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Invertible Linear Maps 2

Consider a field F and a vector space V over F. The collection of all bijective
linear maps V → V naturally forms a group under composition, called the
general linear group GL(V ).

For our purposes, we will focus on F8, the 8-element field, considered as a
3-dimensional vector space over the 2-element field F2. We can think of F8 as
the quotient ring F2[X]/(X3 + X + 1). Naturally, we can interpret the
equivalence classes of polynomials as polynomials of degree less than 3, and
those as coefficient vectors in F3

2. By abuse of notation, we can even think of
those vectors as binary expansions of naturals {0, 1, 2, . . . , 7}.

Exercise
Unpack the last paragraph.



Getting Serious 3

We have a perfectly precise definition of the group GL(F8), but how does one
work in this structure? For example, how do we determine its cardinality?

It is rather inconvenient to have to manipulate linear maps directly. A better
approach is to resort to linear algebra: by fixing a basis B of F8, we can
represent linear maps as 3 × 3 matrices over F2.

Let’s use the standard basis B = (1, X, X2), or, in coefficient vector notation,
B = (100, 010, 001).

It is easy to see that there 83 = 512 linear maps F8 → F8, each described by a
matrix in F3×3

2 . Composition of linear maps here translates nicely into
multiplication of matrices.



Invertible Maps 4

Alas, we need to filter out the matrices with determinant 1. Brute-force
computation shows that there are 168 such matrices, and, up to symmetry only
29. Here are the first 28 of them.

Exercise
Find the missing matrix (this is doable by hand; first figure out how this picture
was constructed).



GL(3, 2) 5

The matrix group is usually referred to as GL(3, 2) or GL(3,F2). So
GL(3, 2) ≃ GL(F8), and this representation is computationally useful.

As an example, consider the following 3 matrices A1, A2 and A3 representing
invertible linear maps f1, f2 and f3:

The corresponding linear maps, in coefficient vector notation:

z 000 100 010 110 001 101 011 111
f1(z) 000 100 001 101 010 110 011 111
f2(z) 000 100 001 101 011 111 010 110
f3(z) 000 010 001 011 110 100 111 101



Checking Order 6

Question: Can we verify that 168 is the correct order of the two groups?

The first row r1 of any matrix in M can be chosen freely from 7 non-zero
bitvectors of length 3.

The second row r2 can be chosen freely as long as it is independent from r1.
There are 6 possibilities.

The third row r3 can be chosen freely as long as it is independent from r1, r2.
There are 4 possibilities.

Hence the cardinality of M is indeed 7 · 6 · 4 = 168.

In terms of the q-Pochhammer symbol we likewise get

|GL(n, 2)| =
n−1∏
i=0

(2n − 2i) = 2n2 (
2−n; 2

)
n

For n = 4 this is already 20160, so we’ll stick to n = 3.



Generators 7

One can check computationally the the 3 matrices A1, A2 and A3 from above
generate all of GL(3, 2).

To see why, consider A in GL(3, 2). By Gaussian elimination there are
elementary matrices Ei such that

EkEk−1 . . . E2E1A = I

In our context, elementary matrices are of the following form. Let
1 ≤ i ̸= j ≤ 3; then E(i, j) has 1’s along the diagonal and another 1 in
position (i, j).

The effect of E(i, j) · A is to add row j to row i in A.

All these matrices are self-inverse, hence they form a set of generators for
GL(3, 2): A = E1 . . . Ek.



More Generators 8

Exercise
Show that the 6 matrices E(i, j) really generate GL(3, 2).

Exercise
Show that the matrices A1, A2 and A3 generate GL(3, 2).

Exercise
Find other small sets of generators.



Special Linear Group 9

We can select all elements from GL(V ) that have determinant 1, the special
linear group SL(V ). Clearly, this produces a subgroup (but note that for the
ground field F2 nothing changes).

We are here interested in SL(2, 7), the group of 2 × 2 matrices over the field F7
with determinant 1. One might wonder what on earth this group has to do
with GL(F8). Here is a major hint.

Claim
SL(2, 7) has cardinality 336.

This can be shown by brute-force, or by counting: consider the matrix
(

a b
c d

)
.

Then c = 0 produces 6 · 7 = 42 choices, and c ̸= 0 produces 6 · 7 · 7 = 294
choices.



1 Linear Groups

2 Symmetries of the Fano Plane

3 Projective Special Linear Group



Symmetry 11

So far, we have three groups: GL(F8), GL(3, 2) and SL(2, 7). The first two are
isomorphic, and the third, suspiciously, has order twice the order of the first
two.

What is really going on? One key idea in understanding groups is that they
always describe the symmetries of some object. This is straightforward for
some groups like the dihedral groups, but in our case there is a problem.

Big Question: What is this mystery object for GL(F8)?



