
CDM
Induction

Klaus Sutner

Carnegie Mellon University

1 Inevitable Example

2 Induction and Recursion

3 Natural Numbers

4 Induction Proofs

5 Well-Orders

6 Lists

7 Trees

Induction 2

There is a secret conspiracy that requires every student to suffer through the
following, unbearably boring example as the first exposure to induction†

Show that
n∑

i=1

i = n(n + 1)/2

for all natural numbers n.

The problem is the “for all” bit, it’s straightforward to verify the claim for small
values of n. In fact, a little program can easily check up to, say, n = 106.

But we need a solid argument that covers all natural numbers n.

†Disclaimer: this and similar results are very important, e.g. in the running time analysis of
nested loops.

Argument One 3

Argument Two 4

Following in the footsteps of little Gauss†, one can pair up the numbers
(smallest–largest) to see that the average of the n numbers is (n + 1)/2.

Hence, the total sum must be n(n + 1)/2.

Inquisitive minds would want to check that this works for both even and odd n,
but everything checks out.

†Supposedly Gauss solved the problem of summing the numbers 1 through 100 in elementary
school almost instantaneously, much to the chagrin of the teacher who wanted a little quiet time.

Done!? 5

Both proofs are perfectly acceptable if we trust inate human skills in visual
perception and geometry, and basic arithmetic instict.

There are two problems, though.

First, it gets quite difficult to come up with analogous arguments for more
complicated summation identities. E.g.,

∑
ik for any k ≥ 0 is not so easy to

handle.

The real killer, however, is this: Automatic theorem proving and proof checking
are becoming increasingly important. Geometric proofs coexist very uneasily
with proof assistants, period. Algebraic ones work much better, but they
require bigger guns than Gauss’s clever trick.

“Induction Proof” 6

We are trying to show
n∑

i=1

i = n(n + 1)
2 .

We’ll refer to the two sides of the equation as LHS and RHS.

Here is the idea: we can easily check that LHS = RHS for n = 0.

Now suppose we already know that LHS = RHS for some arbitrary n.
We can use this information to show that LHS = RHS for n + 1.

But then the equation must hold for all n, see below for a justification of this
claim.

More Formally 7

There are two parts to argument; the second one usually requires much more
work than the first.

Base case: n = 0∑0
i=1 i = 0 = 0(0+1)

2 clearly true.

Induction step: n 7→ n+1
Assume

∑n

i=1 i = n(n+1)
2 .

n+1∑
i=1

i =
n∑

i=1

i + (n + 1)

= n(n + 1)
2 + (n + 1)

= (n + 1)(n + 2)
2

Done.

Quoi? 8

What is going on here, logically? The algebraic manipulations are quite
straightforward and really just a distraction from the actual argument.

We claim that it is enough to establish our claim for n = 0 and then push it
from n to n+1, for any n. We will need to provide some justification for this
type of reasoning.

Also, we would like other examples where this proof principle might apply.

In particular, we want applications from computer sciene.

1 Inevitable Example

2 Induction and Recursion

3 Natural Numbers

4 Induction Proofs

5 Well-Orders

6 Lists

7 Trees

The Problem 10

Suppose we want to show that all objects a of some specific type have a
particular property, say, P .

If there are only a handful of objects, we can simply check each one
individually. That method fails when the number gets large: try doing 1010

separate arguments.

Worse, we often deal with infinite collections of objects where case-by-case
analysis fails completely.

The good news is that, in some cases, we can exploit the structure of the
objects to deal with infinitely many objects, in one fell swoop. As luck would
have, there are tons of data structures and recursive functions in CS where this
idea applies beautifully.

A Brilliant Idea 11

A property is inductive if, whenever all objects simpler than a
have the property, then a also has the property.

The Principle of Induction then plainly states that any inductive property holds
of all objects. Basta.

This makes some intuitive sense: the property is inherited by more complicated
objects from simpler ones, which inherit their’s from yet simpler ones, and so
on . . . until we hit rock-bottom, at which point the property should be obvious.

Battleplan 12

This is pretty vague so far, we need to explain more carefully what we mean by
“simpler” objects.

Also, our method sounds a bit like we are just kicking the can down the road.
So, what exactly is “rock-bottom” supposed to mean? And how do we get
there?

