CDM

State Complexity

KLAUS SUTNER

OO
CARNEGIE MELLON UNIVERSITY

1 Transformation Semigroups

2 State Complexity

3 Alternating Automata

Where Are We?

We have seen that the class of regular languages has much stronger closure
properties than one might suspect from the definition.

Even better, the proofs for these closure properties are all constructive: there
are relatively straightforward algorithms to build the corresponding FSMs.

This raises the question: how effective can these FSM algorithms be? A good
first step in this direction is to figure out the sizes of the machines.

But first a little algebra . ..

Homomorphisms

Recall that any map f : ¥ — I'* gives rise to uniquely determined monoid
homomorphism f : X* — ['™*

f(x) = f(x)f(x2) ... f(zn)

For example,

fl@y=00 f(b)=01 f(c)=11

translates from {a, b, c} to 2*.

It is fairly clear that f(L) C 2* is regular whenever L C {a,b,c}" is. But the
opposite direction is not so obvious.

Closure under Homomorphisms

Theorem

Regular languages are closed under homomorphisms and inverse
homomorphisms.

Proof.

Let f: X — I'* be the homomorphism. Consider a NFA for L C X* and
replace transitions p — g by p f—(i; q.

For the opposite direction suppose A = (Q, I',v; qo, F') is a DFA for L C I'*.

Let B=(Q, X, 0;qo, F') be a DFA where §(p,a) = v(p, f(a)). An easy
induction on x shows y(p, z) = d(p, f(x)).

An Algebraic Proof

A big part of automata theory can be rephrased in algebraic terms. This adds a
bit of abstraction, but sometimes leads to very elegant proofs—remember,
proofs are supposed to explain why the claim is true.

Batten Down the Hatches!

Transformation Semigroups

Suppose we have some set X and a collection F' of endofunctions on X.

Definition
(X, F) is a transformation semigroup or composition semigroup if F' is closed

under composition, and a transformation monoid if, in addition, F' contains a
unit element.

If you prefer, you can think of the semigroup F' as acting on X on the left in
the natural way:

This is for standard composition; if we use diagrammatic composition (which is
more natural in connection with finite state machines), we get a right action.

The Algebra Perspective

To see the connection to finite state machines, note that we can think of the
transition function of a DFA as a Y-indexed list of functions from states to
states:

5a:Q = Q
da(p) = d(p, a)

This turns the DFA into a X-algebra

AZ(Q;5E17"'76‘1k>

This may seem like a pointless exercise, but it naturally leads to another
interesting perspective: algebra.

But Why?

First off, nothing is lost: we can “iterate” these functions according to some
input word u = uiu2 . .. Un:

Ou = O0uy 00uy O...0u, _, O0u,

Acceptance then translates into: A accepts a word w iff 0, (go) € F'.

Plus, we get some additional concepts more or less for free: a subautomaton of
A is another X-algebra B = (P;7a,,---,%a,) such that P C Q and
Ya(P) = ba(p).

And More

Similarly, a morphism ¢ : A — B of X-algebras must be a map ¢ : Q — P
such that

©(0a(p)) = Ya((p))

One may want to augment this by conditions about initial and final states.

It is also straightforward to define products of the form

Ax B

And we get congruences: an equivalence relation E on @ is a congruence if

p E q implies 6,(p) E 6a(q)

No Silver Bullet

To be sure, all these concepts can be developed without any appeal to algebra,
given enough thought.

But the whole point here is that they pop up for free, courtesy of some general,
universal ideas.

Exercise

Figure out exactly what morphism, product and congruence mean in this
context.

10

A Semigroup 11

The functions d,, a € X, generate a transformation semigroup (monoid) 7'
over (Q, a subsemigroup of the full monoid of endofunctions Q@ — Q.

Definition

T is called the transformation semigroup (monoid) of the DFA.

One way of writing down T is
T={6::Q—>Q |zeX"}={0a|acX)
where (p) = 0(p,).
Analyzing this semigroup can help quite a bit in getting a better understanding

of a DFA. And, there are powerful algebraic tools available that help in dealing
with the monoid.

Example 1: Even-Even 12

There is a natural 4-state DFA that accepts all strings over {a,b}” that contain
an even number of a’s and an even number of b's.

p |1 2 3 4
) |2 1 4 3
&) |3 4 1 2
The initial state is 1 and F' = {1}.
But note that
0q00, =1
(Sb (¢] (Sb =1

0q 0 0p = Op 0 0

so that the transformation semigroup consists of {I,dq, 0, dq © 95 }. Note that
this is actually a monoid and even a group (Kleinsche Vierergruppe).