Disclaimer 12

To fully motivate of our next step one would have to take a major detour into
projective geometry, a type of geometry that deals with projections and
perspective drawings. This is classical 19th century mathematics, but has
recently found applications in computer graphics (how do you render an image
of a 3-dimensional scene on a 2-dimensional screen).

For example, two parallel lines (railroad tracks) meet at a point-at-infinity.

More generally, following Klein’s Erlanger Programm, projective geometry deals
with invariants of projective transformations.

We resist the temptation to inflict mental harm on the student body; take a
look at the web if you are interested. Here is the only basic concept we need.



Fano’s Plane F 13

F is the smallest example of a finite projective plane: 7 points, 7 lines.



More Formally 14

If you prefer the modern structural approach, there there two types, point and
line, plus an incidence relation (point P lies on line ℓ):

Three 1’s in each row and column, and symmetry.



Axioms 15

Following the current standard, we can axiomatize the properties of this type of
structure:

Every line contains at least 3 points.

Every two distinct points P and Q determine a unique line.

Every two distinct lines intersect in exactly one point.

There exist at least 4 points such that no 3 of them lie on a line.

Exercise
Verify that Fano’s plane satisfies these axioms.



Symmetries of F 16

Pictures, structures and axioms are great, but how do they help to understand
the corresponding object? For example, consider the following

Question:: What are the symmetries of the Fano plane?

Here, a symmetry or automorphism is a permutation of the points that is
collinearity preserving: lines are mapped to lines. Clearly, these maps form a
group under composition, the automorphism group of the Fano plane, Aut(F).

Think of these automorphism just as a renaming of the points, there is nothing
inherently complicated going on.

Innocent Question: How many are there? What is the order of Aut(F)?



Vector Representation 17

Here is a representation that is useful in answering these questions: identify the
points as the non-zero elements of F3

2. Then points A, B and C form a line iff
A + B + C = 0.

111

001

101

011

100110

010



Linearity 18

Since we are in characteristic 2, a line {A, B, C} means A + B = C.

Claim
Suppose α is a permutation of the points.
Then α is collinearity preserving iff α is linear.

Proof.
Preserving lines means α(A) + α(B) = α(A + B) for all A, B.

2

Lemma
GL(3, 2) is isomorphic to Aut(F).



Lines as Points 19

We can associate a line ℓ with a point Pℓ: ℓ = { Q | Q ◦ Pℓ = 0 }. Here ◦
denotes the inner product, so these are the non-zero points orthogonal to Pℓ.

Pℓ ℓ

001 {010, 100, 110}
010 {001, 100, 101}
011 {011, 100, 111}
100 {001, 010, 011}
101 {010, 101, 111}
110 {001, 110, 111}
111 {011, 101, 110}

Exercise
Ponder deeply. There is a duality principle at work.



Digression: Pretty Pictures 20

We can justify our original pretty picture by reading off some of the symmetries
of the Fano plane.

The projective lines are suggestively indicated
by Euclidean line segments and the circle. We
can get a symmetry of the Fano plane by ro-
tating the big triangle by 2π/3 around the cen-
ter point.

Exercise
Make sure you understand why this really works.



Automorphisms and Cyles 21

Aut(F) has order 168, and the dihedral group D3 (symmetries of an equilateral
triangle) has order 6, so there are lots of elements of Aut(F) that do not arise
from D3. What to the others look like?

In the usual cycle notation, here are some permutations that preserve
collinearity:

(001, 010), (100, 111)
(001, 010), (100, 101, 111, 110)
(001, 010, 011), (100, 101, 111)
(001, 010, 100, 011, 110, 111, 101)

All 168 symmetries in Aut(F) have a cycle structure like this.
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Missing Pieces 23

So far we have 3 groups of order 168, all isomorphic:

GL(F8) ≃ GL(3, 2) ≃ Aut(F)

But remember, SL(2, 7) had order 336. Hence the quotient group
SL(2, 7)/{±I} has order 168.

We refer to this group as the projective special linear group PSL(2, 7). And we
will see that the order is not coincidence.



Moebius Transformations 24

To see what is going on, consider Moebius transformations, also known as
linear fractional transformations. These are maps of the form

f(z) = fa,b,c,d(z) = az + b

cz + d

where ad − bc ̸= 0. Note that the coefficients are not uniquely determined by
the map f : fa,b,c,d(z) = fλa,λb,λc,λd(z) for λ ̸= 0.
A Moebius transformation is called special if the coefficients can be chosen so
that ad − bc = 1.

Classically, the ground field is often C or R, but we will work over the finite
field F7.

More precisely, we will use the projective line over F7, written P1(F7).

The idea is to think of F7 as a line, and adjoin a “point-at-infinity.”



