
CDM

Enumeration

Klaus Sutner

Carnegie Mellon University

1 Prologue

2 DFAs and Actions

3 Enumeration

4 Rankings and Order

Status Quo 2

We have seen Burnside/Polya/Redfield, a rather powerful machinery that
solves certain counting problems.

For example, suppose we are interested in the collection S of all bracelets of
length n with k colors (circular lists of length n with entries in [k]). Two lists
are similar if they can be obtained from each other by rotations and reflections
(the actions of the dihedral group Dn).

Similarity produces a partition

S = {S1, S2, . . . , SN }

where each block Si consists of all similarity class of bracelets.

Counting versus Generation 3

By the BPR method we can determine N , the number of patterns: e.g., for
odd n we have

N = 1
2n

∑
d|n

φ(n/d) kd + k(n+1)/2/2

Now suppose we need to choose one particular representative in each pattern,
some si ∈ Si.

In principle, we can do this by brute-force, though, except for very small
examples, this approach is not feasible.

Ideally we would want an algorithm that uses N rounds to produce just a single
representative in each pattern Si, nothing else.

More Combinatorics 4

Given a description of some combinatorial structure we would like to solve at
least the following problems.

Existence:
Is there such a structure for various parameters?

Counting:
How many such structures are there?

Generation:
How does one produce some/all these structures?

Example: 3-Regular Graphs 5

Structure: a 3-regular, connected, unlabeled, simple graph.

Existence: for all even n.

Counting: hard; the first few values are

1, 2, 5, 19, 85, 509, 4060, 41301, 510489

See OEIS A002851.

Generation: hard; one cheap example: add a perfect matching to a cycle.

1 Prologue

2 DFAs and Actions

3 Enumeration

4 Rankings and Order

Transition Functions 7

A DFA is essentially given by its transition function, a matrix

δ : Q × Σ −→ Q

As far as pattern matching on strings is concerned it is convenient to extended
this function from single letters to words:

Q × Σ⋆ → Q

δ(p, ε) = p

δ(p, xa) = δ(δ(p, x), a)

This looks very similar to the right actions we encountered in Pólya-Redfield
counting – except that the set of all words is not a group, just a monoid (or a
semigroup if we do not allow the empty word – this turns out to be more useful
overall).

Or: A Right Action 8

Another way to think of the extended transition function of a DFA is as a right
action:

Q × Σ⋆ → Q

p · ε = p

p · xa = (p · x) · a

This really is an action since

p · xy = (p · x) · y

for all words x and y.
Incidentally, this is a good example where a right action is more natural, a left
action would be awkward.

Is there some more algebraic structure hiding?

The Transformation Semigroup 9

On occasion we have already interpreted the transition function as a collection
of functions

δa : Q −→ Q

where a ∈ Σ.
The set Fct(Q, Q) of all functions from Q to Q forms a semigroup (even a
monoid) under composition, so we can consider the subsemigroup

T = ⟨δa

∣∣ a ∈ Σ⟩ ⊆ Fct(Q, Q)

Definition
This semigroup is the transformation semigroup of the DFA.

Note that the size of this monoid is at most nn where n is the size of the DFA.

A Homomorphism 10

What are the elements of T ?
All functions of the form p 7→ δ(p, w) for some word w.
We write δw for these functions.

Proposition
The map Φ : Σ+ → Fct(Q, Q) , w 7→ δw is a semigroup homomorphism. The
image of this map is T .

What is the kernel relation of Φ?
It identifies two words u and v if, and only if, δu = δv.
In other words, the automaton is completely unable to distinguish between u
and v, the transitions induced by these two words are exactly the same (not
just from the initial state but from all states).

A Congruence 11

We write u ∼ v if δu = δv.

Proposition
The equivalence relation ∼ is a congruence:

u ∼ v ⇐⇒ ∀ x, y (xuy ∼ xvy).

Recall that congruences are the proper types of equivalence relations when on
tries to form a quotient of an algebraic structure.
The quotient semigroup Σ+/∼ is isomorphic to the transformation semigroup
T .

This is very similar to our description of groups in terms of generators and a
few equations: the “real” semigroup is T , but it is often easier to compute
instead with words representing the semigroup elements.
As before, multiplication corresponds to to concatenation, followed by
simplification.

Example: Counting Modulo 5 12

Let’s start with a very simple example, over a single letter alphabet.

