
CDM

Recurrences and Fibonacci

Klaus Sutner

Carnegie Mellon University

1 Recurrence Equations

2 Second Order

3 The Fibonacci Monoid

Recurrence Equations 2

We can define a sequence (un)n≥0 in two standard ways:

Explicitly: un = n(n + 1)/2.
Inductively: un = un−1 + n.

Inductively definitions are often much easier to find, e.g. in running time
analysis. But we then want a explicit formula for the sequence, or at least an
asymptotically correct explicit formula.

Definition
An equation of the form

un = a1un−1 + a2un−2 + . . . akun−k + f(n)

is a linear recurrence equation of order k.
Solving this recurrence means to find an explicit formula for un.

Terminology 3

linear: there are no terms u2
i , √

ui, and so on
order k: un depends on un−1, un−2, . . . , un−k

called homogeneous if f(n) = 0, non-homogeneous otherwise

Solving recurrences turns out to be rather difficult. Requires somewhat
complicated machinery, and lot’s of tricks.

Sometimes, the best approach is to make an educated guess and then verify.
Of course, that requires experience.

Here are some basic ideas.

First-Order 4

How do we solve the equation

un = a · un−1 + b

The natural attack is to substitute the equation into itself a number of times
and hope for a pattern.

un = a2un−2 + ab + b

un = a3un−3 + a2b + ab + b

un = a4un−4 + a3b + a2b + ab + b

In this case there is an easy conjecture, which can be proved by induction:

un = anu0 + b
∑
i<n

ai

Solution and Asymptotics 5

So for a ̸= 1 we have

un = anu0 + b
an − 1
a − 1

but for a = 1 we get
un = u0 + bn

If we are not interested in details (e.g., in running time analysis) we can simply
say

un = Θ(an) = Θ(2n log2 a)

in the case a ̸= 1 and un = Θ(n) otherwise.

In this particular case asymptotic notation is just a convenient way to hide
irrelevant detail, but sometimes it is the only way to get a reasonable answer.

Non-Constant 6

How about

un = a · un−1 + f(n)?

It is easy to see that
un = anu0 +

∑
i<n

aif(n − i)

We need to know more about f to proceed.

Example

u0 = 0
un = un−1 + n

Since a = 1 we easily get un = n(n + 1)/2.

Case a ̸= 1 7

How about the slightly more complicated

u0 = 0
un = a · un−1 + n

This already makes an astonishing mess. To tackle the problem, first use a
standard trick in mathematics: chop off offending parts and consider
homogeneous case:

un = a · un−1

That’s easy: un = anu0.

Crazy Idea: Let’s try something that looks like the homogeneous solution, plus
a term similar to f(n), something like

un = c0 + c1n + c2an

This may or may not work, we are just guessing here.

Onward 8

We need
a(c0 + c1(n − 1) + c2an−1) + n = c0 + c1n + c2an

Use u0 = 0, and substitute n = 1 and n = 2:

c0 + c2 = 0
c0(a − 1) − c1 + 1 = 0

c0(a − 1) + c1(a − 2) + 2 = 0

with solutions

c0 = −a

(a − 1)2 c1 = −1
a − 1

These coefficients produces the final solution

un = a(an − 1) − n(a − 1)
(a − 1)2 .

example 9

For example

u0 = 0
un = 2 · un−1 + n

has solution
un = 2n+1 − n − 2 = Θ(2n)

Not much different from our Hanoi solution:

u0 = 0
un = 2 · un−1 + 1

with solution
un = 2n − 1 = Θ(2n)

The Flip-Side 10

Recall from last time:

Complicated problems often have simple recursive solutions.

Now we are dealing with the opposite problem:

Simple recursive problems often have complicated solutions.

There is no free lunch after all . . .

1 Recurrence Equations

2 Second Order

3 The Fibonacci Monoid

Fibonacci Numbers 12

The simplest second-order recurrence is the famous Fibonacci recurrence
(homogeneous):

F0 = 0,

F1 = 1
Fn = Fn−1 + Fn−2

What can we say about these numbers?
Clearly Fn < 2n, but they grow pretty quickly: here’s a log-plot.

Fibonacci Plot 13

A log-linear plot of the first 26 Fibonacci numbers; note the exponential scale.

Characteristic Equation 14

The plot suggests that log Fn is essentially linear. Hence we should have
Fn ≈ c · xn.
What are the constants c and x ? We need

cxn = cxn−1 + cxn−2

or

x2 − x − 1 = 0

Definition
This is the characteristic equation of the recurrence.

