
CDM

Semigroups and Groups

Klaus Sutner

Carnegie Mellon University
Spring 2025

1 Symmetric Groups

2 Some Groups

3 Subgroups and Homomorphisms

Permutations 2

For our purposes the most important examples of groups are those comprised
of permutations.

Definition
A permutation is a bijection f : A → A , in particular when A is a finite set.
The collection of all permutations on A, an n-element set, under functional
composition is the symmetric group (on n letters or points).

Notation: Sn

As we will see shortly, in most cases the full symmetric group is too large; we
need to focus on subgroups of Sn.

Permutations 3

We will focus on the carrier set A = [n]. In this case, we can represent f by a
2 × n matrix of the form(

1 2 3 . . . n − 1 n
f(1) f(2) f(3) . . . f(n − 1) f(n)

)
This is the so-called two-line representation of f . Needless to say, the first row
in this matrix is really redundant, but this redundancy makes it a bit easier to
read off specific values. Alternatively, we can use one-line representation:

[f(1), f(2), . . . , f(n − 1), f(n)]

Note that we have chosen to write [a1, . . . , an] to specifically indicate a map
from [n] → [n]. This is slightly less dangerous than just writing (a1, . . . , an),
which could mean a great many things.

Cycle Decomposition 4

Suppose f : [n] → [n] is some function. We can think of f as a directed graph
Gf :

V = {1, 2, . . . , n}
E = { x � f(x) | x ∈ V }

If f is a permutation the graph consists of a collection of disjoint cycles.

1 2

10

12

3

4

6

8 9

11

57

Example 5

The functional digraph on the last slide belongs to the following permutation.(
1 2 3 4 5 6 7 8 9 10 11 12
10 12 8 3 7 9 5 6 11 2 4 1

)
We can write f in cycle notation like so:

(1, 10, 2, 12), (3, 8, 6, 9, 11, 4), (5, 7)

Note that there could be just a single cycle of length n: (1, 2, . . . , n) in cycle
notation stands for the cyclic shift. Or there could be n cycles of length 1.

Omitting Fixed Points 6

It is customary (and often very useful) to omit fixed points from the list of
cycles.

The cycle decomposition of

[4, 7, 1, 6, 8, 9, 11, 5, 2, 10, 3, 12, 14, 13]

would be written as

(1, 4, 6, 9, 2, 7, 11, 3), (5, 8), (13, 14),

leaving out the fixed points 10 and 12.

In standard mathematics texts you should expect to find the more compact
notation used a lot.

Computing the Cycle Decomposition 7

Lemma
We can compute the cycle decomposition of a permutation f : [n] → [n] in
time and space linear in n.

Here we tacitly assume that f(x) can be computed in time O(1) (which is safe
since ordinarily f will be given by an explicit array).

There are at least two ways to think about this:

Compute the strongly connected components in the functional digraph of
f .
Compute the orbits of the function f , exploiting the fact that they are all
periodic.

Note that generating the cycle decomposition seems to require linear space (as
opposed to Floyd’s algorithm for transients and period).

Canonical Cycle Decomposition 8

Note that we can rearrange the cycles arbitrarily, and we can rotate each
individual cycle without changing the underlying permutation.
For example, the following two cycle decompositions describe the same
permutation on n = 14.

(7, 5), (11, 4, 3, 8, 6, 9), (12, 1, 10, 2)
(1, 10, 2, 12), (3, 8, 6, 9, 11, 4), (5, 7)

The second representation may seem more natural from the implementor’s
point of view, but it is the first that has better combinatorial properties.

Definition
The canonical cycle decomposition (CCD) of a permutation is obtained by
rotating all cycles so that the largest element is up front and the cycles are
ordered by first element. If the least element is in the first position we speak of
the reverse canonical cycle decomposition (RCCD)

More Natural? 9

Here is the prototype algorithm that almost everybody would write when asked
to implement cycle decomposition.

for x = 1,..,n do
if(x unmarked)

mark x;
res = (x);
while(f(x) unmarked)

x = f(x);
mark x;
append(res, x);

output res;

This program places the least element first in each cycle and returns the cycles
sorted by first element. In other words, the straightforward algorithm produces
RCCD rather than CCD.

CCD for Length 4 10

Here are the CCDs for all elements of S4, enumerated in lex order. For clarity,
we write fixed points.

