
CDM

Basic Number Theory II

K. Sutner

Carnegie Mellon University

1 From Modular Arithmetic to Algebra

2 The Fibonacci Monoid

Recall: Little Fermat 2

Theorem (Fermat’s Little Theorem)
If p is prime and coprime to a, then ap−1 = 1 (mod p).

Last time we gave a somewhat pedestrian proof by multiplying out the modular
numbers in Z⋆

p.

We will now start to develop more powerful machinery that makes it possible to
generalize this result.

Exponentiation in Modular Numbers 3

Inspired by FLT, let’s take a closer look at exponentiation modulo m.

First recall that we can compute ak in O(log k) modular multiplications using
the standard squaring trick.

z = 1;
while(k > 0){

if(k odd) z = z * a mod m;
a = a * a mod m;
k = k/2;

}
return z;

This uses ds(k) + dc(k) multiplications where
ds(k) is the digit sum of k (number of 1’s in binary expansion), and
dc(k) is the total number of digits in the binary expansion.

Warning 4

Is there any other way we could speed up exponentiation modulo m?

It is in general not the case that

ak = ak mod m (mod m)

But by FLT we get

ak = ak mod p−1 (mod p)

whenever p is prime. Could this be coincidence? Nah . . .

Lemma

ak = ak mod φ(m) (mod m)

provided a and m are coprime.

A Brilliant Idea: Groups 5

Definition
A group G = ⟨G, ∗, 1⟩ is a structure with a binary operation ∗ and a special
element 1 such that

Associativity ∗ is associative x ∗ (y ∗ z) = (x ∗ y) ∗ z.
Neutral Element 1 is a neutral element 1 ∗ x = x ∗ 1 = x.
Inverse Element For every element x there is an inverse x′ such that

x ∗ x′ = x′ ∗ x = 1.

The order of G is its cardinality.

Claim
The inverse is uniquely determined.

Proof. Suppose x ∗ x′ = 1 = x ∗ x′′. Multiplying by x′ we get
x′ ∗ (x ∗ x′) = x′ ∗ (x ∗ x′′). By associativity we get 1 ∗ x′ = 1 ∗ x′′ and thus
x′ = x′′. 2

Abelian Groups 6

Definition
A group is commutative or Abelian if x ∗ y = y ∗ x for all x and y.

Notation:
It is customary to write Abelian groups additively as ⟨G, +, 0⟩.

General groups are written multiplicatively as ⟨G, ∗, 1⟩ or ⟨G, ·, 1⟩. As usual,
the multiplication operator is often omitted: xy instead of x ∗ y.

The inverse is correspondingly written −x in additive notation and x−1 in
multiplicative notation.

Cayley Tables 7

For finite groups we can simply write down a multiplication table. Above the
table for bit-wise xor on on 6-bit numbers.

Classical Examples 8

Example
Integers (rationals, reals, complexes) with addition form a group; neutral
element is 0.

Example
Non-zero rationals (reals, complexes) with multiplication form a group; neutral
element is 1.

Example
Modular numbers with addition form a group; neutral element is 0.

Example
Modular numbers coprime with modulus m with multiplication form a group;
neutral element is 1.

More Classical Examples 9

Example
The set of all permutations f : A → A for some arbitrary set A forms a group
with functional composition as operation. The neutral element is the identity
function. This is the symmetric group on A.

Example
The set of all regular n by n matrices of reals, with matrix multiplications
forms a group; the neutral element is the identity matrix.

Counting Finite Groups 10

10 20 30 40 50 60

10

20

30

40

50

Why Bother? 11

Why bother with abstract algebra? Why not simply continue with the kind of
basic arithmetic we’ve done so far?

Laziness: any property, of, say, groups derived from only the axioms
automatically holds in all groups. You only check three simple properties, and
all results apply.

Psychology: it is sometimes easier to argue abstractly than in a concrete
situation (you can’t see the forest because of all the trees).

Abstract is Easy 12

The second point may be hard to swallow, but it’s true.

