CDM

Closure Properties

KLAUS SUTNER

CARNEGIE MELLON UNIVERSITY
SPRING 2024

D080

—

Closure Properties

Determinization

More Closure Properties

Exponential Blowup

Where Are We?

We have a definition of recognizable languages in terms of finite state machines
(deterministic or nondeterministic).

There are two killer apps for recognizable languages:

@ pattern matching

@ logical decision procedures

We need to develop a theory of finite state machines to understand how these
algorithms work.

Weak Model of Computation

Another way to think about finite state machines is as a particularly weak
model of computation. In this context it is natural to ask basic questions about
the model:

@ Is there closure under sequential composition?

@ Is there closure under parallel composition?

Alas, we only have acceptors so far giving maps X* — 2, so sequential
composition makes no sense (we need transducers for that, a future topic).

But parallel composition we can handle right now: we want to combine two
machines into a single one and run them in parallel. Intuitively, combining two
finite state machines should produce another finite state machine: we only need
to keep track of pairs of states.

Parallel Composition

For simplicity, suppose we have two DFAs over X: A; = (Qi, X, :; qos, Fi). To
run the machines in parallel we define a new DFA as follows:

Definition (Cartesian Product Automaton)

A1 X Az = (Q1 X Q2, X, 01 X 025 (qo1, o2), F1 X Fb)
where 0 = §1 X 02 is defined by

6((]), q)7 CL) = (61 (pv a)v 62((17 a’))

So the computation of A; X Az on input © combines the two computations of
both machines on the same input.

Note | A1 X Az| = | A1]|A2|, a potential problem if the construction is used
repeatedly.

The Languages

By our choice of acceptance condition we have
L(A1 x A2) =Li1N Ly

By changing the final states in the product, we can also get union and
complement:

union F:FlXQQUleFQ
intersection F =F; x Fy

difference F=F x(Q2— F>)

Nondeterministic Cartesian Products

Products generalize easily to nondeterministic machines. Say, we have two FAs
over X ./47, = <QZ, 2, Tis L;, FZ>

Definition (Cartesian Product Automaton)

./41 ><.A2:<Q1 XQQ,E,T;]l XIQ,Fl ><F2>

where 7 = 71 X T2 is defined by

((0.@),a,(0,q)) €7 & (p,a,p) €T Alg,a,q) €72

So the computation of A; X A2 on input £ combines two computations of
both machines on the same input x.

Intersection and Union

By our choice of acceptance condition we still obtain intersections:

L(.A1 X .AQ) =Li1NLs

Warning:
In general, products of FAs cannot be used to handle union and complement.

Exercise

Find simple examples for the warning.

Union

In the realm of nondeterministic machines there is a better construction for
union: We can simply form the disjoint union or sum. We may safely assume
that the state sets are disjoint.

Definition (Sum)

A1 + As = <Q1UQ2,Z,T1 U 11 UIQ,F1UF2>

In other words, we declare the two machines to be one machine.

Sum

This construction is trivially linear time; alas, it wrecks determinism, the result
is always nondeterministic.

Sources of Nondeterminism

There are two disctinct source of nondeterminism:

@ Transition nondeterminism:
there are different transitions p — ¢ and p — ¢'.

@ Initial state nondeterminism:
there are multiple initial states.

Transition-deterministic automata with multiple initial states are called
multi-entry automata.

10

Closure

Here are some operations on languages that do not affect recognizability:

@ Boolean (union, intersection, complement)
@ concatenation, Kleene star
@ reversal

@ homomorphisms, inverse homomorphisms

We have already seen that Boolean operations can be handled nicely with
deterministic machines. Alas, it is somewhat difficult to handle the other
operations without resorting to nondeterministic machines.

11

Effective Closure

All our arguments concerning closure properties are of the form:

Given FAs A; for recognizable languages L;.
One can effectively construct a new FA A for L1 op L.

In other words, we have effective closure: there are algorithms that compute
the appropriate machines.

And, in many interesting cases, these algorithms for FSMs are in fact highly
efficient. Alas, not always, in particular complementation causes major
problems.

12

Deciding Equivalence

At any rate, we can now deal more intelligently with the Equivalence problem
as long as we have deterministic machines.

Problem: Equivalence
Instance: Two DFAs A; and As.
Question: Are the two machines equivalent?