0

1

2

3

4

0

1

0
1

0 1

0

1

0

1

It is clear that

δak (p) = p + k mod 5

The Transformation Semigroup 13

The semigroup therefore has 5 (rather boring) elements

δa = T (1, 2, 3, 4, 0)
δaa = T (2, 3, 4, 0, 1)

δaaa = T (3, 4, 0, 1, 2)
δaaaa = T (4, 0, 1, 2, 3)

δaaaaa = T (0, 1, 2, 3, 4)

Note that in this case T is actually a group: we get Z5. The 5 congruence
classes are

{ ai | i = k (mod 5) }

where k = 1, 2, 3, 4, 5. There is only one simplification rule: aaaaa → ε.

Example: Counting to Three 14

Counting a’s over a two-letter alphabet.

0 1 2 3 4
a a a a

a, bb b b b

In this case δb is the identity, but δa is a truncated successor function.

δa(p) =
{

p + 1 if p < 4,
p if p = 4.

The Transformation Semigroup 15

The semigroup therefore has 5 (rather boring) elements

δa = T (1, 2, 3, 4, 4)
δb = T (0, 1, 2, 3, 4)

δaa = T (2, 3, 4, 4, 4)
δaaa = T (3, 4, 4, 4, 4)

δaaaa = T (4, 4, 4, 4, 4)

This time T is as far away from a group as possible: the only subsemigroup of
T that is a group is the trivial {T (4, 4, 4, 4, 4)}.

Definition
Semigroups that contain only trivial subgroups are called aperiodic.

The Simplification Rules 16

Note that T (4, 4, 4, 4, 4) plays the role of a zero in T :

zx = xz = z for all x.

Zeros in T are closely connected to sinks in the automaton.

The simplification rules here can be written very elegantly as

a4 → 0, b → 1

Exercise
Determine the congruence classes for this example.

Example: −2rd Symbol 17

Recall our standard example language:

L−2,a = { x ∈ {a, b}⋆ | x−2 = a } = Σ⋆a{a, b}.

We know a DFA for this language (actually, this is the minimal DFA):

1

2

3

4

b
b

a
a

ab

a b

The Transformation Semigroup 18

The two generators are

δa = T (1, 4, 4, 1)
δb = T (2, 3, 3, 2)

and the full semigroup consists of these plus the four constants

δaa = T (1, 1, 1, 1)
δab = T (2, 2, 2, 2)
δba = T (3, 3, 3, 3)
δbb = T (4, 4, 4, 4)

The constants appear since any word of length 2 or more sends all states to the
same state (these are right-nulls in the semigroup).

The Congruence 19

The congruence ∼ is also very easy to determine in this case: there are six
classes

a, b, Σ⋆aa, Σ⋆ab, Σ⋆ba, Σ⋆bb.

What are the simplification rules for words in general?
If we apply the spanning tree algorithm as in the group case (which is actually
easier here, we don’t have to worry about inverses) we see that there are 8
rules:

aaa → aa, baa → aa, aab → ab, bab → ab, . . . , bbb → bb

Applying these rules we can reduce any non-empty word to one of the six
witnesses a, b, aa, ab, ba, bb.

Importing Algebra 20

At first glance, it might seem like we are just introducing more convoluted
terminology to obfuscate a perfectly simple topic.

But algebra is actually extremely useful to study the structure of finite state
machines and there are some deep results about decompositions of machines
into simple components that depend on this approach.

In particular, there is a famous result, the Krohn-Rhodes theorem which says
that all transformation semigroups can be decomposed (in a certain
complicated way) into just aperiodic ones and groups.

This result provides a rather surprising solution for the problem of constructing
finite state machines from simpler components, albeit not a very practical one.

Alas, we don’t have time to dig any deeper into this.

Exercises 21

Exercise
Compute the transformation semigroup for the minimal DFA of the language
Σ⋆abΣ⋆. Determine the congruence classes and the simplification rules.

Exercise
Compute the transformation semigroup for the minimal DFA of the language
“even number of a’s and even number of b’s”. Determine the congruence
classes and the simplification rules.

Exercise
Consider some other, simple minimal DFAs and determine their transformation
semigroups.

Exercise
Suppose DFA M is a product M1 × M2. What can you say about its
transformation semigroup?

1 Prologue

2 DFAs and Actions

3 Enumeration

4 Rankings and Order

Generation 23

So suppose we have some collection S of combinatorial objects and we know
that its size is n. Hence there is a bijection between S and [n] (though our
existence proof may be highly non-constructive, think BPR).