E.g., consider non-singular matrices of reals. We have

(A · B)−1 = B−1 · A−1

One could try to use the properties of matrix multiplication and, say, Gaussian
elimination, to prove this. This would be very difficult at best.

Claim
In any group, (xy)−1 = y−1x−1.

Proof. By the last claim it suffices to show that y−1x−1 behaves like an
inverse. 2

Subgroups 13

Let ⟨G, ∗, 1⟩ be a group.

Definition
H ⊆ G is a subgroup of G if ⟨H, ∗, 1⟩ is a group.

Strictly speaking, the second ∗ should be the restriction to H–no one ever
bothers to distinguish between the two.

Lemma
Let G be a group and ∅ ̸= H ⊆ G.
Then H is a subgroup of G if, and only if, x, y ∈ H implies x−1 ∗ y ∈ H.
If the group is finite than it suffices that x, y ∈ H implies x ∗ y ∈ H.

Cyclic Groups 14

Definition
Let G be a group and a ∈ G. The subgroup generated by a is

⟨a⟩ = { ai | i ∈ Z } ⊆ G.

The order of a is the order of ⟨a⟩.
A group G is cyclic if there is some element a ∈ G such that ⟨a⟩ = G. In this
case a is a generator for G.

If G is a finite cyclic group we have

G = { ai | 0 ≤ i < ord(a) }

In other words, there is an element whose order is the same as the order of G.

Isomorphisms 15

Definition
Suppose G = ⟨G, ∗, 1G⟩ and H = ⟨H, ·, 1H⟩ are groups. A function
f : G → H is a (group) homomorphism if

f(x ∗ y) = f(x) · f(y)

If the function f is in addition bijective then it is an isomorphism.

Up to isomorphism there is only one cyclic group of order k, and it is
isomorphic to ⟨Zk, +, 0⟩. A generator is 1.

Note that there are other generators, though: ℓ is a generator iff gcd(ℓ, k) = 1.

All cyclic groups are commutative: ai ∗ aj = ai+j = aj ∗ ai.

Logarithms 16

Here is the classic historical example of such a map:

log : R+ → R

which translates multiplication into addition (more precisely: from ⟨R+, ·, 1⟩ to
⟨R, +, 0⟩).

We can compute products of (positive) reals by

x · y = eln x+ln y

Makes a huge difference: O(k) plus table lookup rather than O(k2) where k is
the number of decimal digits.

Of course, we have to compute a logarithm table first–but only once. It took
John Napier some 20 years to construct such a table in the early 1600s.

Example Z⋆
19 17

This group is cyclic: generators are 2, 3, 10, 13, 14, 15.

Counterexample Z⋆
20 18

Here is the Cayley table for Z⋆
20.

1 3 7 9 11 13 17 19
3 9 1 7 13 19 11 17
7 1 9 3 17 11 19 13
9 7 3 1 19 17 13 11

11 13 17 19 1 3 7 9
13 19 11 17 3 9 1 7
17 11 19 13 7 1 9 3
19 17 13 11 9 7 3 1

Note the subgroup {1, 3, 7, 9} in the top-left corner.
No element generates a subgroup of size larger than 4.

Subgroups of Z⋆
19 19

Clearly |Z⋆
19| = φ(19) = 18.

Here are all the subgroups and their generators:

1 {1}
18 {1, 18}

7, 11 {1, 7, 11}
8, 12 {1, 7, 8, 11, 12, 18}

4, 5, 6, 9, 16, 17 {1, 4, 5, 6, 7, 9, 11, 16, 17}
2, 3, 10, 13, 14, 15 Z⋆

19

The order of all group elements:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 18 18 9 9 9 3 6 9 18 3 6 18 18 18 9 9 2

Soothing Picture Z⋆
100 20

Soothing Picture Z⋆
111 21

1 From Modular Arithmetic to Algebra

2 The Fibonacci Monoid

Fibonacci Numbers 23

The simplest second-order recurrence is the famous Fibonacci recurrence
(homogeneous):

F0 = 0,

F1 = 1
Fn = Fn−1 + Fn−2

The obvious approach to computing Fibonacci numbers is linear in n (assuming
the arithmetic is constant time, which it really isn’t).