Moreover, from the equations it is easy to see that for any word x

O0p =1 <= #,x even, #px even

Similarly we have
0z = 00 <= Fqx odd, #,2 even

and so on.

At the very least this very elegant and concise.

Example 2: L, -

The usual de Bruijn automaton vyields

p |1 2 3 4
ba(p) [1 3 1 3
5b (p) 2 4 2 4

This generates the semigroup (no monoid here)

(1737 173)7 (27 47274)7 (17]" 17 1)7 (27 2, 27 2)7 (37 37 37 3)7 (47 47 4’ 4)

Question: What do the constant functions mean?

14

Semigroups versus Monoids

The distinction between semigroups and monoids here is a bit of a technical
nuisance, but there is no easy way to get rid of it.

At any rate, note that we can turn any semigroup S into a monoid S* by
simply adding a new element 1 and defining

forall zin S.

Clearly, S and S* are essentially the same.

Also note that a transformation semigroup may be a monoid without
containing the identity function.

15

Regularity and Algebra

The reason monoids are important here is because they provide a
characterization of regular languages that is free of any combinatorial aspect.
Always remember: algebra is the great simplifier.

Theorem

A language L C X* is regular iff there is a finite monoid M, My C M and a
monoid homomorphism f : X* — M such that L = f~'(Mp).

Proof.

If L is regular, let M be the transformation monoid of a DFA that recognizes
L, and define f(x) =0, and Mo ={g € M | g(qo) € F'}.

16

More Proof

The opposite direction is more interesting: we construct a DFA

A: <M3236;1]\/[7M0>
where 6(p,a) = p- f(a). Then 3(p,2) = p- f(x) and 6(qo0,2) = f(x).
Message: anything goes as a state set, as long as the set is finite. For the

implementer, the state set is always [n], but that's not a good way to think
about it.

Algebraic automata theory is a fascinating subject with lots of elegant results,
but it requires work and there is no essential algorithmic payoff. So, we won't
go there.

17

2 State Complexity

Size of an Automaton 19

We already defined the state complexity of a FSM to be the number of states
of the machine.

This is the standard measure of the size of a FSM and most results are phrased
in terms of state complexity.

But note that this is a bit of an oversimplification: we really should be dealing
with the transition complexity, the number of transitions, simply because this
number corresponds more faithfully to the size of a FSM data structure.

Algorithmic Issues 20

So we have three increasingly complicated types of machines: DFAs, NFAs and
NFAEs, that all accept exactly the regular languages. There are two conversion
algorithms:

@ Elimination of e-moves: conversion from NFAE to NFA.

o Elimination of nondeterminism: conversion from NFA to DFA.

The first one is comes down to computing transitive closure of the e-transitions
and can be handled efficiently using standard graph algorithms.

But nondeterminism is more difficult to get rid of: there may be an exponential
blow-up in the state complexity of the deterministic machine.

Epsilon Elimination 21

Given an NFAE A of state complexity n, the first step in e-elimination is to
compute the e-closures of all states; this takes at most O(n?) steps.

Introducing new transitions preserves state complexity, but can increase the
transition complexity by a quadratic factor.

One interesting implementation idea for pattern matching is not to pre-process
all of A: instead one computes the closures on the fly and only when actually
needed. This may be faster if the machine is large and only used a few times.

Exponential Blow-Up 22

Alas, the powerset construction is potentially exponential in the size of A, even
when only the accessible part pow(.A) is constructed. The only general bound
for the state complexity of pow(A) is 2".

In practice, it happens quite often that the accessible part is small, but there
are cases when the state complexity of the deterministic machine is close to 2".
Even worse, it can happen that this large power automaton is already minimal,
so there is no way to get rid of these exponentially many states.

Incidentally, determinization is quite fast as long as the resulting automaton is
not too large.

Blow-Up Example 1 23

Recall the kth symbol languages

La,k) ={z|zx =a}

Proposition

L(a,—k) can be recognized by an NFA on k + 1 states, but the state
complexity of this language is 2.

Proof.
We have already seen the de Bruijn DFA for the language, a machine of size 2

(at least for a binary alphabet).

It remains to show that this machine already has the smallest possible number
of states.

Minimality 24

Suppose A is a DFA for Lo, on less than 2% states.

Consider all 2* inputs z € 2" and let
Pz = 6((]071:)

Then p, = p, for some = # y.

But then there is a word w such that xu € Lo,— and yu € Lo, .