Lastly, when do this ideas actually apply, when do the fail?
What are compelling examples, in particular in the context of CS?

Self-Similarity 13

Here is another way to think about induction. We are interested in

Objects that are similar to parts of themselves.

So these objects are somehow composed of simpler, smaller, yet similar objects.
Since the smaller components are similar to the large object, they in turn can
be decomposed into yet smaller ones, and so on.
Clearly, there are two scenarios:

the decomposition goes on forever,
after finitely many steps, the decomposition reaches indecomposable atoms,
and stops.

For computational purposes, the finite descent case is much more important,
but in geometry the infinite version may be more compelling (think about
fractals).

Droste Effect 14

Top Down: Recursion 15

In order to describe a terminating decomposition process carefully, we need

a collection of indecomposable atoms
and

one or several destructors.

We can apply a destructor to any composite (non-atomic) object and obtain
“smaller” ones, until ultimately we get atoms.

For example, the computation of 50! contains a similar sub-computation for
49!, which contains a sub-computation for 48! and so on, down to 0! where the
recursion stops.

Bottom Up: Induction 16

We can also turn decomposition upside down: with start with atoms and then
use constructors to build composite objects. So this time we have

a collection of indecomposable atoms
and

one or several constructors.

We are only interested in the case where a constructor applies to finitely many
objects. Hence termination is not really a problem here, every composite object
can be reached after finitely many steps†.

For example, we understand the computation for 0! and can use it to build up
the computation of 1!, 2!, 3! all the way up to 50!.

†This is a white lie, in math some objects pop up only after infinitely many steps

Induction versus Recursion 17

In mathematics one typically speaks about an inductively defined object or
structure. In computer science we have recursive datatypes or simply rectypes†

which are really the same thing: words, lists, trees, series-parallel graphs, . . .

In general, induction refers to the bottom-up approach whereas recursion refers
to the top-down approach. Implementation detail may differ, but the
underlying idea is the same.

As we will see in a moment, induction can be used in particular to construct
proofs and is absolutely critical in many arguments in number theory,
combinatorics and data structures.

But somehow, no one ever seems to talk about a “proof by recursion.”

†Rectype is a neologism that we have stolen from T. Forster in Cambridge; it is somewhat
nonstandard, but it’s too good not to use.

Proofs versus Definitions 18

Suppose we have some class C of inductively defined structures.

Definitions We can use either induction or recursion to define various new
functions and relations on C.
This allows us to perform all kinds of computations.

Proofs Then we use induction to prove the critical properties of these
functions and relations.
This allows us to reason about these computations.

Often these proofs are very mechanical, they almost write themselves.
Except that it’s not always clear which direction to move in.

Notation 19

It is customary to think of the constructors as mappings and to write

b = S(a1, a2, . . . , ak)

for the object b obtained by applying the kary constructor S to objects a1, . . . ,
ak (which are either atoms or we already have constructed them somehow).

That’s fine, but be clear that this is just syntactic sugar, we might as well have
written

b = Sa1a2 . . . ak

or perhaps
b = L akak−1 . . . a1; S M

Mysterious notation helps to keep the uninitiated at bay.

Destruction 20

In the opposite direction, given a compound object

b = S(a1, . . . , ak)

we can use destructors to obtain the components ai.

Moreover, in all cases of interest to us, this decomposition process is unique: b
cannot be produced in any other way than as indicated. In other words, the
constructors always produce new objects.

This is not an essential feature, but often a very useful one.

1 Inevitable Example

2 Induction and Recursion

3 Natural Numbers

4 Induction Proofs

5 Well-Orders

6 Lists

7 Trees

Constructing the Natural Numbers 22

How do the natural numbers N = {0, 1, 2, . . .} fit into this framework? We can
think of them as being constructed from

the atom 0
and

the constructor S, the successor operation.

Intuitively, we interpret the successor as the “plus 1” operation. Thus we
obtain 0, S(0), S(S(0)), S(S(S(0))), . . . a slightly cumbersome way to express
what is written in standard notation as 0, 1, 2, 3, . . .

Of course, there are much better notation systems, but the goal here is to
define the actual objects, not to write them down in an algorithmically
attractive way.