Lemma
Ay and Ay are equivalent iff L(A1) — L(A2) =0 and L(Az) — L(A1) = 0.

Note that the lemma yields a quadratic time algorithm. We will see a better
method later.

13

Deciding Inclusion

Observe that we actually are solving two instances of a closely related problem
here:

Problem: Inclusion
Instance: Two DFAs A; and As.
Question: Is L(A1) C L(A2)?

which problem can be handled by

Lemma
L(A1) C L(A2) iff L(A1) — L(A2) = 0.

Note that for any class of languages Equivalence is decidable when Inclusion is
so decidable. However, the converse may be false — but it's not so easy to
come up with an example.

14

Concatenation and Kleene Star 15

Definition
Given two languages L1, Lo C X* their concatenation (or product) is defined by

Li-Ly={zy|xz € Li,y€ L}

Let L be a language. The powers of L are the languages obtained by repeated
concatenation:

L’ = {e}
LF k.
The Kleene star of L is the language

L*=1°urLtuL®. . .UL"U...

Kleene star corresponds roughly to a while-loop or iteration.

Star Examples 16

Example
{a,b}”: all words over {a, b}

Example
{a,b}*{a}{a,b}*{a}{a,b}": all words over {a,b} containing at least two a's

Example

{e,a,aa}{b,ba,baa}”: all words over {a,b} not containing a subword aaa

Example

{0,1}{0,1}*: all numbers in binary, with leading 0's
{1}{0,1}* U {0}: all numbers in binary, no leading 0's

Concatenation Closure 17

First assume we have FAs A; for recognizable languages L;. We want to
construct a new machine A for L; - La. To this end, we need to split the string
T =uv:
r=2122... Tk Lk4+1...-Tn
—_———

u€ly vELgy

The problem is that we don’'t know where to split: in general, there are
multiple prefixes w in L1, but not all corresponding suffixes v are in Ls.

There are two basic lines of attack:

@ Use nondeterminism to “guess” when to split.

e Find a way to directly construct a DFA for concatenation (assuming the
A; are DFAs).

Nondeterministic Approach

The construction is fairly simple if we push nondeterminism a little bit further.
The idea is that we allow our machines to jump from one state to another
without consuming any input. Technically, this is handled by so-called
e-transitions.

Definition

A nondeterministic finite automaton with e-moves (NFAE) is defined like an

18

NFA, except that the transition relation has the format 7 C Q x (XU {e}) x Q.

We will see shortly how to convert an NFAE into an equivalent NFA and even
in polynomial time, so this is perfectly fine.

Nondeterministic Concatenation 19

Once we have e-transitions, the construction for concatenation is fairly simple.

| (57 |

Place an e-transition between all states in F} and I».
Note that there are potentially quadratically many.

Kleene Star 20

e-transitions also dispatch Kleene star. For example, we could add a new initial
state, a new final state and transitions as indicated.

Pebbles 21

Very well, but can we handle concatenation without nondeterminism? Here is a
trick that sometimes helps to construct deterministic machines in particular
with lower bound arguments for state complexity. Assume we have some
transition system (not necessarily deterministic).

o Initially, we place a few pebble on some states (typically initial states).

@ Under input a, a pebble on p multiplies and moves to all ¢ such that
p — ¢. If there are no transitions with source p, the pebble dies.

@ Multiple pebbles on the same state coalesce into a single one.

@ We accept whenever a pebble appears in F.

Note: The movement of the set of all pebbles is perfectly deterministic.

So even when the given transition system is nondeterministic, this method
produces a deterministic machine.

Pebble Automaton for Concatenation

We start with one copy of DFA A;, the leader, and one copy of DFA As, the
follower.

@ Place one pebble on the initial state of the leader machine.

@ Move the pebbles according to our standard rules.

Whenever the leader pebble reaches a final state, place a new pebble on
the initial state of the follower automaton.

The composite machine accepts if a pebble sits on final state in the fol-
lower machine.

Another way of thinking about the same construction is to have | 42| many
copies of the second DFA, each with just one pebble.

22

State Complexity 23

The number of states in the new DFA is bounded by
| A4 | gl A2

since the A; part is deterministic but the A2 part is not.

The states are of the form (p, P) where p € Q1 and P C Q2, corresponding to
a complete record of the positions of all the pebbles.