Solutions of the characteristic equation:

x1/2 = 1 ±
√

5
2

We will construct a solution of the recurrence from these.

The Golden Ratio 15

We clearly need the root larger than 1, often called the Golden Ratio

Φ = 1 +
√

5
2 ≈ 1.61803

The second root is
Φ̂ = 1 −

√
5

2 = 1 − Φ.

If we set c = 1/
√

5 we get a fairly good approximation Fn ≈ Φn/
√

5.
E.g., F20 = 6765 and

Φ20
√

5
− F20 ≈ 0.0000295639

So it looks like Fn = Θ(Φn).

Precise Solution 16

But can we get a precise expression for Fn?
How about using both roots of the equation? We could try something like

Fn = c1Φn + c2Φ̂n

Yields linear equations

c1 + c2 = 0

c1Φ + c2Φ̂ = 1

with solution
c1 = −c2 = 1/

√
5.

Again, this is the “guess-and-verify” approach.

DeMoivre-Binet 17

Lemma
DeMoivre-Binet Formula

Fn = (Φn − Φ̂n)/
√

5

Proof. Write Gn = (Φn − Φ̂n)/
√

5. We know G0 = 0 = F0 and
G1 = 1 = F1. But it is straightforward to check that

Gn = Gn−1 + Gn−2.

But then by induction Fn = Gn. 2

So
Fn = ((1 +

√
5)n − (1 −

√
5)n)/(2n

√
5).

Note that this expression really yields an integer: the square roots of 5 all
cancel out.

Computing with
√

5 18

Since Φ̂ ≈ −0.618034 we have lim Φ̂n = 0 quite rapidly, which explains why
the second term is not so important.

This is really a bit strange: we are computing in the field extension Q(
√

5), i.e.,
with numbers of the form

x + y ·
√

5 where x, y ∈ Q

in order to compute an integer.

Note that Q(
√

5) is closed under addition and multiplication, so we can really
do arithmetic. For example

(x + y ·
√

5)−1 = (x − y
√

5)/(x2 − 5y2)

Application: Bit-Counts 19

We have
Fn ≈ 0.45 · 1.62n ≈ 20.7n−1

Hence the binary expansion of Fn should have about 0.7n digits. Quite close:
F1000: 694 binary digits, F10000: 6942 binary digits.
So we can easily estimate the amount of memory needed to store Fibonacci
numbers.

By a simple error estimate we get:

Fn = round(Φn/
√

5)

Alternates (above/below actual integer value):

0.447, 0.724, 1.171, 1.894, 3.065, 4.960, 8.025, 12.985

Fibonacci Sums 20

Can we find a nice description of
∑

i≤n
Fi?

Claim ∑
i≤n

Fi = Fn+2 − 1

Proof.
By induction on n. Let Sn =

∑
i≤n

Fi.
Base: S0 = 0 = F2 − 1.
Step:

Sn+1 = Sn + Fn+1 = Fn+2 − 1 + Fn+1 = Fn+3 − 1.

Done. 2

Exercise: Figure out
∑

i≤n
F2i.

More Identities 21

Claim
Sums of Squares ∑

i≤n

F 2
i = Fn · Fn+1.

Claim
Cassini’s Identity

F 2
n − Fn−1 · Fn+1 = (−1)n

Both identities are easy to prove by induction.
The point is finding them in the first place (relatively easy with Mathematica).

Fast Fibonacci Numbers 22

We can certainly compute Fn in O(n) steps (assuming arithmetic is O(1)
which is a bit fishy).
Is there a better way?
The Q(

√
5) computation is no better (and in fact worse).

Can we perhaps speed up the recursion? Yes!

Claim

F2n = F 2
n + 2 · Fn · Fn−1

F2n+1 = F 2
n+1 + F 2

n

This can be proved brute-force by induction, but where on earth do these
equations come from?

Extending the Recurrence 23

The key is to extend the basic recurrence:

Fn+1 = 1 · Fn + 1 · Fn−1

Fn+2 = 2 · Fn + 1 · Fn−1

Fn+3 = 3 · Fn + 2 · Fn−1

Fn+4 = 5 · Fn + 3 · Fn−1

Fn+5 = 8 · Fn + 5 · Fn−1

Fn+5 = 13 · Fn + 8 · Fn−1

Now it’s easy to conjecture

Lemma

Fn+m = Fm+1Fn + FmFn−1

Proof 24

Proof.
By induction on m.
Base m = 0 is trivial.
Step:

Fn+m+1 = Fn+m + Fn+m−1

= Fm+1Fn + FmFn−1 + FmFn + Fm−1Fn−1

= Fm+2Fn + Fm+1Fn−1

Done. 2

Our claim follows from the lemma: set m = n and m = n, n = n + 1,
respectively.