The Constructor 23

If you are a friend of set theory you will want to think of S as some kind of
function. For the construction to work, all we need to know about S is:

S(x) = S(y) ⇒ x = y

S(x) ̸= 0

In other words, S must be injective and 0 cannot lie in its range. By injectivity
the decomposition is unique.

Alternatively, we could think of S as an uninterpreted function symbol so that
the “natural numbers” are just the terms 0, S(0), S(S(0)), . . . This logical
approach does not align too well with our intuition, but it works very well in
the context of computation and algorithms.

Naturals in Set Theory 24

Here is an approach due to von Neumann: think of 0 as ∅ and S(x) = x ∪ {x}.

Let’s say that a set N is closed if 0 ∈ N and x ∈ N implies S(x) ∈ N .

Definition (Natural Numbers, inductive style)
The set of natural numbers N is the least set that is closed.

“Least” here is meant in the sense of set inclusion.

If you prefer, you can write this as†

N =
⋂

{ N | N is closed }

†Note that there is some circularity in this definition, the LHS also appears on the RHS, a
phenomenon referred to as impredicativity.

Defining Predicates 25

Since every element x of N is either 0 or (uniquely) of the form x = S(y), we
can use this inductive structure of N to define a simple predicate as follows.

Z(0) = tt
Z(S(x)) = ff

This is a zero-test: it returns true iff the input is 0.

Defining Arithmetic 26

Slightly more interesting is the predecessor function:

p(0) = 0
p(S(x)) = x

And here is addition:

add(x, 0) = x

add(x, S(y)) = S(add(x, y))

Note that both depend on unique decomposition, we need to be able to strip
away the S.

Multiplication 27

And multiplication:

mult(x, 0) = 0
mult(x, S(y)) = add(x, mult(x, y)))

And so on. We can build all standard arithmetic functions this way.

This feature is very useful computationally and was first noticed by Grassmann
and Dedekind in the middle of the 19th century—a long time before digital
computers.

Dedekind-Peano 28

R. Dedekind and G. Peano gave an axiomatization of the natural in the late
1800s. We’ll write number instead of natural number.

0 is a number.
The successor of a number is a number.
0 is not a successor.
Two different numbers have different successors.
Principle of Mathematical Induction
If a property obtains at 0 and is inherited by the successor of every num-
ber with this property, then this property holds of all numbers.

The last axiom is a particular way to express induction in the context of the
naturals.

Mathematical Induction? 29

What does this new principle have to do with our good old-fashioned idea that
any inductive property must hold everywhere?

It is just a slight reformulation of Induction in the special case where we are
only interested in the naturals.

It helps a little to mechanize proofs, but it is mostly just an annoying way to
express the much more important and elegant idea from above.

A Closer Look 30

The Dedekind-Peano system is based on 3 basic concepts

number
zero
successor

and describes the relationship between these concepts.

Unfortunately, there are many unintented ways one can interpret these
concepts: zero is 1 ∈ Q, S(x) = x/2 and number = { 1/2i ∈ Q | i ≥ 0 }.

This “problem” cannot be fixed in first-order logic and is truly a feature, not a
bug (see the lectures on logic).

Dire Warning 31

Also, defining addition via

x + 0 = x x + S(y) = S(x + y)

alone is not sufficient to prove even the modest assertion 0 + x = x.

Counterexample: Let N = {0, a} where SN is the identity and +N is
projection on the first term, u +N v = u. This weird interpretation satisfies the
addition axioms, but 0 +N x = 0.

The reason is that a ∈ N is not of the form Sk(0), we need to rule out the
existence of such inaccessible objects.

We can do this by externally constraining the models or by adding some
induction principle. Alas, first-order logic is too weak to eliminate unintended
models.

Exercise 32

Problem: Axiomatize the integers.

In other words, modify Peano arithmetic so it describes the integers rather than
just the naturals.

There are several different ways of doing this. For example, one could try to
use a combination of successor function and negation, using axioms such as

−0 = 0
−−x = x

S(−S(x)) = −x

So negation is an involution with fixed point 0. Needless to say, S also has to
be a bijection in this context.

Try to find some reasonable axioms and prove something interesting from
them. For example, show that addition is associative and commutative.