Of course, the accessible part may well be smaller. Alas, in general the bound
is essentially tight.

Reversal Closure 24

Here is another example of an operation that preserves recognizability, but is
difficult to capture within the confines of deterministic machines. For
nondeterministic machines, on the other hand, it is entirely trivial.

Let

L® ={z® |z e L}

be the reversal of a language, (z1%2...Zn-1%1)°" = TnTn_1...T2T1.

It turns out the L is recognizability iff L°P is recognizable.

This result is actually quite important: the direction in which we read a string
should be of supreme irrelevance. We really want a language to be recognizable
no matter whether we read left-to-right or right-to-left.

Example: Third Symbol

It is very easy to build a DFA for Los ={x |23 =a}.
We omit the sink to keep the diagram simple.

25

But L% = {x | 2—3 = a} = La,—3 is somewhat hard for DFAs: we don't
know how far from the end we are. Here is a perfectly legitimate NFA for this
language: we flip transitions and interchange initial and final states.

a,b
_»8 a @ a,b @ a,b @

It is clear that the new machine accepts L, 3.

2 Determinization

Conversion to DFA 28

Our first order of business is to show that NFAs and NFAEs are no more
powerful than DFAs in the sense that any recognizable language is already
accepted by some DFA. Note, though, that the size of the machines may differ
exponentially; from an algorithmic perspective the equivalence is quite
problematic.

We will show how to convert an NFAE into an equivalent DFA:

Epsilon Elimination Convert an NFAE into an equivalent NFA.

Determinization Convert an NFA into an equivalent DFA.

Generalized Finite Automata 29

In fact, we could push our nondeterminism even further by allowing transitions
to be labled by arbitrary words over 3. These devices are called generalized
finite automata (GFA):

aba

p—>4q

GFA are very experssive, e.g., it is trivial to write down a GFA for any finite
language.

Still, they are no more powerful than NFAE (and, ultimately, than DFA). We
can just split the word transitions into a sequence of plain transitions:

aba a b a
p—>q~p—p1,P1—>PpP2,P2 —q

A Hierarchy 30

So we have the following hierarchy of FSM:
DFA C PDFA C MEPDFA C NFA C NFAE C GFA

This is a feature, not a bug: one often uses different types of machines for
different purposes, whichever kind works best under the circumstances.

Warning: Some algorithms require NFAs or even DFAs. We cannot simply stay
in the realm of GFA and ignore the rest.

NFAE to NFA 31

Epsilon elimination is quite straightforward and can easily be handled in
polynomial time:

@ introduce new ordinary transitions that have the same effect as chains of
€ transitions, and

@ remove all e-transitions.

Since there may be chains of e-transitions this is in essence a transitive closure
problem. Hence part | of the algorithm can be handled with the usual graph
techniques.

e-Closure 32

A transitive closure problem: we have to replace chains of transitions

£

O—0

O——0O0—0

by new transitions

a

Epsilon Elimination 33

Theorem
For every NFAE there is an equivalent NFA.

Proof. This requires no new states, only a change in transitions.
Suppose A = (Q, X, 7;I,F) is an NFAE for L. Let

A/ = <Q7277'/§II7F>

where 7’ is obtained from T as on the last slide.

I' is the e-closure of I: all states reachable from I using only e-transitions. O

Again, there may be quadratic blow-up in the number of transitions and it may
well be worth the effort to try to construct the NFAE in such a way that this
blow-up does not occur.

Determinization 34

In the realm of finite state machines, nondeterministic machines are no more
powerful than deterministic ones (this is also true for register/Turing machines,
but fails for pushdown automata).

Theorem (Rabin, Scott 1959)
For every NFA there is an equivalent DFA.

The idea is to keep track of the set of possible states the NFA could be in.
This produces a DFA whose states are sets of states of the original machine.

General Abstract Nonsense to the Rescue

TCRXxEXQ
TIQXIXQ —2
TIQXY — (Q — 2)
T:Qx X — P(Q)
T R(@Q) x X — P(Q)

The latter function can be interpreted as the transition function of a DFA on

PB(Q). Done.

