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Digression: Bourbaki

Recall Bourbaki's central idea: organize
math into structures and study their
properties and relationships.

As we now know, this idea works par-
ticularly well in algebra.



A Breakthrough

The axiomatic/structural style was originally pioneered by D. Hilbert;
specifically for algebra the major breakthrough publication is van der Waerden's
(1903-1996) classical texts that cemented the notion of algebraic structure (a
first-order structure) as the fundamental concept in algebra:

B. L. van der Waerden
Moderne Algebra, Teil |
Springer Verlag, Berlin, 1930

B. L. van der Waerden
Moderne Algebra, Teil Il
Springer Verlag, Berlin, 1931



The Loyal Opposition

It is completely clear to me which conditions caused the gradual deca-
dence of mathematics, from its high level some 100 years ago, down
to the present hopeless nadir. Degeneration of mathematics begins with
the ideas of Riemann, Dedekind and Cantor which progressively repressed
the reliable genius of Euler, Lagrange and Gauss. Through the influence
of textbooks like those of Hasse, Schreier and van der Waerden, the new
generation was seriously harmed, and the work of Bourbaki finally dealt
the fatal blow.

C. L. Siegel, letter to A. Weil, 1959.

This is kind of funny, since Bourbaki was in part an attempt to create a
counterweight to Hilbert's school.



More Opposition

Meanwhile, | was in a mathematics department, and this style of mathe-
matics was not at all in fashion. Bourbaki was king: The more abstract
you could be, expressing everything in terms of morphisms and cate-
gories, the better. Highly abstract methods were in favor in all the best
mathematical schools. In more and more of the lectures that | was
hearing at Caltech, | would find myself sitting in the audience saying to
myself, “So what? So what?”

Eventually | switched fields and became a professor of computer science.

D. E. Knuth, 2014



Strategy

Both Siegel and Knuth make excellent points. One needs to be careful to
augment the axiomatic and semi-formal approach with lots of intuition,
gut-feeling, plausibility arguments, handwaving, pictures, guesswork and so
on.

Still, modern developments in symbolic computation (computer algebra,
theorem provers and proof assistants) are quite closely connected to the logical
presentation of mathematics.

It does take time getting used to, but the results are well worth it.



Status Quo

To be clear: Bourbaki won, hands down.

In a sense, that's just too bad: as far as Bourbaki is concerned, there is no
computational universe, just some weird, set-theory based, logic-deprived,
picture-less, non-applicable, entirely un-algorithmic wasteland.

| think this will change in the foreseeable future, mostly thanks to those pesky
CS dudes and all the computing hardware/software everywhere, but right now
we all still live in Bourbaki's paradise (actually, hell).

So, we will follow the axiomatic approach very closely, with a little computation
added in.



Algebraic Structures

An algebraic structure' is a logical structure

A= (A f1, fa,..., fr)

where A is a non-empty set, the underlying set or carrier set.

Each of the function f; has a fixed, finite arity n;, so
fi: AV — A
and is often rererred to as an operation in this context.

The list of arities (n1,n2,...,nx) is the signature or type of the structure.

fWe avoid the term algebra since that has a strict technical meaning.



A Convention

We do allow n; = 0, in which case one usually refers to a constant.

For the suspicious, the only reasonable way to think of A° is to construe it as a
singleton set, often written {*}. Then a map f: A° — A essentially just picks
out one element in A.

By far the most important arities are 0 through 2; the latter case is referred to
as binary or dyadic.



Axioms

So far, this is really just logic, all we have is a set with a bunch of functions.
The algebraic character arises from the number of special properties of these
functions, properties that are familiar from arithmetic operations such as
addition, subtraction, multiplication, division, reciprocals and so on.

As an example, many binary operations in algebra are required to be
associative. In infix notation:

xx(yxz)=(r*xy)*z
Another important property is commutativity:

TxY =Yy*xxT

10



Variants 11

On occasion, it is convenient to allow additional relations. In particular order
relations are very useful. For example, the rantional numbers or the reals are
naturally ordered.

Similarly it can be convenient to have a carrier set that is actually composed of
several disjoint parts, a multi-sorted carrier set. The standard example are
vector spaces where we have a collection of scalars together with a collection of
vectors.

It is straightforward to adjust our definition to handle these cases. For the time
being, though, we will stick with just functions.



The Most Rudimentary Algebraic Structure 12

What are the most trivial algebraic structures? Well . ..
A= (4 f)

where f: A — A is a single unary function on A.