We would like to have an algorithm that enumerates some or perhaps all of the
elements of S. One way of doing this is to find an explicit bijection

f : S → [n]

There are n! candidates, but for f to be useful one needs to find a bijection
such that

f is easy to compute,
f−1 is easy to compute, and
f places the elements of S into some natural order.

Ranking and Unranking 24

Definition
A bijection f : S → [n] is called a ranking function, and
f−1 : [n] → S the corresponding unranking functions.

We often write rk for a ranking function, and urk for an unranking function,
perhaps with subscripts as in rkS .

Needless to say, we need

rk◦urk = urk◦rk = I

so we can go back and forth between ranks and objects.

0-Indexing and 1-Indexing 25

On occasion it is more convenient to consider ranking and unranking function
between S and

(n) = {0, 1, . . . , n − 1}

rather than

[n] = {1, 2, . . . , n}.

It should always be clear from context whether 0-indexing is used or 1-indexing.

Example
Ranking binary lists of length n is naturally done with 0-indexing.

CATs 26

Often the goal is to come up with algorithms whose time complexity is
proportional to the number of objects generated.

Ideally, each object should require a constant number of steps (where one may
have to be a bit creative regarding the meaning of “step”; Turing machines
may be too restrictive).

If a constant number per object does not work, the next interesting class of
algorithms is constant amortized time (CAT): over the whole run of the
algorithm only a constant number of operations are needed per object – a few
objects may require relatively much effort, but others require little.

Exercise
Explain the importance of amortized analysis for splay trees.

Binary Counter 27

Consider the problem of generating all binary lists of length n.
If there is no restriction on the order, we can think of this simply as the
problem of counting from 0 to 2n − 1. Of course, a simple binary counter will
do the job, thank you very much.
Suppose we charge one step for each bit that needs to be flipped. If there are
k − 1 < n trailing 1’s then stepping the counter will cost k steps, a
non-constant cost.

But expensive steps are infrequent, over the whole run of the algorithm we
need only

n∑
i=1

i · 2n−i = 2n+1 − n − 2

steps (n more if we reset all bits to 0).
Hence the natural algorithm is CAT.

Pretty Pictures 28

Binary expansions for x = 0, . . . , 26 − 1, packed into a 6 × 64 matrix.
The horizontal difference pattern for this matrix: xor between consecutive
columns (sometimes called a ruler function).

Exercise
Give a geometric proof that binary counting is CAT based on the second
picture.

Ranking and Random Objects 29

A lot of work has gone into the construction of good pseudo-random number
generators: given some bound n, generate a random integer r in the range 1 to
n, uniformly distributed. Equivalently, repeatedly pick a single bit 0 or 1 with
probability 1/2.

In conjunction with an unranking function urk this suffices to generate
uniformly random object in S:

r = rand(n); // random integer
return urk(r); // random object

It can be quite tricky to do this directly in S without producing bias: the
selection process should pick each object in S with the same probability.

Direct Approach: Random Permutations 30

Of course, for some combinatorial objects we don’t need to use ranking
machinery, we can randomly generate them directly. E.g., here is a standard
method to generate random permutations of [n], given a random number
generator rand(k) that returns an integer in [k], drawn uniformly at random.

for k = 1, .., n do
a[i] = i;

for k = n, .., 2 do
r = rand(k);
swap a[k], a[r];

Exercise
Alternatively, we could use a source for random reals in [0, 1], generate a list
((r1, 1), (r2, 2), . . . , (rn, n)), sort in lex order and then drop the first
component. Check that both methods produce uniformly distributed random
permutations.

Ranking in Ordered Sets 31

Rankings are closely related to orders.
Suppose the set A is totally ordered, so we have a fixed enumeration

A = a0, a1, . . . , ak−1.

Definition
For any subset B of A and element a ∈ B define the rank rk(a, B) of to be the
position of a in B.

Example
Let A = a, b, c, d. Using 0-indexing we have
rk(c, A) = 2,
rk(c, {b, c, d}) = 1 and
rk(c, {c}) = 0.

And Back 32

Of course, given any set A together with a ranking function rk : A → (n) we
can always define a corresponding total order:

a <A b ⇐⇒ rk(a) <N rk(b).

It still is a good idea to distinguish the two notions.