(1), (2), (3), (4) (1), (2), (4, 3) (1), (3, 2), (4) (1), (4, 2, 3)
(1), (4, 3, 2) (1), (3), (4, 2) (2, 1), (3), (4) (2, 1), (4, 3)
(3, 1, 2), (4) (4, 1, 2, 3) (4, 3, 1, 2) (3), (4, 1, 2)
(3, 2, 1), (4) (4, 2, 1, 3) (2), (3, 1), (4) (2), (4, 1, 3)
(3, 1), (4, 2) (4, 1, 3, 2) (4, 3, 2, 1) (3), (4, 2, 1)
(2), (4, 3, 1) (2), (3), (4, 1) (4, 2, 3, 1) (3, 2), (4, 1)

Exercise
Find a good algorithm to compute the CCD of a given permutation. What is
the running time of your algorithm?

Flattening CCDs 11

Here are these CCDs flattened out.

1, 2, 3, 4 1, 2, 4, 3 1, 3, 2, 4 1, 4, 2, 3
1, 4, 3, 2 1, 3, 4, 2 2, 1, 3, 4 2, 1, 4, 3
3, 1, 2, 4 4, 1, 2, 3 4, 3, 1, 2 3, 4, 1, 2
3, 2, 1, 4 4, 2, 1, 3 2, 3, 1, 4 2, 4, 1, 3
3, 1, 4, 2 4, 1, 3, 2 4, 3, 2, 1 3, 4, 2, 1
2, 4, 3, 1 2, 3, 4, 1 4, 2, 3, 1 3, 2, 4, 1

We get all permutations. Could this be coincidence?

A Bijection 12

From the data structure point of view, the cycle decomposition is a list of lists
of integers. Hence we can flatten it to obtain a plain list of integers:

flat : List(List(N)) → List(N)

If we start with the full cycle decomposition (including fixed points) we obtain a
permutation (in one-line representation) this way. For arbitrary decompositions
this is of little interest, but if we start with the CCD we get the following
proposition, which is helpful in enumeration problems related to permutations.

Proposition
The map CCD ◦ flat is a bijection on Sn.

Questions 13

Exercise
Prove that CCD ◦ flat is indeed a bijection.

Exercise
What are the fixed points of this bijection?

Exercise
How about RCCD ◦ flat?

Comments 14

CCD and RCCD show that algorithms often coexist somewhat uneasily with
algebra: they are more combinatorial in nature and may clobber algebraic
structure. The question arises whether there are other ways to decompose
permutations that rely more directly on algebra.

If this sounds hopelessly cryptic, don’t worry. Things will become clear once
you have seen enough examples.

Notation Rant 15

And a truly annoying issue with notation.

Since permutations are functions we can compose them by ordinary functional
composition f ◦ g. In this section, we write composition in diagrammatic form:

(f ◦ g)(x) = g(f(x))

This corresponds to the natural way one reads a diagram:

A B C
f

f◦g

g

Some (misguided) texts use the opposite convention. Unfortunately, they are
currently the vast majority.

Algebraic Decomposition 16

Here are two decomposition questions of the kind an algebraist would be
interested in.

Basis Problem:
Find a small and/or simple set of permutations so that all per-
mutations can be written as a product of these.

Decomposition Problem:
Given such a basis B, find a way to decompose a given permu-
tations into a product of permutations in B.

Transpositions 17

Definition
A transposition is a permutation that consists of a single 2-cycle.

In cycle notation, transpositions are exactly the permutations of the form (a, b)
for a ̸= b.

Example
Consider the following transpositions over [3], given in cycle notation.

(1, 2) ◦ (2, 3) = [3, 1, 2]
(2, 3) ◦ (1, 2) = [2, 3, 1]

Thus, composition of permutations is not commutative (it is associative,
though, since composition of functions is so associative).

In Pictures 18

1

2

3

1

2

3

1

2

3

1

2

3

(1, 2) ◦ (2, 3) = [3, 1, 2] (2, 3) ◦ (1, 2) = [2, 3, 1]

In cycle notation, the two composite permutations are each represented by a
3-cycle: (1, 3, 2) and (1, 2, 3).

Basis Theorem 19

Lemma
Every permutation can be written as a product of transpositions.