In this case, the only terms we can form are f™(z). An equation then looks like
@) = ")

There really is not much algebra here, we are essentially studying iteration.



Not So Fast

Even so, these structures are not trivial, even when A is finite and f has a
simple description.

For example, consider

Apx = (Zn; ©— k-2 mod n)

Exercise

Analyze these structures.

13
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Next

Slightly more complicated are structures with multiple unary operations:

A= (4 fr,..., fk)

where all the f; : A — A are unary operations.

The terms here are much more interesting: we can combine the given
operations in an arbitrary fashion to produce expressions of the form

Jer (fea - (fer(2))-.))

where 1 < e¢; < k.

15



Orbits

The orbit of an element a € A is the result of evaluating all these expressions
in some structure A.

Alternatively, we have to compute the least set B C A such that

@ a € B and
e z € Bimplies fi(z) € Bforalli=1,... k.

Another way of thinking about these structures is in terms of machines: in a
sense, we are dealing with a DFA over a k symbol alphabet and state set A
(the acceptance condition, initial and final states, are not relevant here).

Thinking of DFAs as algebras produces one of the many equivalent
characterizations of regular languages.
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Example: Reverse and Rotate 17

As a concrete example, consider the structure

A= ([k]"; L, R)
of all binary lists of length n with operations L for rotate left and R for reverse

(reverse, not rotate right) on lists of length n with elements in [k] (think &
colors). In combinatorics one speaks of bracelets.

Because of rotation one should think of the lists as being circular. Note that
both operations are reversible, in fact

L"=1 and R?*=1.

How many different operations can one obtain by combining L and R?



An Insight 18

The key observation is
RL=L""'R

Together with the last two identities, all composite operations can be written as
L'R"(z)
where 0 <l <mnand 0 <r <2.

So the total number is 2n.



A DFA
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Think of a as R, and b as L. Then this DFA accepts all sequences of actions
that do not change any list: bb, aaaa, abab, baba, . ..



A Counting Problem

Given a specific list u € 2", what is the size of the orbit

orb(u) = {L'R"(u) | 0< 1 <n,0<r <2}

2n is an obvious, but crude upper bound. For example, © = 0 has an orbit of
size 1.

We will solve this problem in detail in a while, here is just one example.

Example
For n = 10 the possible orbit sizes s are 1, 2, 5, 10 and 20, and their
frequencies are
s ‘ 1 2 5 10 20
Fs |2 1 6 39 30

20



Useful Concepts 21

The following general ideas are crucial when dealing with algebraic structures:

Substructure A structure that is obtained by shrinking the carrier set and
the algebraic operations.

Morphism A map from one structure to another that preserves the rele-
vant operations and relations. Aka homomorphism.

Quotient A structure obtained by identifying some of the elements of a
given structure (via a congruence, an equivalence relation that
is compatible with the algebraic operations).

Product A structure that is defined over the Cartesian product of other
structures, with appropriately defined operations.



Cheap Examples 22

For our very basic structures (A; f) these ideas are not hugely interesting, but
we can still figure out how they would work.
First off, define two structures

A=(Z;5S) B=(N;T)

where the operation in both cases is x — x+1.

@ B is a substructure of A.
@ The map f: N — Z, f(x) = z+42, is a morphism.
@ The equivalence relation on Z, x = y iff x mod 42 = y mod 42 is a con-

gruence and produces the quotient structure Z/(42), the modular number
modulo 42.

@ The product A x A has carrier set the infinite grid Z x Z and operation
(2,y) = (z+1,y+1).



2 Basic Structures



Three Steps

Time to deal with real algebraic structures.

We will start with three basic types.

@ magmas
@ semigroups

@ groups

24



Magmas

Definition

A magma is a structure with a single binary operation *:
G =(G;%)
where x : G X G — G.

The operation is often referred to as multiplication.

In a magma, there are no further restrictions on the operation. Algebraists are
typically not much interested in this level of generality, they want additional
constraints on the operation (such as associativity).

25



Term Trees

The terms over a magma can be construed as full binary trees: the interior
nodes correspond to “multiplications” and the leaves are elements of the
magma.

We can evaluate these trees bottom-up eval : trees —» M



Notation Warning 27

Unfortunately, magmas are sometimes referred to as “groupoids.”