Contradiction.

Weird Asymmetry

We know already that

L is regular <= L°? is regular

But there may be a price to pay: the state complexity of L°? may be
exponential in the state complexity of L.

25

Blow-Up Example 2

Here is a 6-state NFA based on a
circulant graph. Assume I = F' = a

Q.

If X = b than the power automa-
ton has size 1.

However, for X = a the power
automaton has maximal size 2°.

b

b

b

a

a

b

b

26

a

/

Circulants

The example generalizes to a whole group of circulant machines on n states
with diagram C(n;1,2).

These machines are based on circulant graphs:

Vertices {0,1,...,n — 1}
Edges (v,v+ 1 mod n) and (v,v 4+ 2 mod n)

,D~

27

Tip of an Iceberg

Start with a labeling where the edges with stride 1 are labeled a and the edges
with stride 2 are labeled b.

Then change exactly one of these edge labels: the resulting nondeterministic
machines have power automata of size 2" and the power automata are already
minimal.

Exercise
Prove that full blow-up occurs for all these NFA.

Exercise
How about other circulants C(n;1,k)?

28

The Argument 29

In general, we have some nondeterministic automaton A = (Q, X, 7; Q, Q) and
we want to show that pow(.A) has size 2" (or some such).

This boils down to the following. Let . : P(Q) — PB(Q) be the function
induced by the relation 7, as in the determinization algorithm:

da(P)={q€Q|3peP7(p,a,q)}

By composition we get the transformation semigroup, functions d, for all
x € X*. For each P C (Q we need to find a witness x € X* such that

6%(@) =P

Easy Case

Consider C'(n;0,1), label all loops a and all stride 1 edges b. Then switch the
label of the loop at 0.

b

&
h S

b b
a a
‘o) ‘o‘
b b
»‘o b >0

30

Proof?

0q kill 0

Op sticky rotate

Note that Q = {0,1,...,n — 1} is reachable from any P # 0.

If we can concoct the operation “rotate” we are done.
Case1: 0¢ P Op works

Case2: 0 P
If n—1¢€ P: §, works
Ifn—1¢P: 7777

31

Another Blow-Up 32

Start with a binary de Bruijn semiautomaton where both §o and §; are
permutations (so that the transformation semigroup is actually a subgroup of
the symmetric group on Q). Now flip the label of the loop at O.

For I = F = @, full blow-up occurs.

A Little Challenge 33

The loop case | can prove. But here is an open problem:

One can show that the number of permutation labelings in the binary de Bruijn

graph of rank k is 22"t Flipping the label of an arbitrary edge will produce
full blow-up in exactly half of the cases.

gk—1

full blow-up: ~ 2%2

Verified experimentally up to &k = 5 (on Blacklight at PSC, rest in peace).
There are 8,388, 608 machines to check, ignoring symmetries.

Predicting Blow-Up 34

Many finite state machine algorithms naturally produce nondeterministic
machines. Exponential blow-up makes it somewhat difficult to decide whether
it is advantageous to compute the corresponding power automaton: the actual
matching process is faster but the machine may be too large.

Alas, we cannot predict how big the deterministic machine will be: the
following problem is PSPACE-complete.

Problem: Power Automaton Size

Instance: A nondeterministic machine A, a bound B.

Question: Is the size of the power automaton of A bounded
by B?

Lower Bounds 35

In general one would like to have estimates for the size of a machine
constructed by a certain algorithm, as a function of the size of the input
machines.

Upper bounds are usually easy to get, they are quite obvious from the
constructions.

But lower bounds are tricky; one needs to construct particular inputs that make
the algorithm perform poorly.

Note that this is just worst-case analysis, very little is currently known about
average-case behavior.

State Complexity of Operations 36

DFA NFA
intersection mn mn
union mn m-+n

concatenation (m—1)2" -1 m+n

Kleene star 3.2772 n+1
reversal 2n n
complement n 2"

Worst potential blow-up starting from machine(s) of size m, n and applying
the corresponding operation.

Note that we are only dealing the state complexity, not transition complexity.

Example: Intersection

Let
Kom={z€2" |#4sx=0 (modm)}

be the "mod-counter” language. Clearly K, . has state complexity m.

The intersection of Ko, and K1, has state complexity mn.

37

Recall: Decision Problems

Problem:
Instance:
Question:

Problem:
Instance:
Question:

Problem:
Instance:
Question:

Emptiness Problem
A regular language L.
Is L empty?

