
CDM

Combinatorial Principles

Klaus Sutner

Carnegie Mellon University

Counting 2

Counting is arguably one of the most fundamental activities in mathematics.

By counting we mean determining the cardinality of some set S of objects.

As long as S is finite, this means to find the right number n and to enumerate
the set as

S = {a1, . . . , an}.

In other words, we have to establish a bijection f : [n] → S as in

1 2 3 . . . n − 1 n
↕ ↕ ↕ . . . ↕ ↕
a1 a2 a3 . . . an−1 an

Aside: Ranking and Unranking 3

In algorithmic applications one sometimes needs to find an actual bijection

f : [n] → S

rather than just the cardinality n.

There are lots of possible bijections (n! to be precise), but for algorithmic
purposes one would like to find one that is easy to compute and that places the
elements of S into some natural order. Furthermore, we also want
f−1 : S → [n] to be easily computable.

These special bijections are called ranking (f−1) and unranking functions (f).

Cheap Example: Bitvectors 4

We know the cardinality of S = P([n]) is 2n.

To get a bijection f : [2n] → P([n]) we can use binary expansions.

r =

(∑
i<n

ri · 2i

)
+ 1

f(r) = { i + 1 | ri = 1 }

We could avoid the pesky +1 offsets by using {0, . . . , 2n − 1} rather then [2n].

Parameters 5

As in the last example, we are often confronted with with a whole family of
sets Sk where k ≥ 0 is an integral parameter.
In this case we want an answer of the form

|Sk| = . . . k . . .

where the right hand side is some expression involving k.

Similarly we may have to contend with 2 or more parameters.

What is a Good Answer? 6

One would like a simple answer, using only basic arithmetic: sums, products,
exponentials, factorials, binomials, logarithms, etc.

Ideally we want a closed form solution, not some recurrence (though finding a
recurrence may be an important step).

As it turns out, we often need additional special functions such Fibonacci
numbers, harmonic numbers, Stirling numbers,

Needless to say, to find nice solutions it is helpful to have a library of
combinatorial identities: equations that reduce once counting problem to
another.

Pigeons 8

Here is one interesting combinatorial principle for finite sets that is rather
obvious, but still surprisingly useful in certain proofs.

Lemma (Pigeon Hole Principle (PHP))
For m > n, m pigeons will not fit into n pigeon holes.

Less informally:

There are no injections [m] → [n] when m > n.

Expressed this way, we can prove the PHP by induction.

PHP Proof 9

It suffices to show the result for m = n + 1 (why?).
We use Induction on n.

Base case n = 0 is clear: [0] = ∅ but [1] = {1}.

Step n > 0: For the sake of a contradiction, suppose f : [n + 1] → [n] is an
injection.
Let a = f(n + 1), define a function g : [n] → [n − 1] by

g(i) =
{

f(i) if f(i) < a,

f(i) − 1 otherwise.

It is easy to check that g is an injection.
But this contradicts the IH, done. 2

Counting Version 10

Lemma
If m pigeons are placed into n pigeonholes, then at least one hole must contain
more than ⌊ m−1

n
⌋ pigeons.

If there were at most that many pigeons in all the holes their total number
would be bounded by

n · ⌊m − 1
n

⌋ ≤ m − 1 < m,

contradiction.

For example, a group of 100 people must contain a subgroup of at least 9
people with the same birth month.

Application 11

Proposition
Let A ⊆ [2n] of size n + 1.
Then there exists a, b ∈ A such that a divides b.

Proof.
Here is a trick: consider the odd part of a number: a = 2k · a0.
For a ∈ A, the odd parts range over 1, 3, 5, . . . , 2n − 1.
By PHP, there must be two elements in A with the same odd part:
a = 2k · a0 and b = 2l · a0.
Done. 2

Try to do this without PHP. Let me know if you come up with some elegant
argument.

Application 2 12

Proposition
Choose n positive integers a1, . . . , an , not necessarily distinct.
Then there are 1 ≤ r ≤ s ≤ n such that n divides

∑s

i=r
ai.

Proof.
Consider the set of all partial sums

S =

{
k∑

i=1

ai

∣∣∣∣∣ k = 0, . . . , n

}
Then S has size n + 1.
By the PHP, two partial sums must have the same remainder upon division by
n.
But then their difference does the job.