Weyl 33

In his 1919 pamphlet “Das Kontinuum,” Hermann Weyl, Hilbert’s star student,
emphasizes the importance of this approach:

. . . dass die Vorstellung der Iteration, der natürlichen Zahlen-
reihe, ein letztes Fundament des mathematischen Denkens ist–
trotz der Dedekindschen Kettentheorie.

. . . that the concept of iteration, of the natural number-sequence,
is the ultimate foundation of mathematical thought–in spite of
Dedekind’s theory of chains.

Weyl’s proposal got drowned out by set theory and type theory, but he makes a
very good point.

1 Inevitable Example

2 Induction and Recursion

3 Natural Numbers

4 Induction Proofs

5 Well-Orders

6 Lists

7 Trees

Induction Proofs 35

We can now use proofs based on induction to describe objects defined by
induction. To wit: In order to establish some assertion φ(x) for all x ∈ N we
need to

Establish φ(0)

and

show that φ(x) implies φ(S(x)).

It is crucial that x in the second part is just a variable, it stands for a generic
natural number and must not be assumed to have any special properties. For
example, we may not assume that x is even, a prime, . . .

More Formally 36

To prove some assertion about all natural numbers, say, ∀ x φ(x), it suffices to
show

φ(0) ∧ ∀ x
(
φ(x) ⇒ φ(S(x))

)

Definition
This is called the Induction Principle on N (IND).

(IND) is crucially important in any theory of arithmetic, it is enshrined in the
induction axiom schema of Dedekind-Peano arithmetic.

Warmup 37

As an example, let us prove that the function add from above is commutative.
We will need a few auxiliary results.

Claim
add(0, y) = y

Base case: add(0, 0) = 0
Inductive step: add(0, S(y)) = S(add(0, y)) =IH S(y).

Warmup II 38

Claim
add(x, S(y)) = add(S(x), y)

Base case: y = 0

add(x, S(0)) = S(add(x, 0)) = S(x) = add(S(x), 0)

Inductive step:

add(x, S(S(y))) = S(add(x, S(y))) =IH S(add(S(x), y)) = add(S(x), S(y)).

Commutativity 39

Claim
add(x, y) = add(y, x)

Base case: y = 0 is Claim 1.

Inductive step:

add(x, S(y)) = S(add(x, y)) =IH S(add(y, x)) = add(y, S(x)) =C2 add(S(y), x).

This is admittedly a bit tedious, but note that the argument is very mechanical,
there are no hidden assumptions or appeals to intuition.

Standard Notation 40

It is time to lighten notation a bit. We can think of the standard numerals as
abbreviations for nested S-terms, very similar to unary notation:

1 = S(0), 2 = S(1) = S(S(0)), 3 = S(2), . . .

and so on. Then

add(3, 2) = S(add(3, 1)) = S(S(add(3, 0))) = S(S(3)) = S(4) = 5

and things work as advertised.

Of course, we would usually write x + y instead of add(x, y), but that is just
syntactic sugar (and more work for the parser, though it’s easier on human
eyes).

More Summation Identities 41

Recall our very first example,
∑n

i=1 i = n(n + 1)
2 .

A very similar argument shows that

n∑
i=1

i2 = n(n + 1)(2n + 1)
6 .

The assertion here is φ(n) ≡
∑n

i=1 i2 = n(n + 1)(2n + 1)/6.
It is straightforward to check that φ(0) holds.

The only difference between this and the previous argument is that the
algebraic operations required to verify that φ(n) implies φ(n + 1) are slightly
more complicated.

Automatic Induction 42

In fact, the whole procedure is so routine that many summation identities can
be “proved automatically” using a computer algebra system to do the dirty
work. The general idea is to show

n∑
i=0

f(i) = g(n)

Here g(n) is supposed to be a reasonably simple function, a so-called closed
form. Polynomials are OK, exponentials, factorials, and a few slightly more
exotic functions.

Once we have g(n), the induction proof boils down to show that

f(0) = g(0)
f(n + 1) = g(n + 1) − g(n)

The induction is now replaced by establishing two identities with free variables.

