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Total Recall: Divisibility 2

For a, b ∈ Z, a divides b iff ∃ c ∈ Z (a · c = b).
This is usually written a | b.
Note that ±1 | a and a | 0.

Proposition
Divisibility is reflexive, transitive and almost antisymmetric.

Lemma (Linear Combinations)
If d | a and d | b then d | (xa + yb) for all x, y ∈ Z.



Quotients and Remainders 3

Theorem (Division Theorem)
Let b be positive, and a an arbitrary integer. Then there exist integers q and r
such that

a = q · b + r, where 0 ≤ r < b.

Moreover, the numbers q and r are uniquely determined (quotient and
remainder).

In the literature this is often called the “Division Algorithm,” though no
algorithm is given.

Notation:

r = a mod b remainder
q = a div b quotient



Primes 4

p > 1 is prime iff its only positive divisors are 1 and p.

Lemma
For every n ≥ 2 there is a prime p such that p | n.

Theorem
There are infinitely many primes.

Lemma
If p is prime and p | ab then p | a or p | b.



Proof Sketches 5

Lemma 1: Strong induction.

Theorem: Assume p1, p2, . . . , pn is a list of all primes and consider
p1 · p2 · . . . · pn + 1.

Lemma 2: Use the GCD, see below.
Let d = gcd(a, p). If d = p then clearly d divides a.
Otherwise d = 1, hence xa + yp = 1 p divides b.



The Fundamental Theorem 6

Theorem
Let n ≥ 2. Then there exist distinct primes p1, . . . , pk such that

n = pe1
1 pe2

2 . . . p
ek
k

where ei > 0. The decomposition is unique up to order.

Proof.
Strong induction and the last lemma. 2

But beware, finding this prime decomposition is very hard. It is exceedingly
useful conceptually, but algorithmically there are issues.



GCD and Euclidean Algorithm 7

The greatest common divisor is defined by

gcd(a, b) = max
(

d | d divides a, b
)

a and b are coprime (relatively prime) iff gcd(a, b) = 1.

A look at the GCD function produces an algorithm to compute it.

Lemma
gcd(x, 0) = x

gcd(x, y) = gcd(y, x)
gcd(x, y) = gcd(y, x mod y)



Example 8

Typical run: a = 4234 and b = 4693286.

4234 = 0 · 4693286 + 4234
4693286 = 1108 · 4234 + 2014

4234 = 2 · 2014 + 206
2014 = 9 · 206 + 160
206 = 1 · 160 + 46
160 = 3 · 46 + 22
46 = 2 · 22 + 2
22 = 11 · 2 + 0

The table is a (clumsy) proof that gcd(4234, 4693286) = 2.



Linear Combinations 9

The last example suggests to take a closer look at linear combinations

c = x · a + y · b

where x, y ∈ Z.

Obviously c is divisible by gcd(a, b).

More interestingly, we could run through the equations above backwards and
write 2 = gcd(a, b) as a linear combination of a and b:

gcd(a, b) = 2 = 205068 · a − 185 · b



EEA 10

Lemma (Extended Euclidean Algorithm)
There exist integers x, y such that

gcd(a, b) = x · a + y · b.

Moreover, these so-called cofactors can be computed along with the GCD.

Compute a trace of the Euclidean algorithm. Wlog a ≥ b ≥ 0.

ri−2 = qi · ri−1 + ri where r0 = a, r1 = b

Hence, rn = 0 for some n, and rn−1 = gcd(a, b). Define

x0 = 1 y0 = 0
x1 = 0 y1 = 1
xi = xi−2 − qi · xi−1 yi = yi−2 − qi · yi−1

A simple induction shows that

ri = a · xi + b · yi.



Example 11

qi ri xi yi

− 1233 1 0
− 1000 0 1
1 233 1 −1
4 68 −4 5
3 29 13 −16
2 10 −30 37
2 9 73 −90
1 1 −103 127
9 0 1000 −1233

We have
−103 · 1233 + 127 · 1000 = 1 = gcd(1233, 1000)



Diophantine Equation 12

We can also think of

a · x + b · y = c

as an equation, we want solutions for x and y.

Again, we clearly need d = gcd(a, b) | c for any solution to exist.

We can divide by the GCD and use the extended Euclidean algorithm as before.