2

Application 3 13

Proposition (Erdős, Szekeres 1935)
Any sequence of n2 + 1 distinct integers must contain an increasing
subsequence of n + 1 terms, or a decreasing subsequence of n + 1 terms.

Proof.
Let m = n2 + 1 and consider a sequence x1, x2, . . . , xm. Define

ti = length the longest inc. subsequence starting at xi

Assume ti ≤ n for all i.

We have m = n2 + 1 pigeons and n holes, so one hole must have at least n + 1
pigeons: at least n + 1 of the ti’s have the same value. Say, I ⊆ [m],
|I| = n + 1 where i ∈ I =⇒ ti = t.

But then the sequence (xi)i∈I must be decreasing.

For otherwise xi < xj for some i < j ∈ I and we can prepend xi to the
increasing sequence starting at xj .

But then t < ti, contradiction.
2

Erdös-Szekeres 15

5 10 15 20 25

5

10

15

20

25

N Pigeon Holes 16

Note that PHP fails miserably when we have an infinite sequence of pigeon
holes

h0, h1, h2, . . . , hn, . . .

We can fit N + 1 pigeons in there:

holes h0 h1 h2 h3 . . . hn . . .
pigeons q p0 p1 p2 . . . pn−1 . . .

Everybody just moves over by one hole.

Since there is no last hole (whose occupant would be kicked out) there is no
problem. This device is also known as Hilbert’s hotel.

Example: We Dig Math 18

How many ways can one rearrange the letters in “wedigmath” so that neither
“we” nor “dig” nor “math” appears?
All letters are distinct, so there are 9! permutations of the letters. Let U be the
collection of all these permutations.
Let A1 be all words in U containing “we”, A2 all words containing “dig”, and
A3 all words containing “math”.

We want
|U | − |A1 ∪ A2 ∪ A3|

But

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3|
− |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3|
+ |A1 ∩ A2 ∩ A3|

Calculating . . . 19

|U | = 9!
|A1| = 8!
|A2| = 7!
|A3| = 6!

|A1 ∩ A2| = 6!
|A1 ∩ A3| = 5!
|A2 ∩ A3| = 4!

|A1 ∩ A2 ∩ A3| = 3!

Hence we get

9! − 8! − 7! − 6! + 6! + 5! + 4! − 3! = 317658

Inclusion-Exclusion Principle 20

A key fact in the last example is that we can compute the cardinality of a union
of 3 sets like so:

|A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A3|
− |A1 ∩ A2| − |A1 ∩ A3| − |A2 ∩ A3|
+ |A1 ∩ A2 ∩ A3|

Question: How does this generalize to |A1 ∪ A2 ∪ . . . ∪ An| ?

It is more convenient to write all terms on one side, so we should expect a
large, alternating sum involving intersections of k sets, for all k = 0, . . . , n .

de Moivre-Silva-Sylvester Theorem 21

Lemma
Let A = {A1, A2, . . . , An} and U =

⋃
A = A1 ∪ A2 ∪ . . . ∪ An. Then∑

B⊆A

(−1)|B| ∣∣⋂B
∣∣ = 0

Note that B here is a family of subsets of U , so
⋂

B is a subset of U .
In particular

⋂
∅ = U .

Rant 22

In some texts you will find this written as

|U | =
n∑

k=1

(−1)k+1
∑

1≤ℓ1<ℓ2<...<ℓk≤n

|Aℓ1 ∩ Aℓ2 ∩ . . . ∩ Aℓk |

This is rank insanity.

First, the second sum is over all strictly increasing sequences
ℓ1 < ℓ2 < . . . < ℓk of length k in the range 1 to n.
This is a bit complicated and wholly unnecessary: in the sum term order does
not matter. So, we might as well use a set instead of a sequence.

|U | =
n∑

k=1

(−1)k+1
∑

β⊆[n],|β|=k

|
⋂
i∈β

Ai|

Better.
But we can simplify further by collapsing the first two sums.

|U | =
∑

∅≠β⊆[n]

(−1)|β|+1 |
⋂
i∈β

Ai|

This is already quite readable.