This is a really bad idea, since the term groupoids is defined in category theory.
Roughly speaking, we can think a groupoid as a structure (A;, '), a sort of
groups with a partial multiplication:

@ x is a partial binary operation,

e ~!is a total unary operation,

@ subject to the following laws:
o Partial associativity: if all terms are defined, then a * (b*c) = (a*b) * c.
o Inverse: for all @, a*a~! and a=! % a are defined.
o ldentity: if a x b is defined, so is alxaxb=bandaxbxb 1 =aq.

We won't discuss groupoids here.



Some Magmas

Example

The natural numbers with exponentiation form a magma.

Example

The integers with subtraction form a magma.

Example

The positive rationals with division form a magma.

28



More Magmas 29

Example

Rooted binary trees can be considered as magma
(T %)

where T is the collection of all rooted binary trees and * denotes the operation
of attaching two trees to a new root. Note that this operation is highly

non-associative:
rx(sxt) £ (rxs)*t

no matter what r, s and ¢ are (at least in the finite case).

Example

Likewise we could consider lists over some groundset A as a magma
(List(A); *)

where x is interpreted as join (concatenation). This operation is associative.



Shallon’s Graph Algebras

It is often helpful to translate combinatorial structures into algebraic ones. For
example, suppose G = (V; E) is a digraph. We can translate the graph into a
magma

A(G) = (Vi;%)

by setting V. =V U{L} where L ¢ V is a new point and

u if (u,v) € E,
UV =
1 otherwise.

This operation is not associative in general.

Exercise

Figure out what left (or right) parenthesized products mean in A(G).
Is such a graph algebra commutative?

30



Magmas, Il 31

Magmas are also (mildly) helpful when dealing with more complicated
structures: it is always a good idea to try to understand if a result (or even a
definition) also works over magmas or whether it really requires the additional
assumptions.

All the fundamental notion of sub-structure, congruence, homomorphism and
so on already make sense for magmas and are perhaps a bit easier to
understand there since there are no other properties lying around that can
obscure the view.

Exercise

Rewrite all the definitions below in the context of magmas.



Free Magmas 32

In algebra, it is interesting to understand a structure that satisfies certain
specifications (i.e., a list of axioms), but has no other, special properties. These
structures are called free.

So suppose we have a carrier set A. What would the free magma over A look
like?

Just like the term trees from above, except that there are no free variables this
time, all the leaves are labeled by elements of the ground set A.



The Fundamentals 33

Consider a magma A = (A; x).

@ A substructure of A consists of a set B C A that is closed under x.

@ A homomorphism from (A;x*) to (B;-) isa map ¢ : A — B such that
Pz xy) = p(z) - (y)-

@ A quotient of (A4;*) is given by an equivalence relation p such that z p «’
and y py’ implies x xy p ' x y' (a congruence).

@ The product of (A; ) and (B;-) is the structure (A X B;®) where
(z,9) ® (¢ ¢) = (2", y - y).



3 Semigroups



Semigroups

Definition
A semigroup is a magma with an associative operation.

Thus, for all z, y, z in a semigroup G = (G, *) we have

Tx(y*xz)=(T*y)*z.

Many natural algebraic operations have this property, but not all:

@ Exponentiation is not associative.

@ Subtraction is not associative (but the underlying addition is).

o Graph algebras are generally not associative.

35



Idempotents 36

Definition

An idempotent in a semigroup is an element e such that e x e = e.

So an idempotent is a bit weaker than an identity.

Lemma

Let S be a finite semigroup. Then S contains an idempotent.

Exercise
Prove the idempotent element lemma. Think Floyd.



Free Semigroups 37

We have seen that the free magma over A is the collection of ground terms,
essentially binary trees with leaves labeled in A.

In a semigroup we have one additional specification: associativity. Hence we
can identify all trees with same frontier: they correspond to the same
semigroup element. Hence, we might as well think of them as a list.



Words 38

But once we think of the elements as flat lists

we might as well just use the sequence abcd, a word over the alphabet A.

So the set of non-empty words over A can be thought of as the free semigroup
generated by A. This perspective turns out to be very useful in automata
theory.
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Monoids

Definition

A monoid is a semigroup with an identity element e: exz = x *xe = z.

One usually writes monoids with signature (2,0) as

A= (4;%,¢)

to indicate the neutral element. Of course, the neutral element is idempotent.

Proposition

The neutral element in a monoid is unique.

Proof. e=exe =¢€'.