Often, there is a natural order on a set of combinatorial objects (such as
lexicographic order on words), and one would like to find a good program for
the corresponding ranking and unranking functions.

1 Prologue

2 DFAs and Actions

3 Enumeration

4 Rankings and Order

Successors and Predecessors 34

Given a ranking/unranking pair one can always define the successor and
predecessor of an object x in S:

successor: urk(rk(x) + 1)
predecessor: urk(rk(x) − 1)

Here we assume 0-indexing and wrap around at 0 and n − 1.

It is often challenging to find a computational short-cut: given x, compute the
successor/predecessor as efficiently as possible, without resorting to the ranking
machinery.

Likewise, we always have a natural notion of predecessor and successor
whenever S is totally ordered (and finite).

Programs 35

Note that in a certain sense it is trivial to find a program that computes, say, rk.
We can just hardwire a table into the code and perform a simple table look-up
to get the rank of an element.

a b c . . . z
0 1 2 . . . 123

The problem is that in many applications this table would be huge (often larger
than the physical universe).
This leads naturally to the notion of program size complexity: one is interested
the size of the program rather than running time or memory requirements
(more on this later).
So we need to find a small program to compute the rank.

Cheap Example 36

Let S be all subsets of A, a set of cardinality k.
Then n = 2k and we can use binary expansions, padded to k bits, for ranking
and unranking.

{a, d} ⊆ {a, b, c, d} −→ (1, 0, 0, 1) −→ 9

Note that this ranking function clobbers other properties that one might be
interested in.
For example, there is no good connection between the rank and the size of the
corresponding subset.
The next pictures shows the sizes of all subsets of [9] ordered according to this
ranking.

Rank versus Size 37

100 200 300 400 500

2

4

6

8

Less Cheap Example 38

Using essentially the same approach we can rank and unrank any Cartesian
product

S = (rk) × (rk−1) × . . . × (r2) × (r1)

Here n =
∏

ri and we use the ranking function

rkCP(ak, . . . , a1) =
∑

aiRi

where Ri =
∏

j<i
rj .

The special case rj = r is just standard base r notation. In the general case we
use a non-standard numeration system.

Medium Priced Example 39

How about injective functions

f : [m] → [n]

where m ≤ n. Alternatively, we are looking at repetition-free lists of length m
with entries in [n].
The number of such functions is the falling factorial

nm = n(n − 1) . . . (n − m + 1)

with the special case

nn = n!

the number of permutations of n points.

Making a Connection 40

Perhaps one could somehow establish a correspondence between these injective
functions and the Cartesian product

S = (n) × (n − 1) × . . . × (n − m + 1)

which, it so happens, has cardinality nm?

f(1) selects an arbitrary element a of (n). The order rank of a is any number
in (n).
But then f(2) selects an arbitrary element of (n) − {a} with order rank in
(n − 1).
And so on.

Central Idea: If two sets have the same cardinality, there must be a good
reason for this.

Ranking Injections 41

Definition
Let a = (a1, a2, . . . , am) ∈ (n)m be a repetition-free list. Define a new list
b = Lower(a) by

bi = rk(ai, (n) − {a1, . . . , ai−1})

for i = 1, . . . , m .

Note that

Lower(a) ∈ S = (n) × (n − 1) × . . . × (n − m + 1)

Proposition
The map

Lower : Inj(m, n) → S

is a bijection.

Laziness 42

But then we can reuse the ranking function for Cartesian products to get a
ranking function for Inj(m, n):

rk : Inj(m, n) → (nm)
rk(a) = rkCP(Lower(a))

Great, but how do we unrank?
We need a dual function Raise that converts back from S to Inj(m, n).
Any bets?

Raise 43

We need a function that undoes the lower operation. Guess what it might be
called.

Definition
Let b ∈ S and define a new list a = Raise(b) ∈ (n)m by

ai = urk(bi, (n) − {b1, . . . , bi−1})

Proposition
The unranking function is given by

urk : (nm) → Inj(m, n)
urk(x) = Raise(urkCP(x))

Headache? 44

Example
Here are the ranks for m = 2, n = 5.

(0, 1) 0 (0, 3) 10
(1, 0) 1 (1, 3) 11
(2, 0) 2 (2, 3) 12
(3, 0) 3 (3, 2) 13
(4, 0) 4 (4, 2) 14
(0, 2) 5 (0, 4) 15
(1, 2) 6 (1, 4) 16
(2, 1) 7 (2, 4) 17
(3, 1) 8 (3, 4) 18
(4, 1) 9 (4, 3) 19

Special Case: Permutations 45

We get permutations in the case n = m. In this case, there is a good
combinatorial interpretation of the Lower operation: it can be thought of as
producing factorial digits.