37D

35

Proof of Rabin-Scott

Suppose A = (Q, X, 7;I,F) is an NFA. Let
A= (@), 2,81 F)

where §(P,a) ={q€ Q|3Ipe€ P 7(p,a,q) }
F ={PCQ|PNF#0}

It is straightforward to check by induction that A and A’ are equivalent.

The machine from the proof is the full power automaton of A, written
pow;(.A), a machine of size 2".

Of course, for equivalence only the accessible part pow(.A), the power
automaton of A, is required.

36

Accessible Part 37

This is as good a place as any to talk about “useless” states: states that cannot
appear in any accepting computation and that can therefore be eliminated.

Definition
A state p in a finite automaton A is accessible if there is a run with source an
initial state and target p. The automaton is accessible if all its states are.

Now suppose we remove all the inaccessible states from a automaton .4
(meaning: adjust the transition system and the set of final states). We obtain
a new automaton A’, the so-called accessible part of A.

Lemma

The machines A and A’ are equivalent.

Coaccessible/Trim Part 38

There is a dual notion of coaccessibility: a state p is coaccessible if there is at
least one run from p to a final state. Likewise, an automaton is coaccessible if
all its states are.

An automaton is trim if it is accessible and coaccessible.

It is easy to see that the trim part of an automaton is equivalent to the whole
machine. Moreover, we can construct the coaccessible and trim part in linear
time using standard graph algorithms.

Warning: Note that the coaccessible part of a DFA may not be a DFA: the
machine may become incomplete and we wind up with a partial DFA. The
accessible part of a DFA always is a DFA, though.

Keeping Trim 39

In the RealWorld™ we would avoid the full power set at all costs: instead of
building a DFA over pow(Q) we would only construct the accessible
part—which may be exponentially smaller. There are really two separate issues
here.

e First, we may need to clean up machines by running an accessible (or
trim) part algorithm whenever necessary—this is easy.

@ Much more interesting is to avoid the construction of inaccessible states
of a machine in the first place: ideally any algorithm should only produce
accessible machines.

While accessibility is easy to guarantee, coaccessibility is not: while
constructing a machine we do not usually know the set of final states ahead of
time. So, there may by need to eliminate non-coaccessible states.

Smart Power Automata 40

The right way to construct the Rabin-Scott automaton for A = (Q, X, 751, F)
is to take a closure in the ambient set P(Q):

clos(I, (Ta)aez)

Here 7, is the function P(Q) x X — P(Q) defined by

Ta(P)={q€Q|3peP(p—4q)}

This produces the accessible part only, and, with luck, is much smaller than the
full power automaton.

Power Automaton Algorithm

Here is a more algorithmic version of this construction.

act =5 ={I}
while(act # 0)
P = pop(act)
foreach a € X' do
compute P’ = 7(P, a)
store P % P’
if(P’ ¢ S) then
add P’ to S and act
return S

Upon completion, S C PB(Q) is the state set of the (accessible part of the)
power automaton.

41

Digression: Virtual Machines 42

We can think of an NFA A = (Q, X, 7;1, F) as a very compact description of
the DFA pow(A).

We cannot write down a transition table for the full power automaton pow,(.A)
(except when the size of A is tiny), but we can generate parts of it on the fly.

With luck, the parts we need are manageable in size.

Example: Even/Even

The language of all strings over {a, b} with an even number of as and bs.

There is a very simple 4-state DFA for this language based on keeping track of
the parity of letters a and b.

43

A Run

DRI I I I A

SN NG SN g SN
DRI I I I A

(SN SN SN g SN

What would a correctness proof for the DFA look like?

44

NFA for Even/Even 45

This is an NFA for the even/even language generated by an algorithm that
converts a regular expression to a machine.

1 is an initial state, and 12 is both initial and final.

Other than 12, all states are nondeterministic.

Power Automaton

The power automaton for the last NFA has only 6 states!

{{1,12},{2,4},{3,5},{6,9}, {7, 10}, {8,11}}

46

Virtual Graphs

Thinking about this slightly more abstractly, consider the labeled digraph

g = <q3(Q);T17T27"'7Tk>

with edges p — ¢ for Ta(p) = ¢, the virtual graph or ambient graph where we
live. The graph is exponential in size, but we don't need to construct it
explicitly.

We only need to compute the reachable part of I € PB(Q) in this graph G. This
can be done using standard algorithms such as Depth-First-Search or
Breadth-First-Search.