40



Classical Examples 41

Example

The set of all words over a fixed alphabet forms a monoid with concatenation
as operation. The neutral element is the empty word.

Example

The set of all lists over some fixed ground set forms a monoid with join as
operation. The neutral element is the empty list.

Example

The set of all functions f: A — A for some arbitrary set A forms a monoid
with functional composition as operation. The neutral element is the identity
function.

Example

The set of all binary relations on A, for some arbitrary ground set A, forms a
monoid with relational composition as operation. The neutral element is the
identity relation.



Classical Examples, cont’d. 42

Example

The set of natural numbers with addition forms a monoid; the neutral element
is 0.
Ditto for integers, rationals, algebraic numbers, reals, complex numbers.

Example

The set of positive natural numbers with multiplication forms a monoid; the
neutral element is 1.

Example

The set of all n by n matrices of, say, integers, with matrix multiplications
forms a monoid; the neutral element is the identity matrix.



Comment 43

When one tries to axiomatize some sort of algebraic structure, one always has a
number of civilized examples in mind. The first task is to make sure that the
axioms capture all those examples.

It may very well happen, though, that the axioms have strange, unintended
models that one does not really anticipate. It is well worthwhile to look around
for weird examples (and possibly adjust the axioms if need be).



Strange Examples 44

Example

A band is a semigroup defined on the Cartesian product A x B where A and B
are two arbitrary sets (non-empty). The operation is

(a,b) * (¢c,d) = (a,d)

It is obvious that this operation is associative. Note that a band is idempotent:
zxx =z for all .

Example
The bicyclic semigroup is defined on N x N by the operation
(a,b) * (¢,d) = (a — b+ max(b, ¢),d — ¢ + max(b, c))

Associativity requires a little argument here. This may look strange, but it is
just the free semigroup on two generators r and s subject to sr = 1.
The idempotents of this semigroup are exactly the elements (a, a).



Bicyclic

45



Basic Concepts Semigroups 46

Consider a semigroup A = (A; x).

@ A subsemigroup of A consists of a set () # B C A that is closed under .

@ A semigroup morphism from (A; ) to (B;-) isa map ¢ : A — B such
that p(z x y) = ¢(x) - p(y).

o A semigroup congruence of (A;x,e) is an equivalence relation p such that
zpuand y pvimplies z*y p u*wv.

@ The semigroup product of (A;«) and (B;-) is the structure (A X B;®)
where (z,y) ® (u,v) = (z*u,y - v).



Congruences and Quotients 47

The reason congruences are important is that they make it possible to form
quotients.

Suppose p is a congruence and define the semigroup A/p by

o carrier set: A/p={[z], |z € A}

@ operation [z] * [y] = [z * ]

One can check that this really produces a semigroup.

Warning: One really needs a congruence here, this does not work for an
arbitrary equivalence relation (the operation is not well-defined in general).



Congruences and Morphisms 48
Proposition
Suppose f : A — B is a monoid morphism.
Then the kernel relation x py < f(x) = f(y) is a congruence.
Proof.
Any kernel relation is trivially an equivalence relation. Suppose x p y and
2’ py'. Then
flaxy) = f@)f(y) = F@) ) = f(z'y)
so that xy p 2'y’. O

If you still find the congruence condition strange, here is another way to think
about it: we have an equivalence relation p C A x A that is also a submonoid
of A x A (construed as a monoid product).



Basic Concepts Monoids 49

Consider a monoid A = (A; x,e).

@ A submonoid of A consists of a set () # B C A that is closed under * and
contains e.

@ A monoid morphism from (A;x*,e) to (B;-,e’) isamap ¢ : A — B such
that p(z x y) = () - ¢(y) and p(e) =€’

The only difference is that we have additional conditions regarding the neutral
element. Warning: a monoid may have a subsemigroup that is not a
submonoid: {0} in (Z;-,1).

For congruences and products, nothing changes. The neutral element in A x B
is (ea,en).



Solving Equations 50

Monoids appear quite frequently, but have one crucial flaw from the point of
view of solving equations: in general we cannot solve the equation

a*xx=>

As an example, consider the monoid (N;+, 0).

Then a 4+ x = b has exactly one solution whenever a < b, no solutions
otherwise.

Now switch to the multiplicative monoid (N; -, 1).

Then 0 - x = 0 has infinitely many solution, 2 - x = 42 has exactly one, and
2 - x = 41 has none.