But note that the solution is not unique: for any solution (x0, y0) we get
infinitely many other solutions of the form

(x0 + tb/d, y0 − ta/d)

where t ∈ Z. In fact, these are all the solutions.



Efficiency of EEA 13

One can implement all the necessary arithmetic in O(k2) steps for k-bit
numbers. In fact addition is only O(k), but for mods and remainders we need
O(k2) steps.

But how often does the while-loop execute? Trivially no more than a ≥ b
times, but that’s no good at all.

Note that one must lose one bit at least at every other step. This follows from

ri−2 = qi · ri−1 + ri

Hence total running time is O(k3) steps for k-bit inputs.

Incidentally, the worst possible input is two consecutive Fibonacci numbers. In
this case, qi = 1 at all times, and the algorithm just runs backwards through
the Fibonacci numbers.



p-adic Valuations 14

Definition
Let p prime. The p-adic valuation of an integer n ̸= 0 is the largest e such that
pe divides n, in symbols νp(n); we set νp(0) = ∞.

νp(ab) = νp(a) + νp(b)

a | b ⇐⇒ ∀ p (νp(a) ≤ νp(b))

gcd(a, b) =
∏

p

pmin(νp(a),νp(b))

The last formula does not yield an efficient way to compute gcd’s.



The Lattice View 15

The natural numbers with division ⟨N, |⟩ form a so-called lattice: a partial order
where any two elements have a join (supremum) and and a meet (infimum).
The join is the least common multiple, the meet the greatest common divisor.

If you prefer, you can think of a structure ⟨A, ⊔, ⊓⟩ where

⊔ and and ⊓ are associative and commutative

absorption holds:

x ⊔ (x ⊓ y) = x x ⊓ (x ⊔ y) = x



Divisor Lattice 16

30

6 10 15

2 3 5

1



148176 17

Challenge: Explain the picture.



148176 18



Exercises 19

Exercise
Verify that ⟨N, lcm, gcd⟩ really forms lattice.

Exercise
How are lcm and gcd expressed in the picture of the divisor lattice of 30?

Exercise
How is the structure of prime divisors of 148176 = 243373 expressed in the
picture of the divisor lattice?
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Odds and Evens 21

Suppose we have a polynomial with integer coefficients

p(x) = a · x3 + b · x2 + c · x + d.

Assume that both p(0) and p(1) are odd.

Claim
For all integers x, p(x) ̸= 0.

To see why, first note that d = p(0) and a + b + c + d = p(1) are odd.

Even/Odd arithmetic:
+ even odd

even even odd
odd odd even

· even odd

even even even
odd even odd



More Odds and Evens 22

Hence n even (odd) implies nk even (odd) for all k ≥ 1.

Case 1: So for even x we get

p(x) = a · even + b · even + c · even + odd = odd

so that in particular p(x) ̸= 0.

Case 2: For odd x we have

p(x) = a · odd + b · odd + c · odd + odd.

But a + b + c must be even, so either 0 or 2 of these coefficients must be odd.

In both cases p(x) is odd, and so not equal to 0.



Princeps Mathematicorum 23

Carl Friedrich Gauss, 1777-1855, my academic grand7-father.



Modular Arithmetic, Courtesy C. F. Gauss 24

Recall from equivalence relations: for m ≥ 0, x is congruent to y modulo m

x ρ y ⇐⇒ m divides x − y

is an equivalence relation.

Notation: x = y (mod m) or x ≡ y (mod m).

Crucial Point: we can define arithmetic on the equivalence classes to get a
structure Zm as opposed to Z:

[x] + [y] = [x + y]

[x] · [y] = [x · y]

We obtain modular numbers.



Representatives and Notation 25

A notation like [x] or [x]m or [x]Zm for modular numbers is perfectly correct
but fatally clumsy. Likewise for +m or +Zm .

To keep notation simple, we will usually ignore the brackets and write x instead
of [x]. And we write + and · for addition and multiplication of modular
numbers.

So, we write Zm = {0, 1, . . . , m − 1} and sometimes think of Zm ⊆ Z.