Finiteness Problem
A regular language L.
Is L finite?

Universality Problem
A regular language L.
Is L =X"7

38

Ambiguity 39

Note that these problems are all rather ambiguous as stated: exactly how is the
the input (a regular language) given?

As far as decidability is concerned there is no difference between DFAs and
NFAs: we can simply convert the NFA.

But the determinization may be exponential, so efficiency becomes a problem.

@ Emptiness and Finiteness are easily polynomial time for DFAs and NFAs.

@ Universality is polynomial time for DFAs but PSPACE-complete for NFAs.

More Problems

Problem: Equality Problem
Instance: Two regular languages L1 and Lo.
Question: Is Ly equal to Ly?

Problem: Inclusion Problem
Instance: Two regular languages Li and Lo.
Question: Is L1 a subset of L5?

@ Equality and Inclusion are polynomial time for DFAs.

o Both problems are PSPACE-complete for NFAs.

3 Alternating Automata

Warm-Up: Finite State Machines 42

A DFA is just the formalization of a perfectly practical algorithm: scan a string
letter by letter, update your state via table lookup, decide acceptance on the
basis of the last state. Runs in linear time and constant space with very good
constants.

By contrast, an NFA is prima facie an abstraction: there may be exponentially
many possible runs on a single input, and acceptance is determined by an
existential quantification: is there a run

The reason this abstract model is still hugely important for practical algorithms
is that acceptance testing for NFAs is still linear time, albeit with worse
constants. On the other hand, other operations such as union are actually
easier for NFAs.

Fast Acceptance Testing 43

Proposition

For any DFA A and any input string x we can test in time linear in |x| whether
A accepts x, with very small constants.

// deterministic acceptance testing
P=qo
while a = z.next() do
p=96(p,a)
return p € F

Of course, it might take some time to compute the lookup table ¢ in the first
place, but once we have it acceptance testing is very fast.

Nondeterministic Machines Acceptance Testing 44

The key insight is that testing for nondeterministic machines is very, very
similar: instead of single states p, we have sets of states P C Q.

// nondeterministic acceptance testing
P=1
while a = x.next() do

P={q|3peP(p>q}
return PN F £ ()

Dealing with a set of states P rather than a single state p is slower, but only by
a constant depending on the machine. And there are many hacks to make the
computation reasonably fast in typical practical situations (e.g., it seems that
in some applications | P| is always small).

The total damage is still O(]z|) and the constants are often quite reasonable.

Mucking with Acceptance

So here is a wild idea:

Question: Is there a useful notion of acceptance based on
“for all runs such that such and such”?

One problem is whether these “universal” automata are more powerful than
ordinary FSMs. As we will see, we still only get regular languages.

But this raises the question of how the state complexities compare: recall that
nondeterministic FSMs can be exponentially smaller than their deterministic
counterparts—one of the reasons they are attractive in practical pattern
matching applications.

45

Forall Automata

How would one formally define a type of FSM A = (Q, X, §; I, F') where
acceptance means all runs have a certain property?

The underlying transition system (Q, X, §) will be unaffected, it is still an
edge-labeled digraph.

The acceptance condition now reads:
A accepts z if all runs of A on z starting at I end in F.

Let's call these machines VFA.

Read: for-all-FA. It's tempting to call them “universal FA", but that collides
with the standard use where universal means “accepting all inputs.”

By the same token, a NFA would be a 3FA, a there-exists-FA.

46

Logical And

As an example consider the mod counter languages
Kaom ={z €2 | #,2=0 (modm)}

with state complexity m. For the union Ko ,, U K1 , we have a natural NFA of
size m + n. However, for the intersection Ko, ,, N K1,, we only have a product
machine that has size mn.

More importantly, note that nondeterminism does not seem to help with
intersection: there is no obvious way to construct a smaller NFA for
Koym N Kl_,n.

This happens on a number of occasions: there are regular languages where
nondeterminism seems utterly useless. The natural construction of the machine
is automatically deterministic.

47

Example Modcounter Intersection

But we can build a VFA of size just m + n: take the disjoint union and declare
the acceptance condition to be universal.

48

A Hidden Product

What is really going on here?

Let's assume that Q1 and Q2 are disjoint. Starting at {qo1, o2} we update
both components. So after a while we are in state

{pa} pPeEQigcQ

In the end we accept iff p € F} and q € Fo.

This is really no different from a product construction, we just don’t spell out

all the product states explicitly: a perfect example of a succinct representation.

Choosing clever representations is often critically important.