Definition
The factorial representation of an integer x ≥ 0 has the form

xk · k! + xk−1 · (k − 1)! + . . . + x2 · 2! + x1 · 1!

where 0 ≤ xi ≤ i.

Note that this is yet another case where a ranking/unranking problem is solved
by means of an appropriate numeration system.
To generate all binary lists we can use a binary counter, to generate all
permutations we can use a factorial counter (alas, that’s a bit harder to
implement).

example 46

Example
Here is a table of the representation of all numbers x, 0 ≤ x < 24, padded to 3
factorial digits.

0 0,0,0 12 2,0,0
1 0,0,1 13 2,0,1
2 0,1,0 14 2,1,0
3 0,1,1 15 2,1,1
4 0,2,0 16 2,2,0
5 0,2,1 17 2,2,1
6 1,0,0 18 3,0,0
7 1,0,1 19 3,0,1
8 1,1,0 20 3,1,0
9 1,1,1 21 3,1,1
10 1,2,0 22 3,2,0
11 1,2,1 23 3,2,1

Note that we only need 3 factorial digits for permutations of [4]. Why?

An Unranking Algorithm 47

There are several ranking/unranking algorithms for permutations in the
literature. Here is one standard approach which produces a somewhat strange
ordering. It is easier to use 0-indexing for this, so below we deal with
permutations on (n).

for k = 0, .., n-1 do
a[i] = i;

unrank(a[], n, r); // r == rank

unrank(a[], k, r)
if(k > 0)

swap a[k-1], a[r mod k];
unrank(a, k-1, r div k);

This is linear in n (assuming uniform cost function for the arithmetic
operations).

A Ranking Algorithm 48

For the corresponding ranking algorithm we first compute the inverse
permutation ainv. Running time is again linear in n.

for k = 0, .., n-1 do
ainv[a[i]] = i;

rank(a[], n);

rank(a[], k)
if(k==1) return 0;
s = a[k-1];
swap a[k-1], a[ainv[k-1]];
swap ainv[s], ainv[k-1];
return s + k * rank(k-1);

Exercise
Prove that these two ranking/unranking functions really work.

Back to Lower/Raise 49

How does one actually compute Lower and Raise?

(2, 3, 0, 1, 4) −→ (2, 2, 0, 0) −→ 60

Our definition is in terms of the ranking function on an ordered set, but the
code becomes quite simple if we think of the tuples as arrays of integers.

Ready?

Lower 50

For example, Lower can be implemented by a simple nested loop.

for(i = 1; i <= n; i++)
for(j = i+1; j <= n; j++)

if(a[i] < a[j]) a[j]--;

In the end, drop the last element from the array.

Annoyingly, this is quadratic time. The situation for Raise is entirely analogous.

Question: Can Lower and Raise be implemented in time o(n2)?

Enumerating Orbits 51

Ranking and unranking is fine for the set of all permutations, but what if we
want to generate only the permutations of a given list a = (a1, a2, . . . , am)
where not all elements are necessarily distinct.

In other words, we want the orbit of a under the natural action of the
symmetric group on m letters.

Example
Let A = (a, b, b, c).
Then the stabilizer of A is {I, (2, 3)}, a subgroup of size 2 in S4.
Hence the orbit has size 12 = 4!/2, and with a lot of computing in S4 we could
produce it using Pólya’s machinery: we would need to find representatives g1,
. . . , g12 for the cosets to get the orbit g1 · A, g2 · A, . . . , g12 · A

Example, contd. 52

In one-line notation the representatives are

T (1, 2, 3, 4), T (1, 2, 4, 3), T (1, 3, 4, 2), T (2, 1, 3, 4), T (2, 1, 4, 3), T (2, 3, 4, 1),
T (3, 1, 2, 4), T (3, 1, 4, 2), T (3, 2, 4, 1), T (4, 1, 2, 3), T (4, 1, 3, 2), T (4, 2, 3, 1)

This produces the following 12 variants of (a,b,b,c):

(a, b, b, c), (a, b, c, b), (a, c, b, b), (b, a, b, c), (b, a, c, b), (b, b, a, c),
(b, b, c, a), (b, c, a, b), (b, c, b, a), (c, a, b, b), (c, b, a, b), (c, b, b, a)

Successors 53

A better way is to find a successor function successorfunction that
enumerates the orbit by iteration:

orbsuccessorfunction(a) = { successorfunctioni(a) | i < 12 }

Is there such a successor function that works for all possible lists? Yes:

Find the largest position i such that ai < ai+1.
Find the least aj in positions i < j ≤ n larger than ai.
Swap ai and aj .
Sort the tail-end ai+1, . . . , an of the permutation.