This is the canonical way of choosing representatives, but note that there are
other possibilities. For example, for m = 2k + 1 we could also use

−k, −k + 1, . . . , −1, 0, 1, . . . , k − 1, k



Cayley Tables 26

Example (Z2)
+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Example (Z5)
+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1



Cayley Tables 27



Equivalence versus Arithmetic 28

There is a very important idea hiding here: equivalence relations that are
compatible with arithmetic (here: on modular numbers).
Suppose ρ is an equivalence relation on Z. ρ is a congruence iff

x = x′ (mod m) and y = y′ (mod m)

implies

x + y = x′ + y′ (mod m)
x · y = x′ · y′ (mod m)

This is a huge restriction compared to arbitrary equivalence relations. There
are uncountably many equivalence relations on Z, but we know all the
congruences: the Gaussian relations mod m.

Exercise
Prove that any congruence on the integers is already of the form (mod m).



Consequences 29

Think of mod m as a function from Z to Zm ⊆ Z.

Then we have

(x + y) mod m = ((x mod m) + (y mod m)) mod m

(x · y) mod m = ((x mod m) · (y mod m)) mod m

Note that the double application of mod m on the right is clumsy, we’ll see a
better way in a while (homomorphisms).



Inevitable Clock Problem 30

A clock (which functions accurately) shows the hour hand positioned at a
minute mark, and the the minute hand two marks away. What time is it?

Really have 60 possible positions. Equations:

m = h ± 2 (mod 60)
m = 12h (mod 60)

By exploiting the congruence properties it follows that

11h = ±2 (mod 60)

multiply by 11:

h = ±22 (mod 60)

It’s 4:24 or 7:36.



The Real Problem 31

The real question is: how does one solve equations modulo m?

Since there are only finitely many modular numbers one could, in principle, use
brute force. Alas, for large moduli this is not a realistic option. (Though we
will admit that sometimes brute force works modulo m).

Unfortunately life becomes fairly difficult even for quadratic equations, but we
can handle linear ones ax = c (mod m).



Simplifying Equations 32

Proposition
Let ab = ac (mod m) and m′ = m/ gcd(a, m).
Then b = c (mod m′).

In particular when a and m are coprime we can simply drop the a.

Exercise
Use p-adic valuations to prove the proposition.



Inhomogeneous Equations 33

First an important special case.

Lemma
The equation

a · x = 1 (mod m)

has a solution if, and only if, a and m are coprime. The solution is unique
modulo m, if it exists.

Proof.
A solution means that ax − 1 = qm, so a and m must be coprime.
In the opposite direction use the extended Euclidean algorithm to compute
cofactors ax + my = 1.

2



Multiplicative Inverses 34

The situation in the lemma is very important.

The solution x such that ax = 1 (mod m) is called the multiplicative inverse
of a (modulo m).

Notation: a−1 (mod m).

Example
m = 11.

x 1 2 3 4 5 6 7 8 9 10
x−1 1 6 4 3 9 2 8 7 5 10

Note that 10 = 10−1 (no surprise, really: 10 = −1).
So 1/2 = 6 (mod 11).



Euler’s Totient Function 35

The collection of all modular numbers that have a multiplicative inverse is
usually written Z⋆

m and called the multiplicative subgroup (see next week).

Z⋆
m = { a ∈ Zm | gcd(a, m) = 1 }

Definition (Euler’s Totient Function)
The cardinality of Z⋆

m is written φ(m).



Some Values 36

Here are the first few values of φ

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28,

8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52

Looks complicated.

Note that we can compute φ(n) if we know the prime factorization of n:

For p prime φ(p) = p − 1 and φ(pk) = (p − 1)pk−1.

For m and n coprime, φ(mn) = φ(m)φ(n).

We will see an elegant proof of the second claim later.



Hence for prime decomposition

n = pe1
1 pe2

2 . . . p
ek
k

we have

φ(n) = (p1 − 1)pe1−1
1 (p2 − 1)pe2−1

2 . . . (pk − 1)pek−1
k

Note that it is not clear how to compute φ(n) without the prime
decomposition.

In fact, the two problems are computationally closely related. Some
cryptographic schemes depend on the totient function being hard to compute.



Plot 38
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Inhomogeneous Equations, II 39

Lemma
In the general case a · x = c (mod m) we have a solution if, and only if,
gcd(a, m) divides c.
Moreover, the number of solutions is gcd(a, m).

Exercise
Prove the general case.



Recall from Iteration 40

Consider the additive function
α : Zm → Zm

x 7→ x + s mod m

Clearly α is injective, so the orbits are all periodic (plain cycles).