Is there are faster way? Something sublinear?

A Fast Recurrence 24

F2n = F 2
n + 2FnFn−1

F2n+1 = F 2
n + F 2

n+1.

Note that each call results in 2 subcalls.
Still, with memoization one can evaluate this recurrence in O(log n) calls.

Call Tree 25

This is the call DAG for n = 507.

Can you can read off a proof that the number
of calls is O(log n)?

2

0 1

3 4

6 7 8

14 15 16

30 31 32

62 63 64

126 127

253 254

507

A Wild Structure 26

The last approach to computing Fn has a distinctly combinatorial flavor. Might
algebra also help?

Definition (Fibonacci Algebra)
Define the Fibonacci product ∗ on pairs of natural numbers by

(x, y) ∗ (x′, y′) = (xx′ + yy′, yy′ + xy′ + x′y)

It is straightforward to check:

Claim
The Fibonacci product on N × N is associative and has neutral element (1, 0).

Who Cares? 27

The key fact that makes this algebra useful for us is this:

(x, y) ∗ (0, 1) = (y, x + y)

A straightforward induction shows that

Claim
In the Fibonacci algebra, (0, 1)n = (Fn−1, Fn).

Example 28

Here are some powers of (0, 1) in the Fibonacci monoid:

k (0, 1)2k

F2k

0 (0, 1) 1
1 (1, 1) 1
2 (2, 3) 3
3 (13, 21) 21
4 (610, 987) 987
5 (1346269, 2178309) 2178309

So we can compute F32 in just 5 Fibonacci operations.
Of course, these operations involve several multiplications and additions of
naturals.

Computing F1022 29

So we can compute F1024 and F1023 very quickly: 11 Fibonacci multiplications
suffice.
But how about F1022?
If we use the standard algorithm we need 19 operations.

Wild Idea: Perhaps we can work backwards from F1024 as in

F1022 = (0, 1)210
∗ (0, 1)−2

using just 13 operations?

Well, for this we need a group, not just some arbitrary associative
multiplication.
Any chance the Fibonacci algebra might be a group?

Towards an Inverse 30

Given x and y we have to solve

(xx′ + yy′, yy′ + xy′ + x′y) = (1, 0)

for x′ and y′. No problem:

x′ = x + y

x2 + xy − y2

y′ = −y

x2 + xy − y2

. . . except that we are now dealing with rationals rather than naturals: we need
Q × Q as carrier set.

The Fibonacci Group 31

There is another little glitch: (0, 0) has no inverse since (0, 0) is a
multiplicative annihilator:

(0, 0) ∗ (x′, y′) = (0, 0)

The good news is that this is the only problem: the denominators x2 + xy − y2

have no other integral roots since the solution in reals is

y = x

2
(
1 ±

√
5
)

So we have a group G with carrier set Q × Q − {(0, 0)}.

The Right Subgroup 32

In fact, since we are only interested in computing Fibonacci numbers and since
the inverse of (0, 1) is integral:

(0, 1)−1 = (−1, 1)

we can just work in the subgroup F generated by (0, 1).
All the elements in F are integral, no problem.

The question arises how many group operations are needed to compute Fn.

Straight Line Programs 33

We can describe a computation like the one above for F1022 as a straight line
program (SLP), a sequence of instructions

vk = vi ∗ vj

vk = vi/vj = vi ∗ v−1
j

where k is the line number and i, j < k. We always start with

v0 = (0, 1)

The result is the second component of the value of the variable vk in the last
instruction.
We call that k the length of the SLP. Optimal then simply means: minimal
length.

So, we want an algorithm that, on input n, determines the optimal SLP with
output Fn. This turns out to be difficult even for fairly small values of n.