Proving Identities 43

Equivalently, we have to show that certain terms are identically 0:

f(0) − g(0) = 0
f(n + 1) − g(n + 1) + g(n) = 0

For example, if the functions in questions are polynomials this is quite
straightforward and can be handled by a standard simplification routine in a
modern computer algebra system.

Of course, this approach requires prior knowledge of the closed form solution
g(n) of the summation.

Example: Mathematica 44

Mathematica is a fairly popular computer algebra system that is freely available
to all CMU students.

Mathematica can automatically determine the closed form solutions for quite a
few sums.

E.g., we easily obtain
n∑

i=1

i3 2i = 2n+1(n3 − 3n2 + 9n − 13) + 26

If you want to know how exactly this works, take SyCo.

http://www.cs.cmu.edu/~syco

Recursive Summation 45

The real reason this approach works is that summation itself is a recursive
procedure:

0∑
i=0

f(i) = f(0)

n+1∑
i=0

f(i) =
n∑

i=0

f(i) + f(n + 1)

Or, to make it look more like a program:

sum(0; f) = f(0)
sum(n + 1; f) = sum(n; f) + f(n + 1)

So we are using inductive reasoning to describe an inductively defined function.
The process is so mechanical (though by no means trivial), that the CAS can
perform it automatically.

Triangulations and Tribulations 46

But note that not all induction proofs are quite so straightforward. Here is a
little lemma in plane geometry.

Place n distinct points into the interior of an isosceles triangle
(some may be collinear). Then draw additional lines between
these points and the vertices of the triangle until all the regions
are themselves triangles.

Claim:
There are exactly 2n + 1 regions in the fully triangulated figure.

Since we have no information about the placement of the points this looks like
an induction problem.

Induction “Proof” 47

Claim
There are exactly 2n + 1 regions in the fully triangulated figure.

Proof.
Induction on n, the number of points.

Base case: For n = 0 or 1 the claim clearly holds.

Induction step:
Add one more point p to the figure.
p is either in the interior of a triangle or on a line.
In either case, completing the triangulation produces two more regions.

2

Icosahedron 50

Graph of the Icosahedron 51

Alas, there is a problem. While the claim holds for the triangulation above, it
cannot be generated by the steps in the induction argument.

Exercises 52

Exercise
Explain exactly what went wrong in the induction proof.

Exercise
Give a valid proof for the triangulation claim.

1 Inevitable Example

2 Induction and Recursion

3 Natural Numbers

4 Induction Proofs

5 Well-Orders

6 Lists

7 Trees

Justification 54

A while ago we mentioned that the principle of induction requires some amount
of justification, it is not entirely intuitively obvious.

To my mind, the most compelling argument for in induction on the naturals is
the following.

Suppose some inductive property P (x) fails for some x ∈ N.
Let a be the least such x.
By the base case, a ̸= 0.
But then a = b + 1, for some b ∈ N.
Since a is minimal, we must have P (b).
But then it follows that P (a), contradiction.

Least Element Principle 55

Here is a more formal version of this argument, which is essentially an assertion
about the order structure ⟨N; <⟩.

Definition (LEP)
Every non-empty subset of N has a least element.

Proposition
(LEP) and (IND) are equivalent.

You might argue that both (IND) and (LEP) are clearly true, so they are
trivially equivalent–but that is emphatically not what we mean.

Instead, we claim that given a weak theory of the natural numbers as
background, adding (IND) will allow us to prove (LEP), and conversely.

Proof 56

Assume (LEP).

Suppose we have φ(0) and ∀ x (φ(x) ⇒ φ(x + 1)) for some φ.

If (IND) were to fail for φ, there would have to be some a ∈ N so that ¬φ(a).

But then the set of counterexamples

C = { x ∈ N | ¬φ(x) }

is non-empty, hence it has a least element a0 by (LEP).

Clearly, a0 ̸= 0 by the base case. But then φ(a0 − 1) by definition of C.
Hence φ(a0) holds by the induction assumption above, contradiction.

Proof, contd. 57

Now assume (IND).