Moreover, since α(x) + y = α(x + y) (mod m) all the cycles are just rotations
of each other and it suffices to understand orb(0, α).

So we need the least k > 0 such that ks = 0 (mod m).

Let d = gcd(s, m). Then clearly k = m/d.

Proposition
α has gcd(s, m) distinct orbits, each of length m/ gcd(s, m).



Multiplication 41

We also saw that the corresponding problem for multiplication is quite a bit
harder.

µ(x) = s · x mod m
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Coprime Case 42

Naturally one should try to understand the case when µ is injective first, since
all orbits are just cycles.

Clearly µ is injective iff s and m are coprime, i.e., s ∈ Z⋆
m.

0 is a fixed point, so one should consider the orbit of 1 next.

So this time we need the least k > 0 such that sk = 1 (mod m).

This number k has a natural algebraic interpretation in Z⋆
m that we will discuss

shortly.



Mixed Case 43

Exercise
Determine the structure of µ orbits in the “anti-coprime case”: every prime
factor of m also divides s.

Exercise
Determine the structure of µ orbits when m = pq, p, q prime and s = p.

Exercise
Determine the structure of µ orbits in the general mixed case.



Modular Arithmetic and Primes 44

When p is prime the structure of Z⋆
p is particularly simple:

Z⋆
p = {1, 2, . . . , p − 1}

As a consequence, we can solve all equations ax = b (mod p) as long as a ̸= 0
(mod p).

Here are some classical results concerning prime moduli.



Wilson’s Theorem 45

Theorem (Wilson’s Theorem)
p is prime if, and only if, (p − 1)! ≡ −1 (mod p).

Proof.
First assume p is prime, wlog p > 2. We can pair off a ∈ Z⋆

p and a−1 ∈ Z⋆
p.

a and a−1 are always distinct except in the case a = ±1: the quadratic
equation x2 = 1 (mod p) has at most two solutions since
x2 − 1 = (x + 1)(x − 1).

For the opposite direction assume p fails to be prime, say, ab = p for
1 < a < b < p. But then (p − 1)! and p are not coprime whereas −1 and p are
coprime, contradiction.

2



Little Fermat 46

Theorem (Fermat’s Little Theorem)
If p is prime and coprime to a, then ap−1 = 1 (mod p).

Proof.
Consider the map f : Z⋆

p → Z⋆
p , f(x) = ax.

f is a bijection, so

ap−1
∏

x∈Z⋆
p

x =
∏

x∈Z⋆
p

ax =
∏

x∈Z⋆
p

f(x) =
∏

x∈Z⋆
p

x (mod p)

Since φ(p) = p − 1, done.
2

We will see a stronger version of this in our discussion of groups.
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Multiple Linear Equations 48

How about multiple equations with several moduli:

aix = bi (mod mi) where i = 1, . . . , n

We can simplify this system a little: for a solution to exist we need that
gcd(ai, mi) divides bi.

So we get an equivalent equation a′
ix = b′

i (mod m′
i) where a′

i and m′
i are

coprime.

But that is equivalent to x = ci (mod m′
i) for some appropriate ci.



Multiple Linear Equations, II 49

So let’s only consider

x = ai (mod mi) i = 1, . . . , n

Tricky in general, but for coprime moduli easy. We only consider n = 2.

Let m = m1m2 and define the function

f : Zm −→ Zm1 × Zm2

f(x) = (x mod m1, x mod m2)

Claim
f is injective and hence bijective.



Proof 50

Proof. To see this, suppose f(x) = f(x′), where 0 ≤ x ≤ x′ < m.
Then

x′ − x = q1m1 = q2m2.

But m1 and m2 are coprime, so m | x′ − x and therefore x = x′.

Since domain and codomain of f both have cardinality m, f must be a
bijection by General Abstract Nonsense.

2

Hence we can solve x = a (mod m1) and x = b (mod m2): let

x = f−1(a, b)

Great. But how do we find the x computationally?



CRT Example 51

Let m1 = 3 and m2 = 5, so m = 15.

Here is the canonical map f : Z15 → Z3 × Z5 , f(x) = (x mod 3, x mod 5).

0 (0, 0) 8 (2, 3)
1 (1, 1) 9 (0, 4)
2 (2, 2) 10 (1, 0)
3 (0, 3) 11 (2, 1)
4 (1, 4) 12 (0, 2)
5 (2, 0) 13 (1, 3)
6 (0, 1) 14 (2, 4)
7 (1, 2)

By table lookup, the solution to x = 2 mod 3, x = 1 mod 5 is
x = f−1(2, 1) = 11.