49

That’s Not Insane

For example, acceptance testing for a VFA is basically the same as for an NFA:
we keep track of the set of states §(I,z) C @ reachable under some input and
simply change the notion of acceptance: this time we want §(I,z) C F.

Hence, if some word x crashes all possible computations so that §(1,z) = 0,

then x is accepted. This may sound weird, but it's perfectly fine.

Likewise we can modify the Rabin-Scott construction that builds an equivalent
DFA: as before calculate the (reachable part of the full) powerset and adjust
the notion of final state:

F'={PCQ|PCF}

There is almost no difference.

50

And Once Again ...

A mathematician is a person who can find analogies between
theorems; a better mathematician is one who can see analogies
between proofs and the best mathematician can notice analogies
between theories. One can imagine that the ultimate mathemati-
cian is one who can see analogies between analogies.

S. Banach

51

An Analogy (pace Banach) 52

We can think of the transitions in a NFA as being disjunctions:

5(177 a) =q@Vaq

We can arbitrarily pick g1 or g2 to continue. Similarly, in a VFA, we are dealing
with conjunctions:

é(p,a) =q1 A g2

meaning: We must continue both at ¢; and at g2. So how about
5(p,a) = (a1 V q2) A (g3 V qa)

Or perhaps

d(p,a) = (@1 V —g2) Ags

Does this make any sense?

Threads 53

Think of threads: both A and V correspond to launching multiple threads. The
difference is only in how we interpret the results returned from each of the
threads.

For — there is only one thread, and we flip the answer bit.

In other words, a “Boolean” automaton produces a computation tree very
much like a plain NFA. But the acceptance condition is a bit more involved.

For historical reasons, these devices are called alternating automata.

Alternating Automata 54

In an alternating finite automaton (AFA) we admit transitions of the form

5(q,a) = @(q1,q2, -, qn)

where ¢ is an arbitrary Boolean formula over Q = {q1, g2, ...,gn}, even one
containing negations.
How would such a machine compute? Initially we are in “state”

qo1 V qo2 V...V qok

the disjunction of all the initial states.

One Step and Acceptance
Suppose we are in state &, some Boolean formula over Q. Then under input a
the next state is defined by substituting formulae for the variables:

Dlq1 = 6(q1,a),...,qn > 0(gn,a)]

The substitutions are supposed to be carried out in parallel, so each variable
q € Q is replaced by §(g, a), yielding a new Boolean formula. In the end we
accept if

PF—1,F—0=1
Meaning: replace all variables in F by true, and all variables in F by false.

Exercise
Verify that for both NFA and YFA this definition behaves as expected.

55

Why Alternating? 56

The name “alternating automaton” may sound a bit strange.

The original paper by Chandra, Kozen and Stockmeyer that introduced these
machines in 1981 showed that one can eliminate negation without reducing the
class of languages.

One can then think of alternating between existential states (at least one
spawned process must succeed) and universal states (all spawned processes
must succeed).

In a moment, we will apply an analogous construction to Turing machines.

nil novis sub solem

Theorem
Alternating automata accept only regular languages.

Proof.

Let Bool(Q) be the collection of all Boolean formulae with variables in @ and
Boolp(Q) a subset where one representative is chosen in each class of
equivalent formulae (say, the length-lex first in DNF) and consider the
corresponding normalization map v : Bool(Q) — Boolo(Q).

We can build an equivalent DFA over the state set Boolo(Q) of state
complexity at most 22" .

57

The DFA

@ The initial state is V(\/qEI q).

@ Transitions are A(p,a) = v(p — §(p,a)).

@ The final states are { ¢ € Boolo(Q) | ¢[F — 1, F — 0] =1}.

It is easy to see that the new, ordinary DFA is equivalent to the given,
alternating one.

But note that the cost of eliminating alternation is potentially doubly
exponential, significantly worse that for determinization (corresponding to
logical-or only).

58

Why Would Anyone Care?

Because an AFA can be much, much smaller that the minimal DFA. In fact,
the 22" bound is tight: there are AFAs on n states where the minimal
equivalent DFA is doubly exponential in n.

So we have a succinct representation for a regular language, but one that still
behaves reasonably well under the usual algorithms. Avoiding the standard

DFA representation is often critical for feasibility: in reality we cannot actually
construct the full DFA in many cases. Laziness is a good idea in this context.

BTW, this is even true in pattern matching: DFAs should be avoided unless
they are absolutely necessary (because the pattern contains a negation).

59

	Transformation Semigroups
	State Complexity
	Alternating Automata