WTF? 25

Lets start with a representation of P1(F7) in terms of homogeneous
coordinates [x : y] where x, y ∈ F7, not both 0.
We can define an equivalence relation on these coordinates via

[x1 : y1] ≡ [x2 : y2] ⇐⇒ ∃ λ ∈ F7 (x1 = λx2 ∧ y1 = λy2)

Think of a 2-dimensional F7 vector space; we are identifying points along lines
through the origin.

For notation, we ignore the equivalence classes as usual and use representatives
[x : 1] and [1 : 0]. Even better, write [x : 1] as x, and [1 : 0] as ∞.

So now we have the pleasant carrier set {0, 1, . . . , 6, ∞}.

Naked sets are useless, but we can lift the arithmetic from F7 to P1(F7).



Arithmetic 26

[x1 : y1] + [x2 : y2] = [x1y2 + x2y1 : y1y2]
[x1 : y1] ∗ [x2 : y2] = [x1x2 : y1y2]

[x1 : y1]−1 = [x2 : x1]

So 0−1 = ∞ and ∞−1 = 0, not unreasonable. Note that 0 ∗ ∞ and the like are
undefined. Here are the (partial) Cayley tables for addition, multiplication and
division on our projective line:



Moebius Transformations In Detail 27

Since P1(F7) is not an algebraic structure in the usual sense, we need to be a
bit careful in defining our Moebius transformations f = fa,b,c,d. We can use the
fraction f(z) = az+b

cz+d
from above, except in the following special situations:

Case 1: c ̸= 0

f(−d/c) = ∞
f(∞) = a/c

Case 2: c = 0

f(∞) = ∞

Exercise
Verify that these definitions make sense.



Three Key Examples 28

Consider the following special Moebius transformations: shift, double and
reverse.

σ(z) = f1,1,0,1(z) = z + 1
δ(z) = f4,0,0,2(z) = f2,0,0,1(z) = 2z

ρ(z) = f0,6,1,0(z) = −1/z

The corresponding graphs over P1(F7) are as follows:

z 0 1 2 3 4 5 6 ∞
σ(z) 1 2 3 4 5 6 0 ∞
δ(z) 0 2 4 6 1 3 5 ∞
ρ(z) ∞ 6 3 2 5 4 1 0



And Moebius Transformations? 29

Let’s write SLF(7) for the group of all special Moebius transformations over
P1(F7), a group known as the special linear fractional group.

What do homogeneous coordinates have to do with these transformations?
Think of [z : 1] as a column vector

(
z
1
)
. It is natural to have a matrix

(
a b
c d

)
act like (

a b
c d

)(
z
1
)

=
(

az+b
cz+d

)
≡

( az+b
cz+d

1

)
=

(
fa,b,c,d(z)

1

)
.

Matrix multiplication in SL(2, 7) thus corresponds to composition of Moebius
transformations on P1(F7).



An Epimorphism 30

Consider the map

ϕ : SL(2, 7) → SLF(7) ϕ
((

a b
c d

))
= fa,b,c,d

Claim
ϕ is a group epimorphism with kernel {I, −I}.
Hence PSL(2, 7) = SL(2, 7)/{±I} ≃ SLF(7).

Exercise
Prove the claim.



Back to Fano 31

The question now is: what is the connection, if any, between SLF(7) and the
automorphisms of the Fano plane?

Is there any way to translate a special Moebius transformation on P1(F7) to a
collinearity preserving bijection of the 7-point Fano plane?

We are given some f = fa,b,c,d and need a symmetry ϕ(f). Again we represent
the points of the plane as non-zero vectors of length 3 over F2. The key is to
think of the points as the set of units in F8: thus, they form a multiplicative
group generated by X. So this should take care of {0, 1, . . . , 6} ⊆ F7.

The hope is to somehow use zero to deal with the point-at-infinity.

Alas, it’s far from clear how to do this in a way that produces an automorphism.



The Trick 32

To deal with this problem, we abuse notation and write X∞ = 0.

We can now define ϕ as follows:

ϕ(f)(z) = Xf(z) + Xf(∞).

This guarantees that ϕ(f)(∞) = 0, always.

Exercise
Show that ϕ(f) is a bijection for all f ∈ SLF(7).



Generators 33

Recall our 3 special Moebius transformations: shift, double and reverse.

Claim
σ, δ and ρ generate SLF(7).

Proof.
Note that the matrices associated with these Moebius transformations are none
other than A1, A2 and A3 from above. Since these are generators, we are done.

2

Corollary
SLF(7) is isomorphic to Aut(F).



Table 34

name description order

GL(F8) invertible linear maps on F8 168

GL(3, 2) 3 by 3 invertible matrices over F2 168

SL(2, 7) 2 by 2 invertible matrices over F7 336

Aut(F) symmetries of the Fano plane 168

PSL(2, 7) quotient group of SL(2, 7) 168

SLF(7) Moebius transformations on P1(F7) 168
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