EEA to the Rescue 52

A better method is to use the EEA. Compute the cofactors:

αm1 + βm2 = 1

Then

f(αm1) = (0, 1)
f(βm2) = (1, 0)

whence

f(bαm1 + aβm2) = (a, b)

So the solution is x = b · αm1 + a · βm2.



CRT Example II 53

As we have seen, the solution to

x = 2 mod 3 x = 1 mod 5

is x = 11.

Here is the computationally superior solution: determine cofactors

(−3) · 3 + 2 · 5 = 1

which produce a solution

x = 1 · (−3) · 3 + 2 · 2 · 5 = 11



Chinese Remainder Theorem 54

Our result also holds for more than 2 equations (and is very old).

Theorem (CRT)
Let mi, i = 1, . . . , n be pairwise coprime. Then the equations

x = ai (mod mi) i = 1, . . . , n

have a unique solution in Zm, m = m1m2 . . . mn.

This follows from repeated application of the solution for n = 2 since m1 and
m2 . . . m2 are also coprime.



Computation 55

How do we compute the solution for n > 2? We could use the method for
n = 2 recursively, but that is a bit tedious. Here is a better way.

Define
ci = m/mi

so that ci = 0 (mod mj), i ̸= j, but ci and mi are coprime. Use EEA to find
inverses

αici = 1 (mod mi)

Then
x = a1α1c1 + a2α2c2 + . . . anαncn (mod m)



The Bored Bank Clerk 56

A bored bank clerk has a big pile of one-dollar bills in front of
him. He rearranges the bills first in groups of 2, then 3, and 4,
5, 6, 7, 8, 9, 10 and 11. In all cases except the last, one bill is
left over. In the last case, no bill is left over.
How big is the original pile?

Note that we cannot use the CRT directly: the moduli are not coprime.

But x = 1 mod 8 implies x = 1 mod 4 and x = 1 mod 2.

Moreover, x = 1 mod 9 implies x = 1 mod 3. And both together imply
x = 1 mod 6.

Similarly we can drop the condition modulo 10.



So, the whole system boils down to

x = 1 (mod m) where m = 5, 7, 8, 9
x = 0 (mod 11)

We have m = 27720 and

(4, 3, 1, 5, 1) = (5544, 3960, 3465, 3080, 2520)−1 (mod 5, 7, 8, 9, 11)

and thus

x = 4 · 5544 + 3 · 3960 + 1 · 3465 + 5 · 3080
= 25201 mod 27720



A Generalization 58

In general, a solution may exist even if some of the moduli are not coprime.
This is expressed in the following generalization.

Theorem (Generalized CRT)
The equations

x = ai (mod mi) i = 1, . . . , n

have a solution if, and only if, for all i ̸= j:

ai = aj (mod gcd(mi, mj))

The solution is unique modulo m = lcm(m1, m2, . . . , mn).
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A Closer Look 60

In the CRT example from above we had

11 + 8 = 4 mod 15 (2, 1) + (2, 3) = (1, 4) mod (3, 5)
11 · 8 = 13 mod 15 (2, 1) · (2, 3) = (1, 3) mod (3, 5)

It looks like

f(x + y) = f(x) + f(y)
f(x · y) = f(x) · f(y)

Here we are joyfully abusing notation, we do not distinguish between the +
operation in Z15 and its counterpart in Z3 × Z5.



Anal-Retentive Notation 61

We could write something like

f(x +15 y) = f(x) +3,5 f(y)

or even

f(x +Z15 y) = f(x) +Z3×Z5 f(y)

but that’s awful to look at.

It’s just operator overloading, no problem for a CS major.



Logarithms 62

Here is the classic historical example of such a map:

log : R+ → R

which translates multiplication into addition (next week: a group isomorphism
from ⟨R+, ·, 1⟩ to ⟨R, +, 0⟩ ).

We can compute products of (positive) reals by

x · y = elog x+log y

Makes a huge difference: O(k) plus table lookup rather than O(k2) where k is
the number of decimal digits.

Of course, we have to compute a logarithm table first–but only once. It took
John Napier some 20 years to construct such a table in the early 1600s.
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