GCDs of Fibonacci Numbers 25

But there is more.

Claim
Fn and Fn−1 are coprime.

Proof. By tracing the Euclidean algorithm. 2

Lemma
gcd(Fm, Fn) = Fgcd(n,m).

Proof.
Let d = gcd(Fn+m, Fn). The lemma implies

0 = Fm · Fn−1 (mod d),

so d divides Fm.
Hence gcd(Fm+n, Fn) = gcd(Fn, Fm).

2

1 Recurrence Equations

2 Second Order

3 The Fibonacci Monoid

A Wild Monoid 27

Our fast recurrence is one way to compute Fibonacci numbers quickly. Are
there any other clever ways?

Definition (Fibonacci Monoid)
Define the Fibonacci product ∗ on pairs of natural numbers by

(x, y) ∗ (x′, y′) = (xx′ + yy′, yy′ + xy′ + x′y)

It is straightforward to check:

Claim
N × N with Fibonacci product and (1, 0) forms a commutative monoid.

So??? 28

Recall that in any monoid we can compute an in O(log n) monoid
multiplications, using the standard squaring trick.

z = 1; // neutral element
while(n > 0)
{
if(n odd) z = z * a; // monoid multiplication
a = a * a;
n = n/2;

}
return z;

This uses ds(n) + dc(n) monoid operations where
ds(n) is the digit sum of n (number of 1’s in binary expansion), and
dc(n) is the total number of digits in the binary expansion.

A Surprise 29

Here are some powers of (0, 1) in the Fibonacci monoid:

k (0, 1)2k

F2k

0 (0, 1) 1
1 (1, 1) 1
2 (2, 3) 3
3 (13, 21) 21
4 (610, 987) 987
5 (1346269, 2178309) 2178309

So we can compute F32 in just 5 monoid operations.
Of course, these operations involve several multiplications and additions of
naturals.

The Generator 30

The key fact is that the submonoid generated by (0, 1) produces the Fibonacci
numbers:

(x, y) ∗ (0, 1) = (y, x + y)

A straightforward induction shows that

Claim
In the Fibonacci monoid, (0, 1)n = (Fn−1, Fn).

Computing F1022 31

So we can compute F1024 and F1023 very quickly: 11 Fibonacci multiplications
suffice.

But how about F1022?

If we can use the standard algorithm we need 19 operations.

Wild Idea: Perhaps we can work backwards from F1024 as in

F1022 = (0, 1)210
∗ (0, 1)−2

using just 13 operations?

Well, for this we need a group, not just a monoid. Any chance the Fibonacci
monoid might be a group?

The Fibonacci Group 32

Given x and y we have to solve

(xx′ + yy′, yy′ + xy′ + x′y) = (1, 0)

for x′ and y′. No problem:

x′ = x + y

x2 + xy − y2

y′ = −y

x2 + xy − y2

. . . except that we are now dealing with rationals rather than naturals. Also
note that (0, 0) has no inverse, but that is the only problem: x2 + xy − y2 has
no other integral solutions.

The Fibonacci Group 33

At any rate,
(0, 1)−1 = (−1, 1)

so for the one element we are most interested in, there is no problem.

So we have a group on Q × Q − {(0, 0)}, but we are really interested in the
subgroup generated by (0, 1) which does not involve rationals.

The question arises how many group operations are needed to compute Fn.

Straight Line Programs 34

We can describe a computation like the one above for F1022 as a straight line
program (SLP), a sequence of instructions

vk = vi ∗ vj

vk = vi/vj = vi ∗ v−1
j

where k is the line number and i, j < k. We always start with

v0 = (0, 1)

The result is the value of the variable vk in the last instruction. We call that k
the length of the SLP. Optimal then simply means: minimal length.

So, we want an algorithm that, on input n, determines the optimal SLP with
output Fn. This turns out to be difficult even for fairly small values of n.

Examples 35

Here is a SLP for F31 using only multiplication (no division).

v0 = (0, 1) F1

v1 = v0 ∗ v0 F2

v2 = v1 ∗ v1 F4

v3 = v2 ∗ v2 F8

v4 = v3 ∗ v3 F16

v5 = v4 ∗ v3 F24

v6 = v5 ∗ v2 F28

v7 = v6 ∗ v1 F30

v8 = v7 ∗ v0 F31

So length 8 suffices.