Examples 34

Here is a SLP for F31 using only multiplication (no division).

v0 = (0, 1) F1

v1 = v0 ∗ v0 F2

v2 = v1 ∗ v1 F4

v3 = v2 ∗ v2 F8

v4 = v3 ∗ v3 F16

v5 = v4 ∗ v3 F24

v6 = v5 ∗ v2 F28

v7 = v6 ∗ v1 F30

v8 = v7 ∗ v0 F31

So length 8 suffices.

F31 35

A length 6 SLP for F31 that uses division.

v0 = (0, 1) F1

v1 = v0 ∗ v0 F2

v2 = v1 ∗ v1 F4

v3 = v2 ∗ v2 F8

v4 = v3 ∗ v3 F16

v5 = v4 ∗ v4 F32

v6 = v5/v0 F31

Is length 6 perhaps optimal?

F31 36

Yes, but that’s not so easy to show.
Nor is the solution unique.

v0 = (0, 1) F1

v1 = v0 ∗ v0 F2

v2 = v1 ∗ v1 F4

v3 = v2 ∗ v2 F8

v4 = v3 ∗ v3 F16

v5 = v4/v0 F15

v6 = v5 ∗ v4 F31

Exercise
Show that length 6 is optimal for F31: there is no shorter SLP that computes
F31.

A Little Help 37

Looking at these examples, notice that we only worry about the n in Fn. We
could have written

v0 = 1 1
v1 = v0 + v0 2
v2 = v1 + v1 4
v3 = v2 + v2 8
v4 = v3 + v3 16
v5 = v4 − v0 15
v6 = v5 + v4 31

The same simplification works for all our SLPs.

What’s going on? 38

First note that in order to execute an SLP we need two things:

an arbitrary group G, and
a special element a ∈ G.

We can then initialize v0 = a in line 0, and run through the other instructions
interpreting multiplication and division in the group G.

The same program can be run over any group G, and with any starting value
a ∈ G.

So, given an SLP P , a group G, and a ∈ G, we can define

P (G, a) ∈ G

as the result of executing P over G with initial value a.

The Infinite Cyclic Group 39

Our computations use the Fibonacci group F and a = (01,) (plus projection
on the second component in the end).

Now consider the two groups

Z = ⟨Z, +, 0⟩

F = ⟨F, ∗, (1, 0)⟩

These two groups look very different, but they are isomorphic via f : Z → F :

f(n) = (0, 1)n = (Fn−1, Fn)

So, in a sense, instead of computing P (F , (0, 1)) we can just as well compute
P (Z, 1):

f(P (Z, 1)) = P (F , (0, 1))

Representation is Crucial 40

This is a perfect example where an isomorphism makes life so much easier.

Everybody understands ⟨Z, +, 0⟩ very well intuitively.
But ⟨F, ∗, (1, 0)⟩ is a bit mysterious.

It doesn’t matter, they are isomorphic, so we can argue in either one.

Efficiency? 41

We need to find short SLPs for our computation. In the literature, these are
referred to as addition chains and addition-subtraction chains since one thinks
about Z.

Unfortunately, finding minimal addition chains is NP-hard.
The problem is open for addition-subtraction chains but clearly not easy.

Incidentally, this is important for elliptic curve cryptography where the group
operation involves an elliptic curve and is quite expensive computationally.

Heuristic: Non-Adjacent Form 42

Base B = 2, digit set D = {−1, 0, 1}.

Claim
For every natural number n there are digits di ∈ D such that n =

∑
di2i and

didi+1 = 0.

i = 0;
while(n > 0)
{

if(n odd)
d[i] = 2 - (n mod 4);

else
d[i] = 0;

n = (n - d[i])/2;
i++;

}

Examples 43

n binary NAF
8191 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1)
8182 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, 0, −1, 0)

12345 (1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1) (1, 0, −1, 0, 0, 0, 0, 0, 1, 0, 0, −1, 0, 0, 1)

Exercise
Show that the conversion algorithm is correct.

OEIS 44

Unsurprisingly, there is a sequence on OEIS for addition-subtraction chains:

http://oeis.org/A128998

http://oeis.org/A128998

	From Modular Arithmetic to Algebra
	The Fibonacci Monoid