But we can do even better than this.
There is no need to sum over index sets, we can just sum over subsets of A
directly.

|U | =
∑

∅≠B⊆A

(−1)|B|+1 |
⋂

B|

Now one can actually understand the sum and a computer could read this, too.

End Rant

Proof 26

Define the characteristic function of C ⊆ U to be

KC(x) =
{

1 if x ∈ C,
0 otherwise.

Then |C| =
∑

x∈U
KC(x) and we can rewrite the claim as∑

B⊆A

(−1)|B|
∑
x∈U

K⋂
B

(x) = 0.

We claim that the equation actually holds point-wise, for each x ∈ U .

Fix x ∈ U . We may safely assume that x ∈ Ai for all i and we have

∑
B⊆A

(−1)|B|K⋂
B

(x)

=
∑
k≤n

(−1)k
∑

B⊆A,|B|=k

K⋂
B

(x)

=
∑
k≤n

(−1)k

(
n

k

)
= 0

by the binomial theorem.

Useful Form 28

As already indicated in the Rant, it is often convenient in applications to
rewrite this identity as

|U | =
∑

∅≠B⊆A

(−1)|B|+1
∣∣∣⋂B

∣∣∣

Application: Derangements 29

A derangement is a permutation that leaves no element fixed.
Write Dn for the number of derangements of [n].

For i = 1, . . . , n let

Ai = permutations of [n] that fix i

and A = {A1, . . . , An}, U =
⋃

A.

Then Dn = n! − |U |, so we only need to use Inc/Exc to determine the last
term.

|U | =
∑

∅≠B⊆A

(−1)|B|+1∣∣⋂B
∣∣

=
n∑

k=1

(−1)k+1
∑

B⊆A,|B|=k

∣∣⋂B
∣∣

=
n∑

k=1

(−1)k+1
(

n

k

)
(n − k)!

= n!
n∑

k=1

(−1)k+1/k!

So Dn = n! − n!
∑n

k=1(−1)k+1/k! = n!
∑n

k=0(−1)k/k!
For large n, the fraction of derangements is about 1/e.

Application: Counting Integer Solutions 31

How many integer solutions are there for

x1 + x2 + x3 + x4 = 40
0 ≤ xi ≤ 15

First line of attack: determine the number of unconstrained solutions to the
equation.

This can be interpreted as an occupancy problem: we have to place 40
(indistinguishable) balls into four (distinguishable) boxes. This sounds like a
new problem, but isn’t really.

For simplicity use 8 balls and 4 boxes:

• • | • • • | • | • • → 2, 3, 1, 2
• • | • • • | | • • • → 2, 3, 0, 3
• • • • • • • • | | | → 8, 0, 0, 0

Thus we are looking for all words over the alphabet {•, |} containing 40 •’s and
3 |’s.

Writing C(n, k) for the binomial coefficient we see that the unconstrained
equation has

C(40 + 4 − 1, 4 − 1) = C(43, 3) = 12341

solutions x = (x1, x2, x3, x4).

So far, so good. But we still must subtract “bad” solutions: that’s where
Inc/Exc comes in.

Counting . . . 33

Define

Ai = solutions with xi ≥ 16
A = {A1, A2, A3, A4}
U = A1 ∪ A2 ∪ A3 ∪ A4

So U is the set of all bad solutions.
By Inc/Exc, we need to compute

|U | =
∑

∅≠B⊆A

(−1)|B|+1∣∣⋂B
∣∣

But we can only have at most 2 bad xi’s in any bad solution x: otherwise we
get a sum of at least 48.
Hence

⋂
B = ∅ for |B| > 2.

So, we only need to deal with B = {Ai} and B = {Ai, Aj}.
By symmetry we get 4 · C(27, 3) in the first case: there are four choices for i,
but the value of i does not matter. Let’s assume i = 1 .
Think of placing 16 balls into x1, and then distributing the remaining
24 = 40 − 16 balls into the four boxes. There are
C(24 + 4 − 1, 4 − 1) = C(27, 3) ways of doing this.

In the second case we similarly obtain 6 · C(11, 3) = 10710.

So, the number of solutions is

12341 − (11700 − 990) = 1631.

Make sure you understand the details, this is a bit tricky.