Cancellation 51

Uniqueness can be ensured via the following (left) cancellation property:

a*xT=ax*xy implies T=y

Note that this property is not equational, we need an implication between
equations to express cancellation.

Exercise

Check which of the monoids from above have the cancellation property. What
restrictions on the left multiplier a are necessary to guarantee cancellation?



4 Groups



Groups

At last, here is the kind of structure that guarantees existence and uniqueness
of solutions of linear equations.

Definition
A group is a monoid G = (G; -, e) where for any x € G:
Jy(z-y=y-z=¢)

The y is uniquely determined by x and called the inverse of x.

Since x uniquely determines the inverse one usually switches the signature to
(2,1,0) and writes
-1
g = <G7 ) 7€>

53



Standard Axioms 54

This has the major advantage that the group axioms are then equational, we
don't need any pesky quantifiers:

v ) =(0oy) 2

-1 -1
xTr- T =x =€

Actually, it turns out that we can get aways with one-sided versions of the
axioms as in

z-(y-z)=(z-y) 2

xTr-xT =€



Proof

Assume only the right identity and right inverses as in the one-sided axioms.

A right identity is also a left identity:

ex=@-z N z=z-1=z

A right inverse is also a left inverse:

In a situation like this, one often chooses the apparently weaker, if slightly
cryptic, axioms.

55



Solving Equations

At any rate, in a group, the equation
a-x=>5

always has the unique solution

-1
r=a b

Note that this is easier than standard arithmetic: there is no need to worry
about the case a = 0.

The systematic study of abstract groups was one of the central
accomplishments of 19th century mathematics.

They appear in many, many places and some understanding of the their basic
properties is crucial.
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Abelian Groups 57

Definition
A group is commutative or Abelian if z -y = y -« for all x and y.

Notation:

It is customary to write Abelian groups additively as
<G7+7 _70> <G1+70> <G7+>
and general groups multiplicatively as

<G; ) 717 1><G7 K] 1><G7 >

Often one omits the multiplication operator and uses concatenation instead.
xy is easier on the eye than x - y, but this gets tricky when dealing with
multiple operations.



Basic Concepts Groups

Consider a group A = (A; %, "' e).

@ A subgroup consists of a set } £ B C A that is closed under % and ~*.

@ A group morphism from (A;*,e) to (B;-, e’} isamap ¢ : A — B such
that o(z xy) = p(2) - o (y).

For quotients and product nothing really changes from semigroups and
monoids.

Note that we dropped the condition that morphisms preserve the neutral
element: this can be derived from the group axioms.

58



Cosets 59

Subgroups have a simple but critical property: they make it possible to
partition the group into disjoint sets of equal size. To this end, define the
cosets of a subgroup B C A by

aB={ax|x€ B}

Proposition

Let B C A be a subgroup.
Then the cosets aB partition A and have the same size.

Proof. Suppose aB Na'B # (), so ab= a’t’. But then a = a/b'b™" = a'b”
and therefore aB C a’B. Done by symmetry.

There is a simple bijection @ : B — aB: a(z) = ax.



Classical Examples 60

Example

The set of integers (rationals, reals, complexes) with addition forms a group;
the neutral element is 0.

Example

The set of modular numbers relatively prime to modulus m with multiplication
forms a group; the neutral element is 1.

Example

The set of non-zero rationals (reals, complexes) with multiplication forms a
group; the neutral element is 1.



Classical Examples 61

Example

The set of all regular n by n matrices of reals, with matrix multiplications
forms a group; the neutral element is the identity matrix.

Example

The set of all permutations f : A — A for some arbitrary set A forms a group
with functional composition as operation. The neutral element is the identity

function.



Generating Subgroups 62

Many important subgroups of a group GG are obtained by finding the smallest
subgroup that contains a given set of group elements.

Definition
Let G be a group and A C G. The group generated by A is the least subgroup
of G that contains A. A is a set of generators for this subgroup.

In symbols: (A).

For example, in the group (Z,+), 2 generates the subgroup 2Z, but {2,5}
generates the whole group.



Existence versus Construction 63

Abstractly we know that (A) always exists since

(A):ﬂ{HgG|A§Hsubgroup}

But computationally this is pretty useless: we already have to know all
subgroups (containing A) to compute the intersection. Even if G is finite, there
is little hope to translate this characterization into a reasonable algorithm.

So how do we actually compute (A) from A?
In particular when G is finite?