The only difference is that we are not given an adjacency list representation of
G: we compute edges on the fly. No problem at all.

This is very important when the ambient graph is huge: we may only need to
touch a small part.

47

Example: L, 3 48
Recall

Lok ={z€{a,b}" |zx=a}.

For negative k this means: —kth symbol from the end. It is trivial to construct
an NFA for L, _3:

(% @ a,b @ a,b @

Rabin-Scott

Applying the Rabin-Scott construction we obtain a machine with 8 states

{0}, {0, 1},{0,1,2},{0,2},{0,1, 2,3},{0,2,3},{0,1, 3}, {0, 3}

where 1 is initial and 5, 6, 7, and 8 are final. The transitions are given by

1 2 3 45 6 7 8
al2 35 7 5 7 3 2
b1 4 6 8 6 8 4 1

Note that the full power set has size 16, our construction only builds the
accessible part (which happens to have size 8).

49

The Diagram 50

Here is the corresponding diagram, rendered in a particularly brilliant way. This
is a so-called de Bruijn graph (binary, rank 3).

AN
ORC
SEEAN

>

OO

N
/

|

Exercise

Explain this picture in terms of the Rabin-Scott construction.

Example 51

Consider the product automaton for DFAs A,, and A, accepting aa and bb,
respectively.

Aaa:

b b‘
a, b8

Full Product Automaton

52

53

The Accessible Part

Acceptance Testing

Recall one of the key applications of FSMs: acceptance testing is very fast and
can be used to deal with pattern matching problems.

How much of a computational hit do we take when we switch to
nondeterministic machines?

We can use the same approach as in determinization: instead of computing all
possible sets of states reachable from I, we only compute the ones that
actually occur along a particular trace given by some input word.

54

Deterministic Acceptance Testing

Acceptance testing in a DFA is naturally fast, just a repeated table lookup.

// deterministic acceptance testing
P=qo
while a = z.next() do

p=46(p,a)
return p € F

Of course, it might take some time to compute the lookup table ¢ in the first
place, but once we have it, acceptance testing is very fast.

55

Nondeterministic Acceptance Testing

The key insight is that testing for nondeterministic machines is very, very
similar: instead of single states p, we have sets of states P C Q.

// nondeterministic acceptance testing
P=1
while a = x.next() do

P={q|3peP(p>q}
return PN F £ ()

Dealing with a set of states P rather than a single state p is slower, but only by
a constant depending on the machine. And there are many hacks to make the
computation reasonably fast in typical practical situations (e.g., it seems that
in some applications | P| is always small).

The total damage is still O(]z|) and the constants are often quite reasonable.

56

A Better Mousetrap?

o Advantages:

Easier to construct and manipulate.
Sometimes exponentially smaller.
Sometimes algorithms much easier.

o Drawbacks:

Acceptance testing slower.
Sometimes algorithms more complicated.

Which type of machine to choose in a particular application can be a hard
question, there is no easy general answer.

57

3 More Closure Properties

Homomorphisms

Definition
A homomorphism is a map f : X¥* — I'* such that

fl@ize...xn) = f(z1)f(z2) ... f(Tn)

where z; € X. In particular f(e) = e.

Note that a homomorphism can be represented by a finite table: we only need
fla) e I'™ forall a € X.

Given a homomorphism f : X* — I'* and languages L C X* and K C I'* we
are interested in the languages

image fL)={f(@)|zel}
inverse image f'(K)={xz| f(z) e K}

59

Closure under Homomorphisms

Lemma

Regular languages are closed under homomorphisms and inverse
homomorphisms.

Proof.
Let f: X* — I'"* be a homomorphism. Suppose L C X* is recognized by A

Say, we have a DFA A for K C I'*. Replace the labels of the transitions as

follows
a f(a
p—q ~ p q

This produces a GFA over X that accepts f~(K).

For the opposite direction, given a regular expression « for L C X*, replace all
letters a by f(a). This produces a regular expression for f(L).

O

60

Substitutions

We can push the last result a little further: we could consider regular
substitutions, maps obtained from a lookup table

fla)=K,C I

where K, is a whole regular language, rather than just a single word. As
before, f(x1z2...2n) = f(z1)f(x2)... f(zn) C I and we set

F() = f@)

xeLl

Lemma

Regular languages are closed under regular substitutions and inverse regular
substitutions.