Proof. (sketch)
Since every permutation is composed of disjoint cycles, it suffices to show that
every cycle (a1, . . . , am) is a product of transpositions.
Show this by induction on m ≥ 2. The crucial step is

(am, b) ◦ (a1, . . . , am) = (a1, a2, . . . , am−1, am, b)

2

Exercise
Fill in all the gaps in this argument.

Exercise
Find a direct decomposition
(a1, b1) ◦ (a2, b2) ◦ . . . ◦ (am, bm) = (c1, c2, . . . , cm, cm+1).

In Pictures 20

For a simple cycle this is easy to see in the composition picture.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Another Easy Case 21

Here is another simple decomposition of a cycle intro transpositions.

1

2

3

4

5

1

2

3

4

5

So (1, 2)(2, 3)(3, 4)(4, 5) = (5, 4, 3, 2, 1).

More Pictures 22

A more complicated permutation on n = 12, and its decomposition into
transpositions.

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

Exercise
Find an algorithm to generate the picture on the right.

More Identities 23

For the next proposition, we abuse notation and use exponents for
permutations given in cycle notation.

Proposition

(a, b) ◦ (b, c) ◦ (a, b) = (a, c)

(1, . . . , n)i ◦ (1, 2) ◦ (n, . . . , 1)i = (i + 1, i + 2)

where 0 ≤ i ≤ n − 2.

Exercise
Prove these identities.

Even and Odd Permutations 24

Needless to say, the decomposition into transpositions is not unique.

Definition
A permutation is even if it can be written as the product of on even number of
transpositions, and odd if it can be written as the product of on odd number of
transpositions.

Note the cautious wording: this does not say that every permutation is either
even or odd. It leaves open the possibility that some permutation could be
both even and odd. However, one can show that any permutation is either
even or odd, never both.

Lemma
No permutation is even and odd.

Proof Sketch 25

Let σ be a permutation of [n]. Consider the polynomials

P (x1, . . . , xn) =
∏
i<j

xi − xj

Pσ(x1, . . . , xn) =
∏
i<j

xσ(i) − xσ(j)

Then necessarily P = ±Pσ. But then P = +Pσ iff σ is even, and P = −Pσ iff
σ is odd. 2

Note that we are essentially using σ to permute the variables here.

Exercise
Fill in the details of this argument.

Alternating Groups 26

The composition of even permutations is again even, so we can assemble them
into a new group.

Definition
The collection of all even permutations of A, an n-element set, is the
alternating group on n points.
Notation: An ⊆ Sn.

Example
In one-line notation, A4 has the following elements:

1, 2, 3, 4 1, 3, 4, 2 1, 4, 2, 3 2, 1, 4, 3 2, 3, 1, 4 2, 4, 3, 1
3, 1, 2, 4 3, 2, 4, 1 3, 4, 1, 2 4, 1, 3, 2 4, 2, 1, 3 4, 3, 2, 1

One can show that An has size n!/2 in general.

Part of the importance of alternating groups comes from the fact that for
n ≥ 5 each alternating group An is simple: it has only trivial normal subgroups.

Computing the Inverse 27

Definition
The order of a permutation f is the least m > 0 such that fm = I.

Lemma
Let the cycles of permutation f have lengths l1, . . . , lk and let m be the LCM
of l1, . . . , lk . Then m is the order of f .

This has the consequence that

f−1 = fm−1.

Hence we can compute the inverse by fast iteration when the carrier set is
finite. Of course, this does not work in the infinite case.

Needless to say, no one would actually compute the inverse this way.

Really Computing the Inverse 28

Here is a computationally better way to get at the inverse. Define g by

g(f(i)) = i for i = 1, . . . , n.

Then g ◦ f = f ◦ g = I and thus g = f−1. This takes linear time.

Here is another, computationally dubious, way: sort the list of pairs(
(f(1), 1), (f(2), 2), . . . , (f(n), n)

)
in the usual lexicographic order. Then throw away the first components. The
resulting permutation is f−1.

Exercise
Explain how the last method works. What is the running time?

1 Symmetric Groups

2 Some Groups

3 Subgroups and Homomorphisms

Implementing Groups 30

So how do we actually compute in a group? Let’s first focus on the finite case,
for which there always is a brute-force solution – at least in principle.