Suppose A ⊆ N has no least element and consider the assertion

φ(n) ≡ ∀ x ≤ n (x /∈ A)

Then φ(0) holds: otherwise 0 ∈ A would be the least element.
Likewise, φ(n) implies φ(n + 1): otherwise n + 1 would be the least element.
By then by (IND) we have ∀ n φ(n) and A is empty. Done. 2

While (LEP) and (IND) are equivalent, the Least Element Principle has the
advantage that it generalizes nicely to more complicated situations: there is no
mention of the successor function.

Here is another way one can get rid of the successor function.

Strong Induction 58

Call a formula φ(x) inductive if

∀ x
(
∀ z < x φ(z) ⇒ φ(x)

)
Definition (SIND)
If φ(x) is inductive, then ∀ x φ(x).

The part ∀ z < x φ(z) functions much like the Induction Hypothesis.
At first glance, it looks like we have lost the base case.

Not to worry, it’s still there, just let x = 0: ∀ z < 0 φ(z) is vacuously true: there
are no z < 0 in N. Hence, we have to prove φ(0) from scratch, just as before.

The advantage of (SIND) over (IND) is that we have a whole collection of
induction hypotheses, not just one. On occasion, that is necessary for the proof
to go through.

Example: Prime Divisors 59

Example (Prime Divisors)
Every integer n ≥ 2 has a prime divisor.

We need to know that all m, 2 ≤ m ≤ n, have a prime divisor in order to get a
prime divisor for n + 1.

Similar problems are often encountered in parsing: we need to have dealt with
all the subexpressions (of unpredictable size) before tackling the main
expression.

In programming, (SIND) corresponds to recursive functions where f(n) is
defined in terms of arbitrary f(i), i < n; not just f(n − 1). A typical and
important case is when the recursion looks like

f(n) = . . . f(⌊n/2⌋) . . . f(⌈n/2⌉) . . .

Note that this type of recursion terminates in O(log n) steps.

Example: Coloring Polygons 60

Claim: Let A be a triangulated convex polygon on n ≥ 3 nodes. Then we can
color the nodes with 3 colors so that no two adjacent nodes have the same
color.

A solution.

Let P (n) be the colorability claim for all triangulated n-gons. We need to show
that P is inductive.

The claim clearly holds for n = 3.

So assume n > 3.
Consider a triangle with nodes p, q and r.
Say, the line segment pq lies on the boundary of A.

Case 1: qr is also on the boundary.
Remove point q.
The remaining figure B is a convex polygon on n − 1 points and has a coloring
by IH. Clearly, the coloring can be extended to q.

Case 2: Only pq is on the boundary.
Remove pq to obtain two convex polygons joined at r.
Call them B and C where p is in B and q in C.

Coloring Triangulations 64

By IH we can color both B and C.

Moreover, we can make sure that r has the same color in both pieces: just
rename the colors.

If p in B and q in C have different colors we are done.

Otherwise change the color of q in C (but not of p). Done.
2

Exercises 65

Exercise
Fill in all the gaps in the last proof.

Exercise
There is more geometric way to find a coloring. Explain informally how this
method works.

Exercise
Then give a strict proof of your method. Most likely your proof will involve
induction on the number of nodes.

nil novis sub solem 66

So is (SIND) really a new induction principle?

Proposition
(LEP), (IND) and (SIND) are all equivalent.

Of course, both (IND) and (SIND) are true, we are not making the utterly
useless claim that true is equivalent to true.

The real claim is that, using only very weak axioms, the assumption of (IND)
allows us to give a short proof of (SIND).
Conversely, the assumption of (SIND) allows us to give a short proof of (IND).
The two principles have the same proof power.

Proof 67

Assume (LEP).

Suppose φ is inductive: ∀ z < x φ(z) ⇒ φ(x) for all x.

If (SIND) failed, we could invoke the (LEP) to define the set of
counterexamples

A = { x ∈ N | ¬φ(x) }

where A is non-empty, hence has a least element a0. But then ∀ z < a0 φ(z)
by definition, so φ(a0), contradiction.

Hence (LEP) implies (SIND).

Proof, II 68

Assume (SIND).

Suppose we have φ(0) and ∀ x (φ(x) ⇒ φ(x + 1)).

Let Φ(x) ≡ ∀ z ≼ x φ(z).

Then Φ is inductive and it follows that ∀ x φ(x).

Hence (SIND) implies (IND).

Proof, III 69

Now assume (IND).

