then d(p,a) E 6(q,a) for each a € X.

By induction for any word =

d(qo1,) E 0(qoz2, x).

Using a loop invariant one can show that in fact

E M Q1 x Q2 ={(d(go1,2),0(qo2,)) |z € X*}

Exercise

Give a detailed proof for the correctness of this algorithm.

58

Ponder Deeply

We have seen O(nlogn) minimization algorithms. However, no better
algorithm is known to date.

Exercise

Why can't this equivalence testing algorithm (or rather: some slight
modification thereof) be used to compute the minimal automaton in nearly
linear time?

Note that we do not claim that equivalence is polynomial time decidable for

nondeterministic machines. In fact, one can show that equivalence testing is

NP-hard (even PSPACE-hard) for nondeterministic machines, even if one of
the two machines simply accepts all words over the input alphabet.

Likewise it is computationally hard to find minimal nondeterministic machines
for a given language. Moreover, the minimal nondeterministic machine is not
unique in general.

59

5 % Characterizations of Recognizability

Recognizability and Machines 61

Recall that our original definition of recognizability was based on DFAs: a
language is recognizable if it is accepted by some DFA.

As Rabin-Scott showed, one can naturally generalize the underlying machines:

Theorem
A language is recognizable iff it is accepted by an NFA (or even and NFAE).

Recognizability and Algebra 62

We have already seen the following.

Theorem

A language L C X* is recognizable iff there is a finite monoid M, Mo C M
and a monoid homomorphism f : X* — M such that L = f~*(Mo).

A similar result is the following.

Theorem

A language L C X* is recognizable iff there is a congruence on X* of finite
index that saturates L.

The last theorem also holds when congruence is replaced by right congruence.

Recognizability and Quotients 63

Also, our quotient approach to minimization provides as a pleasant side effect
yet another characterization.

Lemma

A language is recognizable iff it has finitely many quotients.

This follows immediately from the preceding results.

Interesting point: the quotient automaton makes perfect sense even for
non-recognizable languages, it just has infinitely many states in this case.

If the language is simple, the structure of the diagram will be very recognizable.
This leads naturally to machines more powerful as finite state machines yet not
as strong as Turing machines (such as pushdown automata).

Example: a’b’

Part of the quotient machine for the non-recognizable language
L={a'b"|i>0} looks like this (we omit the pesky sink).

O b O b O

)
b % b

The picture very much suggests the augmentation necessary for a plain DFA to
deal with L: a single counter will do (a stack with just one stack symbol).

Exercise

Figure out how to extend a DFA so it can deal with L, keeping the additions a
simple as possible.

Pumping Lemma 65

Alas, making sure that there are indeed infinitely many quotients can be
difficult, a less challenging test would be helpful.

Lemma (Pumping Lemma)

For every recognizable language L there is a constant n such that for all words
x € L with |x| > n we have x = uvw where v # ¢, |uv| < n and uww'w € L for
all't > 0.

Proof.

Consider the minimal DFA M for L and let n be the number of states of M.
Then any word in L of length at least n must trace a loop in the diagram of
M. The claim follows.

The Pumping lemma is useless to establish recognizability but often the
weapon of choice to refute it.

PL Example 1

L ={a'"|i> 0} fails to be recognizable.

Assume otherwise.
Let n be as in the PL and consider x = a™b™ € L.
Then 2 = wvw and v = a* for some i > 0.

But then uvfw ¢ L for all ¢ # 1, contradiction.

It follows that the language P of balanced parentheses is also non-recognizable.

For otherwise P N a*b* = L would also be recognizable, which assertion we
already know to be false.

66

PL Example 2

L ={zz]|z¢€ X"} fails to be recognizable.

Assume otherwise.
Let n be as in the PL and consider x = ab™ab™ € L.

Then 2 = uvw and |uv| < n. If v = a we get a contradiction with ¢t = 0. If
v = 0b" for some i > 0 we also get a contradiction with ¢ = 0.

The problem here really is that a DFA cannot remember an arbitrarily long
prefix z which is needed to check the remainder of the input.

67

PL Example 3

L = {z2" | z € X*} fails to be recognizable.

Assume otherwise.
Let n be as in the PL and consider = = (ab)"(ba)™ € L.
Then z = uvw and |uv| < n.