Definition
Given a finite group G = ⟨G, ∗⟩ the Cayley table or multiplication table of G is
an G by G matrix with entries in G: the entry in position (a, b) is a ∗ b.

It is usually safe to assume that the group elements are represented by integers,
so the size of the Cayley table is Θ(n2) using a uniform cost function.
That’s OK for small n but not for larger ones.
More importantly, Cayley tables tend to shed little light on the structure of the
group, all you have is a pile of data.

Small Groups 31

n = 1: trivial group {1}

n = 2: Z2
1 a
a 1

n = 3: Z3
1 a b
a b 1
b 1 a

n = 4 32

Z4
1 a b c
a b c 1
b c 1 a
c 1 a b

Kleinsche Vierergruppe
1 a b c
a 1 c b
b c 1 a
c b a 1

n = 5, 6 33

n = 5: Z5

n = 6: Z6, S3

n = 7: Z7

n = 8: 5 groups

It gets to be a bit tedious to write down these Cayley tables. Here is a count of
the number of finite groups of size n for n ≤ 60.
Note that the outliers at n = 32 and n = 48.

Counting Finite Groups 34

10 20 30 40 50 60

10

20

30

40

50

Cyclic Groups 35

A group G is cyclic if there is some element a ∈ G such that

G = { ai | i ∈ Z }

In this case a is called a generator.

If G is a finite cyclic group we have

G = { ai | 0 ≤ i < k }

where k is the order of a (which is the size of G).

Note that in any finite group G and for any a ∈ G the subgroup
{ ai | 0 ≤ i < k } is cyclic (with generator a).

Cyclic Groups are Boring 36

Up to isomorphism there is only one cyclic group of order k, and it is
isomorphic to ⟨Zk, +, 0⟩. A generator is 1.

Note that there are other generators, though: ℓ is a generator iff gcd(ℓ, k) = 1.

All cyclic groups are commutative.

Multiplicative Subgroup 37

Recall

Z⋆
m = { x < m | gcd(x, m) = 1 }

Example
Here is the Cayley table for Z⋆

20.

1 3 7 9 11 13 17 19
3 9 1 7 13 19 11 17
7 1 9 3 17 11 19 13
9 7 3 1 19 17 13 11

11 13 17 19 1 3 7 9
13 19 11 17 3 9 1 7
17 11 19 13 7 1 9 3
19 17 13 11 9 7 3 1

Note the subgroup {1, 3, 7, 9} in the top-left corner.

Dihedral Groups 38

As we have already seen, the symmetries of a regular n-gon give rise to the
dihedral groups Dn.

These groups have order 2n and are generated by a rotation a and a reflection
b.

The basic identities are

an = b2 = 1 ab = ban−1

An Isomorphism 39

Proposition
The symmetric group on 3 points is isomorphic to the dihedral group D3.

Proof.
First note that both groups have size 6, so there is a chance the claim might be
correct.
The permutations f = (1, 2) and g = (1, 2, 3) (in cycle notation) generate S3,
so we only need to find their counterparts in D3.
f corresponds to a reflection and g corresponds to a rotation.

2

Exercise
Check the details in the last argument. Why can this line of reasoning not be
used to show that Sn is isomorphic to Dn in general?

Kleinsche Vierergruppe 40

How about the symmetries of a rectangle?

By visual inspection, there are only
two reflections, say, a and b. Clearly,
a2 = b2 = 1 and ab = ba, so the whole
group is just

V = {1, a, b, ab}

A better representation is 2 × 2 with
addition modulo 2 (or bitwise xor).
Since the group is Abelian, we can
write {00, 01, 10, 11}.

Application: Peg Solitaire 41

The game of (peg) solitaire uses pebbles on a board such as the following one
(English version):

The goal is to “jump-over-and-remove-pebbles” until only one in the middle
remains.

Brutal Problem 42

It is far from clear that this is even possible–it is for this board, but not for
others. A mostly brute-force computational attack succeeds, but does require
some cleverness (use of symmetries).

A weak solution is any sequence of moves that leaves just one pebble,
somewhere on the board. A strong solution leaves the pebble in the center.

Challenge: Show that any weak solution can be turned into a
strong solution by changing just one move.

Think about this a bit, it seems impossibly hard: we have no idea what the
space of all weak/strong solutions looks like.