F31 36

A length 6 SLP for F31 that uses division.

v0 = (0, 1) F1

v1 = v0 ∗ v0 F2

v2 = v1 ∗ v1 F4

v3 = v2 ∗ v2 F8

v4 = v3 ∗ v3 F16

v5 = v4 ∗ v4 F32

v6 = v5/v0 F31

Is length 6 perhaps optimal?

F31 37

Yes, but that’s not so easy to show.
Nor is the solution unique.

v0 = (0, 1) F1

v1 = v0 ∗ v0 F2

v2 = v1 ∗ v1 F4

v3 = v2 ∗ v2 F8

v4 = v3 ∗ v3 F16

v5 = v4/v0 F15

v6 = v5 ∗ v4 F31

Exercise
Show that length 6 is optimal for F31: there is no shorter SLP that computes
F31.

A Little Help 38

Looking at these examples, notice that we only worry about the n in Fn. We
could have written

v0 = 1 1
v1 = v0 + v0 2
v2 = v1 + v1 4
v3 = v2 + v2 8
v4 = v3 + v3 16
v5 = v4 − v0 15
v6 = v5 + v4 31

The same simplification works for all our SLPs.

What’s going on? 39

First note that in order to execute an SLP we need two things:

an arbitrary group G, and
a special element a ∈ G.

We can then initialize v0 = a in line 0, and run through the other instructions
interpreting multiplication and division in the group G.

The same program can be run over any group G, and with any starting value
a ∈ G.

So, given an SLP P , a group G, and a ∈ G, we can define

P (G, a) ∈ G

as the result of executing P over G with initial value a.

Two Groups 40

Now consider the two groups

Z = ⟨Z, +, 0⟩

F = ⟨F, ∗, (1, 0)⟩

where F is the subgroup of the full Fibonacci group generated by (0, 1).

These two groups are isomorphic via f : Z → F :

f(n) = (0, 1)n = (Fn−1, Fn)

So, in a sense, instead of computing P (F , (0, 1)) we can just as well compute
P (Z, 1):

f(P (Z, 1)) = P (F , (0, 1))

Representation is Crucial 41

This is another example where an isomorphism makes life so much easier.

Everybody understands ⟨Z, +, 0⟩ very well intuitively.
But ⟨F, ∗, (1, 0)⟩ is a bit mysterious.

It doesn’t matter, they are isomorphic, so we can argue in either one.

The Fibonacci Field 42

Note that there is a natural addition on Q × Q: add vectors component-wise.

It is easy to check that Fibonacci multiplication coexists peaceful with this
addition. For example, we have distributivity:

x ∗ (y + z) = x ∗ y + x ∗ z.

Hence, we really have a commutative ring.

But we have already seen that other than zero every element has an inverse, so
we are actually dealing with a field

F = ⟨Q × Q, +, ∗, (0, 0), (1, 0)⟩

the Fibonacci field.
Fields are a key concept in algebra, so one wonders if there is any simple
description of this field. The DeMoivre-Binet formula suggest that

√
5 should

play a role.

Quoi? 43

(1, 0) is the multiplicative neutral element, so (n, 0) corresponds to n ∈ N.
The inverse (1/n, 0) corresponds to 1/n and (m/n, 0) to the rational m/n.
So Q embeds into F via r 7→ (r, 0).

But what is our generator a = (0, 1)?

1/a = (−1, 1) = a − (1, 0) = a − 1F

Hence a solves the equation x2 − x − 1 = 0 in F, corresponding to 1/2(1 +
√

5).
But then (−1, 2) corresponds to

√
5. If you are suspicious, note that

(−1, 2)2 = (5, 0).

The Isomorphism 44

Proposition
The following map is a field isomorphism:

f : Q[
√

5] −→ F
a + b

√
5 7−→ (a − b, 2b)

Exercise
Prove the proposition.

Non-Adjacent Form 45

Base B = 2, digit set D = {−1, 0, 1}.

Claim
For every natural number n there are digits di ∈ D such that n =

∑
di2i and

didi+1 = 0.

i = 0;
while(n > 0)
{

if(n odd)
d[i] = 2 - (n mod 4);

else
d[i] = 0;

n = (n - d[i])/2;
i++;

}

	Recurrence Equations
	Second Order
	The Fibonacci Monoid