61

Exercises 62

Exercise

Carry out the concatenation pebble construction for the languages
E, = even number of a's and E, = even number of b’s and run some
examples.

Exercise

Carry out a pebbling construction for Kleene star.

Exercise

How would a pebbling construction work when the given machine(s) are
NFAEs?

Fixes

For a word z = uvw, u is a prefix of x, v is a factor or infix of z and w is a
suffix of x.

We can lift these concepts to languages:
pref(L) ={u e X" |Jv(uww e L)}

and similarly for fact(L) and suff(L).

Lemma
pref(L), fact(L) and suff(L) are regular whenever L is.

Proof. We may assume that A is a trim automaton for L.
Set F=Q, 1 =F =Q and I = @, respectively.

63

Alternative Argument 64

For any alphabet X define Y to be a copy of X with elements @ for a € X; set
r=xulX.

Define homomorphisms f,g: I'* — X* by

f@=a f(a)=a
g@=a gla)=c¢

Then o
pref(L) = g(f ' (L)NZ"X*)

Done by closure properties.

Regular Computations

Suppose A is a DFA accepting L C X*.

Claim: Let K be the words = in L such that the computation of A on x uses
every state at least once. Then K is regular.

Sketch of proof.

Consider the transitions A C Q x X' x @ as a new alphabet, so A* is the set of
all sequences of transitions.

Let C={WeA" | W=...(pa,q)(¢,b,7)...,q# ¢ } Then A* - C
represents all computations of A. Similarly we can filter out accepting
computations.

Let Cp = A*(p,a,q)A* U A*(q,a,p) A* be the computations using state p.
By intersecting with all the C), we get computations we want.

Lastly apply the homomorphism (p, a, q) — a.

65

State Complexity of Operations 66

DFA NFA
intersection mn mn
union mn m-+n

concatenation (m—1)2" -1 m+n

Kleene star 3.2772 n+1
reversal 2m n
complement n 2"

Worst case blow-up starting from machine(s) of size m, n and applying the
corresponding operation (accessible part only).

Note that we are only dealing the state complexity, not transition complexity
(which is arguably a better measure for NFAs).

Example: Intersection

The “mod-counter” language
Kom={2€2" | #sx=0 (modm)}

clearly has state complexity m. Similarly, the intersection of Ko, and K,
has state complexity mn.

67

Again: Decision Problems

Problem:
Instance:
Question:

Problem:
Instance:
Question:

Problem:
Instance:
Question:

Emptiness Problem
A regular language L.
Is L empty?

Finiteness Problem
A regular language L.
Is L finite?

Universality Problem
A regular language L.
Is L =X"7

68

Machine Types

For DFAs these problems are all easily handled in linear time using
depth-first-search.

As far as decidability is concerned there is no difference between DFAs and
NFAs: we can simply convert the NFA.

But the determinization may be exponential, so efficiency becomes a problem.

@ Emptiness and Finiteness are easily polynomial time for NFAs.

o Universality is PSPACE-complete for NFAs.

69

More Problems

Problem: Equality Problem
Instance: Two regular languages L1 and Lo.
Question: Is Ly equal to Ly?

Problem: Inclusion Problem
Instance: Two regular languages Li and Lo.
Question: Is L1 a subset of L5?

@ Inclusion is PSPACE-complete for NFAs.

o Equality is PSPACE-complete for NFAs.

70

Large Product Machines

Suppose we have a list of m DFAs A; of size n;, respectively.

Then the full product machine
A=A1 X A2 X ... X Am—1 X Anm
has n = ninso...ns states.
@ The full product machine grows exponentially, but its accessible part may
be much smaller.

@ Alas, there are cases where exponential blow-up cannot be avoided.

71

Bad News: DFA Intersection 72

Here is the Emptiness Problem for a list of DFAs rather than just a single
machine:

Problem: DFA Intersection
Instance: A list A;, ..., A, of DFAs
Question: Is [£(A;) empty?

This is easily decidable: we can check Emptiness on the product machine
A =]] As. The Emptiness algorithm is linear, but it is linear in the size of A,
which is itself exponential. And, there is no universal fix for this:

Theorem
The DFA Intersection Problem is PSPACE-hard.