Klein to the Rescue 43

Label the squares s of the board with elements of the Kleinsche Vierergruppe,
vs ∈ {01, 10, 11}, as follows:

green⇝ 01
red⇝ 10

blue⇝ 11

Note that three consecutive squares, either vertically or horizontally, are always
labeled by distinct elements.

So What? 44

Indicate presence or absence of a pebble on square s by a Boolean variable bs

and define the value of the corresponding configuration to be∑
s

bsvs

The value of the whole board is 00, so if we remove the center pebble, the
mutilated board has 11 = −11.

Claim: Any single move does not change the board value.

x y 00⇝ 00 00 z where z = x + y

Done! 45

In the end, only one pebble in a blue position can be left over. Even better: by
symmetry, there can only be 5 possible solutions:

But each one of these can be reached iff all the others can: use symmetry, or
change the last move.

1 Symmetric Groups

2 Some Groups

3 Subgroups and Homomorphisms

Subgroups 47

Consider a group A = ⟨A; ·, −1, 1⟩ and recall our definition of substructure: we
need ∅ ̸= B ⊆ A and we restrict the operations to B. Hence, B must contain
all constants. For positive arities, B must be closed under the operations.

Definition
A subgroup of A is a group on carrier set set ∅ ̸= B ⊆ A that is obtained by
restricting all the operations to B.

This is always written B = ⟨A; ·, −1, 1⟩, no one bothers to introduce new
symbols for restricted functions.

Some examples:

⟨Q, +⟩ is a subgroup of ⟨R, +⟩ .

⟨Z, +⟩ is a subgroup of ⟨Q, +⟩ .

⟨2Z, +⟩ is a subgroup of ⟨Z, +⟩ .

{1} is the trivial subgroup of any group.

Testing Subgroups 48

Lemma
Let A be a group and ∅ ̸= B ⊆ A.
Then B forms a subgroup of A iff x, y ∈ B implies x−1 · y ∈ B.
If the group is finite, then it suffices that x, y ∈ B implies x · y ∈ B.

Proof.
The first part follows easily from the definition.

For the second part note that B must contain 1: as a finite semigroup B must
contain an idempotent, which must be the identity in A. The map

B → B, x 7→ b · x

is a permutation of B for each b ∈ B (injective implies surjective in the finite
case). But then for some x ∈ B: 1 = b · x so we have closure under inverses.

2

Homomorphisms 49

A map from one group to another is mostly interesting if it preserves structure.

Definition
Suppose G and H are groups. A function f : G → H is a (group)
homomorphism if

f(x · y) = f(x) ∗ f(y)

Here · is the operation in G, and ∗ the operation in H.
If the function f is in addition injective then it is an monomorphism.
If the function f is in addition surjective then it is an epimorphism.
If the function f is in addition bijective then it is an isomorphism.

Usually one simply writes f(xy) = f(x)f(y) and does not explicitly display the
two different group operations.

Basic Properties 50

Proposition
Let f : G → H be homomorphism.
Then f(1G) = 1H and f(x−1) = f(x)−1.

Example

f : G → H , f(x) = 1, is a homomorphism.
f : G → G , f(x) = x is an isomorphism.
f : Z → Zm , f(x) = x mod m is an epimorphism.
log : R+ → R is a isomorphism from ⟨R+, ·, 1⟩ to ⟨R, +, 0⟩.

As the last example show, one does not always want to identify isomorphic
groups. In fact, the whole purpose of logarithms is to translate multiplication
into addition.

Kernels 51

Definition
The kernel of a homomorphism f : G → H is defined as

ker f = { x ∈ G | f(x) = 1 }.

Hence
f(x) = f(y) ⇐⇒ y−1x ∈ ker f

This is slightly different from the kernel relations in combinatorics, but close
enough to warrant the same name.

Note that f is injective (a monomorphism) iff the kernel is trivial: ker f = 1.

Proposition
The kernel of a homomorphism is always a subgroup.

Cosets 52

We can push this a little bit further based on the last observation:

Definition
For any subgroup H ⊆ G and a ∈ G define the (left) coset of H by a as

aH = { ax | x ∈ H } ⊆ G

The number of such cosets is the index of H in G, written [G : H]. Right
cosets are defined in a similar manner.