Bottom-Up Construction

We can construct (A) from a given set of generators A by induction.
] HO =A U {1}
@ H, 1 is the closure of H,, with respect to multiplication and inversion.

o Let H= U

n>0

When G or at least H is finite, this is a perfectly good algorithm, at least if we
don’t worry about efficiency.

In the infinite case, this constuction is still logically correct, but now it needs to
run for infinitely many steps. Just think about G = (Z,+) and A = {2,11}.



Order 65

Let G be a group.

Definition
The order of G is the cardinality of G.

The order of an element a € G is the order of the subgroup (a).

The concept of order is most important when the cardinality is finite, though
we could use the set-theoretic machinery of cardinalities. Note that the order of
a group element can be at most Ng: in general

(a) ={a'|ieZ}
If the order of a is finite, we even have
(@) ={a"|0<i<k}

where k is the order of a.



Why Abstract Algebra? 66

Laziness: any property, of, say, groups derived from only the axioms holds in all
groups, automatically. You only check three simple properties, and all results

apply.

Psychology: it is sometimes easier to argue abstractly than in a concrete
situation (you can’t see the forest because of all the trees).

This a bit hard to believe, but true. E.g., consider non-singular matrices of
reals. Show that

(A-B)y'=B"'.4""

One could try to use the properties of matrix multiplication and, say, Gaussian
elimination, to prove this. Any such argument would be very hard and
technically difficult.

Exercise
Give a simple, abstract proof of this equation in any group whatsoever.



Klein’s Erlanger Programm 67

Felix Klein's “Erlanger Programm” of 1872
proposed to characterize geometries by study-
ing the invariants of linear transformation
groups.

Symmetries in geometry are a critical application and, in fact, the historical
origin of ) groups.



Symmetries of a Square 68

Consider the square with four vertices in positions (1, +1).

) M
\‘/ \‘/
c‘p O
N N

What are the rigid motions of the plane that leave the square unchanged in the
sense that they place the square on top of itself?



Intuition

Your geometric intuition should immediately lead to the following admissible
operations.

@ Rotations around the origin by multiples of /2.
There are essentially only 4 of these, including the trivial one.

@ Reflections along the axes and diagonals.
There are 4 of these.

There might be more, though, say a combination of a rotation and a reflection.

Let's write a for clockwise rotation by 7/2 and 3 for reflection along the
counter-diagonal.

69



Visual Inspection

The first row is obtained by repeated application of «.

The second row is obtained by applying 3, and the « repeatedly.
Note that all other reflections appear in this row, too.
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Dihedral Groups 71

These motions naturally form a group: composition of motions is associative,
the identity motion is admissible, every motion is reversible, and the
composition of two admissible motions is again admissible.

This group is called a dihedral group Dj.
It has size 8 and is generated by « and 3, elements of order 4 and 2,
respectively.

The important identities in this group are

a4:[32:1 Ba:ag,b’

If we start with a regular n-gon instead, we get the dihedral group D,,.



For example, the dihedral group D3 represents the symmetries of an isosceles
triangle.

We can apply D3 to more complicated sets in geometry that are somewhat
similar to a plain isosceles triangle.




73

Sierpinski Triangle




White Lie

Alas, for the Sierpinski triangle D3 clearly is not the whole story. There are
other sorts of symmetries that are important here.

In particular, the whole figure is isomorphic to each one of the 3 sub-triangles.
And these are isomorphic to their sub-sub-triangles, and so on.
In fact, any appropriate sub-triangle in the figure is isomorphic to any other.

Obviously D3 does not begin to capture any of this.
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Partial Symmetries

To handle this type of problem, we need to back off from full groups and
consider weaker structures.

For any set X consider the symmetric monoid
I(X)={f: X -» X | f partial, injective }

Composition of these partial maps is a bit more complicated, f o g is the
largest partial map that coexists peacefully with the domain of g and the
codomain of f.

Note we need to allow the empty function in Z(X), a null element in the

monoid.

Exercise

Explain why Z(X) fails to be a group (for X non-empty).
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Generalized Inverses

To describe this kind of structure, one needs to relax the conditions on an
inverse element in a semigroup.

Definition
Element a is said to have a generalized inverse or pseudoinverse a’ if aa’a = a

and a’aa’ = d'.
A semigroup is inverse if every element has exactly one generalized inverse.

a’ ' =a and (ab)’ =b'a’

Symmetric monoids are examples of inverse semigroups.
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