A straightforward but tedious argument shows that uv’w cannot be a
palindrome for any ¢ # 1.

As in the last example, a DFA cannot remember an arbitrarily long prefix z
which is needed to check the remainder of the input.

68

Digression: Complexity of Languages

Incidentally, between

Li={z22]2z€ X"}
and

Ly={22"]|z€ X"}

the second one (even length palindromes) is much simpler:

To recognize these words one only needs to attach a stack to a FSM (context
free language).

For L1, a simple stack is not sufficient (context sensitive language).

69

Divisibility Revisited 70

Back to quotients. Suppose we want to check divisibility by 5 for numbers
given in reverse binary notation where the MSD comes last. In this case the
value function v™ looks like this:

VR(xoml e Zk) = V(TkTk—1 ... T0) = Zxﬂi
i<k

Appending a new digit changes the numerical value in a more complicated way
here than in ordinary binary:

v (za) = B (z) + a2”!

Cop-out: We could push the digits on a stack and then use our old DFA for
standard binary notation, but that requires extra memory.

So how do we construct a DFA, a memory-less device, for reverse binary
directly?

Directionality 71

Note that the real issue here is that we read input strings

ToX1T2...Tn—-1Tn

from left to right; this convention is hard-wired into our definition of finite
state machine. Of course, the choice of direction is completely arbitrary (more
precisely, a western cultural artifact).

Of course, we have a theorem that shows that L°P is recognizable whenever L
is. However, the result relies on nondeterminism and determinization; we would
really like a structural understanding of the machine for L°P.

Recall: Ordinary Binary

In ordinary base 2 the state set is QQ =
{0,...,4} and the transition function
of the canonical Horner automaton is
determined by

v(za) =2 v(z) +a (mod 5)

72

An Obstruction 73

It is tempting to use the same state set Q = {0,...,4} for reverse binary. But
the transition function now is given by

vE(za) = v (2) +a- 2”1 (mod 5)

We can represent v (z) as a state, but not the |z|.

There are two basic solutions:

@ Make the state set more complicated so we can keep track of the missing
information. Quite possible, but leads to a larger machine.

@ Try to find another way of describing a transition function that works for
Q directly (assuming that such a thing really exists).

Cartesian State Sets 74

What state set do we need to implement the transition function
vi(za) = v (@) +a- 2" (mod 5)?
We want to keep track of

o The current value v®(x) mod 5, and

o the current multiplier 2/*! mod 5.

Hence we have a state set Q@ ={0,1,2,3,4} x {1,2, 3,4} and transitions

5((p,q),a) = (p + ag, 2¢) mod 5.

This is the solution anyone understanding the basics should be able to come up
with.

Quotients to the Rescue 75

Here is a more elegant line a of attack. Write
L.={ze2" |v™x)=r (modm)}
for r =0,...,4, so that Lo is the language we want to recognize.

Can we perhaps compute its quotients?

a 'L,={x€2 |ax €L}
={zec2"|v¥az)=r (mod5)}
={ze€2 |a+2v%a)=r (mod5)}
={ze2 |v¥z)=3r+2a (mod5)}

= L3r+2a mod 5

The Diagram

So we can actually construct the quo-
tient automaton directly in this case.

vR(za) =3-v%(x) +2-a (mod 5)

76

A Closer Look

It is worth drawing the machines right next to each other.

Observations?

We could have done this much cheaper ...

7

The UnEqual Language

Here is a good test for implementations: determine the state complexity of of
L = {wv € {a,b}" | [u] = Jo| = kyu # v }.
Note that Ly is finite, so these languages are trivially recognizable.

Question: What is the state complexity of Lj?

kK 1 2 3 4 5 6
sc 5 12 25 50 99 196

Exercise

Conjecture the state complexity of L, from the last table and prove your
conjecture.

78

Summary

@ DFA minimization can be handled in time nlogn.

@ Moore's quadratic time algorithm may be competitive on average.

@ Equivalence testing of DFAs can be handled in nearly linear time without
minimization.
@ Quotients can be useful to describe machines for recognizable languages.

79

	Partition Refinement
	Hopcroft's Algorithm
	Valmari-Lehtinen
	Equivalence Testing
	* Characterizations of Recognizability