4 Exponential Blowup

Blowup

The example for the even/even language shows that a power automaton may
well be smaller than the original NFA.

Just to be clear: this phenomenon is a bit rare. It is still true that for
RealWorld™ machines the blowup is often small, something like polynomial in
the size of the NFA.

Unfortunately, full or nearly full blowup during determinization does occur, and
there is simply no way around it.

74

Blowup Example 1

Recall the kth symbol languages

L(a,k) ={z €a,b" |z =a}

Proposition

L(a, —k) can be recognized by an NFA on k + 1 states, but the state
complexity of this language is 2F .

Applying determinization to the NFA produces a DFA of size 2F, and there is
no smaller DFA.

75

Blowup Example 2 76

a
Q

Here is a 6-state NFA based on a circu- “ b b a
lant graph. Assume [= Q.
If X = b than the power automaton X\\O
has size 1. b
However, for X = a the power automa- ;
ton has maximal size 2°. a) b '

Circulants

More generally, we are dealing with circulant machines on n states with
diagram C'(n;1,2):

Vertices {0,1,...,n—1}
Edges (v,v + 1 mod n) and (v,v + 2 mod n)

Let's say we label the stride-1 edges 1 by a and the stride-2 edges by b.

Then we flip the label of exactly one transition and determinize.

7

Problems

Exercise

Prove that full blowup occurs when we flip a stride-2 transition.

Exercise
What happens when we flip a stride-1 transition?

Exercise
How about circulants C(n;1,k)?

Exercise

How about circulants C(n; s1,s2)7?

78

Another Pebble Game

Think of placing a pebble on each state of the automaton.

Then push a button s € X' and move all the pebbles accordingly.

Lather, rinse and repeat, until the target configuration P of pebbles is reached.

To demonstrate full blowup, we have to explain how to accomplish this for all
P CQ.

Slightly more complicated is a situation when we can only handle “almost all”
P, a few special pebble configurations fail to be reachable.

79

Easy Case 80

Consider C'(n;0,1), label all loops a and all stride 1 edges b.
Then switch the label of the loop at 0.

T

Proof?

We need some organizing principle for the pebble game. The atomic actions
work like so:

0, kil O
O, sticky rotate

Sticky rotate means that a pebble at 0 does not go away (and, in addition,
spawns a pebble at 1).

Idea: If we can concoct a plain “rotate” operation, we are done.
Case1: 0¢ P &y works

Case2: 0 P
If n—1¢€ P: §, works
Ifn—1¢ P: Ponder deeply.

81

Blowup Example 3 82

Start with a binary de Bruijn automaton where both §, and d, are
permutations. An example for rank 3:

There are 2 loops and 2 3-cycles labeled a (red), a 2-cycle and a 6-cycle
labeled b (green).

Flipping a Loop

Now flip the label of one of the two loops.

We get an NFA that it almost deterministic. What happens if we perform
determinization?

83

Full Blowup

Flipping the label at a loop produces full blowup for any) # I C Q.

84

A Little Challenge 85

The last claim | can prove. But this is just the tip of the iceberg.

One can show that the number of permutation labelings in the binary de Bruijn
k—
graph of rank k is 22 "

Conjecture:
Flipping the label of an arbitrary edge in a permutation labeling
will produce full blowup in exactly half of the cases.

So the total number of cases with full blowup should be

ok—1

full blowup: 2% 9

This has been verified experimentally up to kK = 5 (on Blacklight at PSC, rest
in peace). There are 4,194,304 machines to check, ignoring symmetries. Half
of them blow up to size 2%? = 4,294, 967, 296.

Predicting Blowup 86

Since exponential blowup does occur, it would be very nice if we could run a
quick precomputation that checks for a given NFA whether determinization on
that machine would indeed blow up (so that we don't have to bother trying).

More precisely, we would like a fast algorithm for the following problem.

Problem: Power Automaton Size
Instance: A nondeterministic machine A, a bound B.
Question: s the size of the power automaton of A bounded by B?

No Luck

Theorem (KS 2003)
Power Automaton Size is PSPACE-complete.

Thus, essentially the only way to determine the size of the power automaton is
to actually construct it, there are no computational shortcuts.

87

	Closure Properties
	Determinization
	More Closure Properties
	Exponential Blowup