If the whole permutation is descending, sort the whole thing.
This operation is linear time if we use a fast sorting algorithm (distribution
counting).

example 54

It is not at all clear that this works. Here is a “proof” by example.

Example

1 2 2 4
1 2 4 2
1 4 2 2
2 1 2 4
2 1 4 2
2 2 1 4
2 2 4 1
2 4 1 2
2 4 2 1
4 1 2 2
4 2 1 2
4 2 2 1

Note that the orbit appears in lex order.

Strictly Increasing Functions 55

Let’s try another combinatorial class: strictly increasing functions (SIF) from
(m) to (n). Alternatively, we are dealing with strictly increasing lists of length
m with elements in (n). Of course, we need m ≤ n for these functions to exist.

How many are there?
Each SIF can be identified with its range, and thus with a subset of (n).
Hence there are

(
n
m

)
SIFs.

Following the previous examples, it is tempting to look for a good
representation for numbers 0 ≤ x <

(
n
m

)
.

A wild guess would be that binomial coefficients might be involved. From our
previous experience with binary and factorial representations, be probably need
a new “binomial representation”.

Binomial Representation 56

Lemma
Every number 0 ≤ x <

(
n
m

)
has a unique representation of the form

x =
(

x1

1

)
+

(
x2

2

)
+ . . . +

(
xm

m

)
given the constraint 0 ≤ x1 < x2 < . . . < xm < n.

Definition
The xi above are the binomial digits of x.

Note that unlike with the classical base B representations and the factorial
representation from above it is not entirely clear how one would compute
binomial digits.

Exercise
Figure out how to compute binomial digits.

Ranking 57

So suppose f : [m] → (n) is strictly increasing. The ranking function is defined
by

rk(f) =
(

f(1)
1

)
+

(
f(2)

2

)
+ . . . +

(
f(m)

m

)

The unranking function here is in essence just the computation of the binomial
digits.

Note that f = (0, 1, . . . , m − 1) has rank 0 and f = (n − m, . . . , n − 2, n − 1)
has rank

(
n
m

)
− 1.

Example 58

Example
Here is the case m = 3, n = 6.

(0, 1, 2) 0 (0, 1, 5) 10
(0, 1, 3) 1 (0, 2, 5) 11
(0, 2, 3) 2 (1, 2, 5) 12
(1, 2, 3) 3 (0, 3, 5) 13
(0, 1, 4) 4 (1, 3, 5) 14
(0, 2, 4) 5 (2, 3, 5) 15
(1, 2, 4) 6 (0, 4, 5) 16
(0, 3, 4) 7 (1, 4, 5) 17
(1, 3, 4) 8 (2, 4, 5) 18
(2, 3, 4) 9 (3, 4, 5) 19

Note that the order here is a bit strange.

More Binomial Representations 59

We can generalize the binomial representation from above slightly.

Lemma
For every positive x and m there is a unique representation of the form

x =
(

xm

m

)
+

(
xm−1

m − 1

)
+ . . . +

(
xt

t

)
given the constraint xm > xm−1 > . . . > xt ≥ t.

Note that this constraint makes it impossible to represent 0, otherwise this
decomposition is very similar to the one above.

Exercise
Prove existence of the representation by showing that the natural greedy
algorithm works. Then establish uniqueness.

Colex Order 60

Lex order (or lexicographic order) is defined by comparing the letters of a string
from left to right.

Definition
If we read the string instead from right to left, the corresponding order is called
colex order.

Proposition
The ranking procedure for SIFs from above organizes the functions in colex
order.

Exercise
Prove the last proposition.

Exercise
Find a rank for a non-decreasing functions.

Necklaces 61

Back to the problem of generating representatives for each equivalence class in
some group action. In general, this is a hard problem, but for necklaces where
the group in question is just the cyclic group there is a good solution.

Definition
A k-ary necklace is a cyclic word over a k-letter alphabet.