Now consider any subgroup H ⊆ G and define a relation

x ∼H y :⇔ x−1y ∈ H

We claim that ∼H is an equivalence relation on G whose equivalence classes
are just the cosets aH.

Partition Size 53

Lemma
∼H is an equivalence relation on G, and the equivalence classes of ∼H all have
the same size |H|.

Proof.
Reflexivity follows from 1 ∈ H.
Symmetry since x−1y ∈ H implies (x−1y)−1 = y−1x ∈ H,
Transitivity since x−1y, y−1z ∈ H implies x−1z ∈ H.

For the second claim note that [x]∼ = xH.
But z 7→ xz is a bijection from H to xH. 2

Lagrange’s Theorem 54

Theorem (Lagrange 1771)
Let G be a finite group, and H any subgroup of G. Then |G| = |H| · [G : H].

In particular, |H| divides |G|.

Note how algebra produces a stronger result here: if we look at arbitrary
functions f : A → B then any equivalence relation arises as a kernel relation.
But if we consider groups and homomorphisms we get only very special
equivalence relations.
This restriction will turn out to be very helpful to answer various counting
problems.

Order 55

Let a ∈ G. We write ⟨a⟩ for the least subgroup of G containing a.

It is not hard to see that
⟨a⟩ = { ai | i ∈ Z }

If G is finite, we have ⟨a⟩ = { ai | i ≥ 0 }.

Definition
The cardinality of ⟨a⟩ is the order of a in G.

Application 56

It follows from Lagrange’s theorem that the order of any group element divides
the order (cardinality) of the whole group.
Hence for n = |G|, a ∈ G we have an = 1.

This provides a simple proof for the famous Euler-Fermat theorem.

Recall that Z⋆
m is the group of elements in Zm that have multiplicative inverses.

Also, φ(m) is Euler’s totient function: φ(m) = |Z⋆
m|.

Theorem (Euler-Fermat)
The order of a ∈ Z⋆

m divides φ(m).

Wurzelbrunft’s Idea 57

Write G/H for G/ ∼H , the collection of H cosets. Wurzelbrunft remembers
from algebra lecture that quotients are really only useful if they carry some
natural algebraic structure. He proposes to turn G/H into a group as follows:

aH ∗ bH := abH

and we get the Wurzelbrunft quotient group G/H. An example of this
construction are the modular numbers from above.

Since the group structure is inherited from G, this should be quite useful.

Right?

Wrong 58

For this to work we need to show that this multiplication is well-defined.
So let a ∼ a′ and b ∼ b′. We need

abH = a′b′H

But all the information we have is that a′ = ah1 and b′ = bh2, hi ∈ H.
H is a subgroup, so h2H = H, which produces

a′b′H = ah1bh2H = ah1bH

Alas, now we are stuck, we cannot get rid of the pesky h1.

As it turns out, there is no way to get around this problem: we need more than
just a plain subgroup. In fact, in a way, ordinary subgroups are not the right
notion of substructure in the case of groups, they don’t produce useful
quotients.

Normal Subgroups 59

Definition
A subgroup H of G is normal if for all x ∈ H, a ∈ G: axa−1 ∈ H.

In other words, a subgroup is normal if it is invariant under the conjugation
maps x 7→ axa−1. Equivalently, aH = Ha.

In a commutative group all subgroups are normal.
The trivial group 1 and G itself are always normal subgroups (groups that
have no other subgroups are called simple, a hugely important concept in
the classification of groups).
There are non-commutative groups where all subgroups are normal, but
that is a rare property.
The group of all translations in the plane is a normal subgroup of the
group of all rigid motions (translations plus rotations and reflections).

Fixing Wurzelbrunft 60

Now we can fix Wurzelbrunft’s argument: assume H is normal. Then

abH = aHb = ah1Hb = a′bH = a′bh2H = a′b′H

Definition
This group is called the quotient group of G modulo (the normal subgroup) H
and written G/H.

So where do we get normal subgroups?

Proposition
A subgroup H of G is normal iff it is the kernel of a homomorphism
f : G → G′ where G′ is some other group.

It’s a Group 61

To hammer this home: let f : G → G′ be a homomorphism and ∼ = ∼ker f the
equivalence relation induced by it. We can define a multiplication on the
equivalence classes of ∼ by setting

[x] ∗ [y] := [x y]

This is well-defined: let x ∼ x′ and y ∼ y′, then

f(xy) = f(x)f(y) = f(x′)f(y′) = f(x′y′),

so that [xy] = [x′y′]. It is not hard to see that this produces a group structure
on G/ ∼.

Example 1 62

Let G be the integers under addition and H = mZ. Then

x ∼ y ⇐⇒ y − x ∈ mZ
⇐⇒ x = y (mod m)

H is the kernel of the epimorphism x 7→ x mod m.

Example 2 63

Let G be the group of all permutations on [n]. Define

f(x) =
{

0 if x is even,
1 otherwise.

Then f is homomorphism from G to the additive group Z2.
The kernel of f is the subgroup

H = { x ∈ G | x even }

Note that |H| = |G|/2 = n!/2.

Example 3 64

Consider the multiplicative group

G = Z∗
13 = {1, 2, . . . , 12}

We one can check that H = {1, 3, 9} is a subgroup with cosets

H = {1, 3, 9}, 2H = {2, 5, 6}, 4H = {4, 10, 12}, 7H = {7, 8, 11}

The multiplication table for G/H written with canonical representatives is

1 2 4 7
2 4 7 1
4 7 1 2
7 1 2 4

and is isomorphic to the additive group Z4.

Decomposition of Homomorphisms 65

Lemma
Every homomorphism f : G → H can be written as f = ν ◦ ι where ν is an
epimorphism and ι is a monomorphism.

Proof.
Let K ⊆ G be the kernel of f , a normal subgroup. Define

ν : G → G/K x 7→ [x]
ι : G/K → H [x] 7→ f(x)

It is easy to check that these functions work. 2

Congruences 66

To obtain the quotient group G/H we need to factor by a special type of
equivalence relation.

Definition
Suppose G is a group and ∼ an equivalence relation on G. ∼ is a congruence if
for all x, y, x′, y′ ∈ G:

x ∼ x′, y ∼ y′ implies xy ∼ x′y′.

Again, congruences are very important since they make it possible to define a
group structure on the quotient set G/∼:

[x] · [y] = [x · y]

Congruences and Homomorphisms 67

Unfortunately, the equivalence relations ∼H for arbitrary subgroups H are not
congruences in general, we need normal subgroups for this to work.

Proposition
If H is a normal subgroup, then ∼H is a congruence.

Proposition
H is the kernel of a homomorphism f : G → G′ iff H is normal.

Exercise
Prove these propositions.

Example: Chinese Remainder 68

You know this already. E.g., let p and q be two distinct primes.

f : Z → Zp × Zq

f(x) = (x mod p, x mod q)

Then H = pq Z and the quotient is Z/(pqZ) = Zpq.

One can show that f is an epimorphism (this requires a little argument).
Hence Zpq is isomorphic to Zp × Zq.

So? 69

Hence we can either compute

with one number modulo pq, or
with two numbers, one modulo p and the other modulo q.

Zpq and Zp × Zq are isomorphic, but computationally there is a difference.
This can be exploited sometimes to fake high-precision computations with
small word sizes.

Also note that the correctness proof for RSA more or less requires the product
representation.

Cayley’s Theorem 70

Theorem (Cayley 1854)
Every group is isomorphic to a subgroup of a permutation group.

Proof. Let A = ⟨A, ·⟩ be a group, and let SA be the full permutation group
over A. Define a map

φ : A → SA

φ(a)(x) = x · a

Then φ is a homomorphism: φ(a · b) = φ(a) ◦ φ(b). Moreover, φ is mono: the
kernel is just 1 ∈ A. Hence, the range of φ is a subgroup of SA that is
isomorphic to A. 2

Note that this representation is not too helpful computationally: each
permutation in SA has the same size as A.

The Sign Homomorphism 71

Recall our proof of the fact that no permutation is both even and odd.
One way to explain (and make precise) what is going on there is to consider
the sign function from the group of all permutations

sg : Sn → {+1, −1}
sg(σ) = Pσ(x)/P (x)

where the operation on the right is ordinary multiplication. It is not hard to see
that sg is a homomorphism and the kernel of sg is exactly the collection of all
even permutations.

In other words, An is the kernel of the homomorphism sg.

	Symmetric Groups
	Some Groups
	Subgroups and Homomorphisms