If you prefer, think about lists of some length n with entries in [k], under the
cyclic group Zn (no reflections, that’s only for bracelets).

It is customary to pick a representative in each class: the lexicographically least
(linear) word in the equivalence class. The representative is then simply called
a necklace.

Example: n = 6, k = 2 62

Necklaces Only 63

There are 64 binary words of length 6, but only 14 binary necklaces:

neck(n, k) = 1
n

∑
d|n

φ(d)kn/d

Generating Necklaces 64

We are looking for a good algorithm to generate these necklaces. As a data
structure, we are dealing with a simple array of integers in the range 0 to k − 1.
One particularly simple algorithm is based on enumerating a slightly larger class
of objects.

Definition
A word w is a pre-necklace if it is a prefix of a necklace.

Example
All binary pre-necklaces of length 4. Note that 0010 is not a necklace.

0000, 0001, 0010, 0011, 0101, 0110, 0111, 1111

If we manage to generate all pre-necklaces of length n we have in particular all
necklaces, but we still need some mechanism to weed out the non-necklaces.

Lyndon Words 65

Definition
A non-empty word w is primitive if it is not of the form xi for any x shorter
than w. The root of a word w is the shortest word x such that xi = w and the
exponent i is then the repetition factor of w.

Thus a primitive word is its own root and has repetition factor 1. A word of
prime length is primitive unless it is of the form an.

Definition
A Lyndon word is a representative for a necklace that is also primitive.

Proposition
The number of Lyndon words of length n over a k symbol alphabet is

1
n

∑
d|n

µ(n/d)kd.

where µ is the Möbius function.

Möbius Function 66

µ(n) =

{ 1 if n = 1,
(−1)r if n = p1 . . . pr, all distinct primes,
0 if n is divisible by p2, p a prime.

Herr Möbius’ invention is a bit strange. Since µ(n)
depends very much on the prime decomposition of n its behavior is rather
erratic.
But it is an exceedingly useful tool for certain types of counting problems.

Back To Necklaces 67

Define the Lyndon length of w to be

lyn(w) = length of longest prefix of w that is Lyndon

Note that lyn(w) ≥ 1. This will turn out to be the right tool to filter out
non-necklaces from pre-necklaces.

Lemma
Consider the alphabet Σk = {0, 1, . . . , k − 1}. Let w be a pre-necklace and set
p = lyn(w). Then wa is a pre-necklace if, and only if,

a = w−p, in which case lyn(wa) = p, or
a > w−p, in which case lyn(wa) = |wa|.

Clearly each letter a ∈ Σk is a pre-necklace and lyn(a) = 1, so the lemma
translates directly into an iterative algorithm for the construction of
pre-necklaces.

And Necklaces? 68

It is easy to keep track of the Lyndon length together with the corresponding
pre-necklaces.
To get rid of non-necklaces one can then exploit the following little fact to get
a CAT algorithm for the construction of necklaces.

Proposition
Let w be a pre-necklace of length n and Lyndon length p. Then w is a
necklace if, and only if, p divides n.

Exercise
Prove the last proposition.

Isomorph Rejection 69

Another closely related computational problem is to determine whether two
given objects are equivalent under some given action.
Of course, the point is to avoid having to enumerate the whole orbit (or
substantial parts thereof) of one of the objects to search for the other.

Here is a typical example: suppose you are given two one-million bit words.
Are they the same as cyclic words?
That is, do they correspond to the same necklace?

Computing a million rotated versions of a word to find the other is clearly a
bad idea.

A Trick 70

But note the following.

Proposition
Two words x and y are equivalent under rotation if they are conjugate: x = uv
and y = vu for some words u and v.

Proposition
Two words x and y are equivalent under rotation if x is a factor of yy.

yy = v u v︸︷︷︸
x

u

The last property can be checked in linear time using standard string-matching
algorithms.

Exercise
Prove the two propositions.

Summary 71

Burnside/Pólya/Redfield can be used to solve counting problems involving
group actions.
Beyond mere counting, enumeration (ranking and unranking) is an impor-
tant technique.
The corresponding algorithms can be quite intricate; correctness is some-
times difficult to establish.
Direct generation of non-equivalent objects can be quite difficult; finding
fast algorithms is an area of current research.
Application of CS in areas such as biology and chemistry has created
much interest in these topics recently.

	Prologue
	DFAs and Actions
	Enumeration
	Rankings and Order