Suppose A ⊆ N has no least element and consider the assertion

φ(n) ≡ ∀ x ≤ n (x /∈ A)

Then φ(0) holds: otherwise 0 ∈ A would be the least element.

Likewise, φ(n) implies φ(n + 1): otherwise n + 1 would be the least element.

By then by (IND) ∀ n φ(n) and A is empty. So (LEP) holds and we are done.

The argument for (IND) is entirely similar.
2

Modular Induction 70

Yet another variant of induction that is often useful in computer science is the
following Modular Induction Principle (MIP). In order to show ∀ x φ(x) it
suffices to establish

φ(0) ∧ ∀ x (φ(x) → φ(2x) ∧ φ(2x + 1))

Of course, this principle generalizes to other moduli, but the binary case is
probably the most important since we are often dealing with binary expansions
of natural numbers.

As an example, consider the Thue sequence Tn, a binary sequence defined by
T0 = 0 and

Tn =
{

Tn/2 if n even,
Tn−1 otherwise.

Then (MIP) shows that

Tn = digsum(n) mod 2

Well-Orders 71

Recall that we interested in chains of decomposition steps that are guaranteed
to terminate: after finitely many steps an atom must appear. Is there a
mathematical concept that can make this idea precise? And, perhaps,
generalize beyond just the natural numbers? Here is one attempt at
generalization, using (LEP) as the starting point.

Definition
Suppose ≺ is a strict partial order on some set A. ≺ is well-founded if

∀ ∅ ≠ X ⊆ A (X has a ≺-least element).

If the order is total then we speak of a well-order.

By ≺-least element we mean some a ∈ X such that ∀ x ∈ X (x ̸≺ a).

In other words, (LEP) holds for ⟨A; ≺⟩ rather than ⟨N; <⟩.

In dealing with recursive datatypes we often don’t have a total order, just a
partial one – which does not affect the applicability of induction.

Descending Chains 72

Lemma
≺ is well-founded if, and only if, there is no infinite descending chain

x0 ≻ x1 ≻ x2 ≻ . . . ≻ xn ≻ . . .

Proof.
Suppose we have a strictly descending chain (xi) in A.
Then A = { xi | i ≥ 0 } has no least element.

On the other hand suppose A has no least element. Pick x0 ∈ A arbitrary.
By induction, choose an element xn+1 ∈ A smaller than xn, the current tail
element of the sequence. Iterating we obtain a strictly descending chain.
Note that this direction requires something like the Axiom of Choice. 2

Examples 73

⟨N; <⟩

⟨N; |⟩ where | stand for “divides”

words with length-lex ordering

≺ on N × N defined by
(a, b) ≺ (a′, b′) ⇐⇒ (a < a′) ∨ (a = a′ ∧ b < b′)

This is the strict lexicographic order on N2.

finite lists with length ordering or sublist ordering

finite trees with subtree ordering

We’ll come back to the last two examples.

Counterexamples 74

⟨N; >⟩

⟨Z; <⟩ or ⟨Q; <⟩ or ⟨R; <⟩

words with lexicographic ordering:
b > ab > aab > aaab > . . . > anb > . . .

triangles with inclusion (or size by area)

⟨P(N); ⊂⟩

Here is a nasty one: define ≺ on N+ by the taking the transitive closure of

x ≺ 2x and 3x + 1 ≺ x for x odd, x > 1

Is there a descending chain?

Induction on WOs 75

To apply inductive reasoning, we have to deal with predicates that behave
properly with respect to the well-founded relation. Here is the set-theoretic
version of proper behavior.

Definition
Let ⟨A, ≺⟩ be well-founded.
B ⊆ A is inductive if ∀ x ∈ A

(
∀ z ≺ x (z ∈ B) → x ∈ B

)
.

Theorem (Induction Theorem)
Let ⟨A, ≺⟩ be well-founded and B ⊆ A inductive. Then B = A.

Proof. The proof uses the (LEP) for the well-founded relation.
Suppose there is a counterexample, let a be the least such.
Then by definition, ∀ z ≺ a z ∈ B. But then a ∈ B, contradiction. 2

Tame Sets of Reals 76

It is time for a hard example of an inductive structure, certain tame subsets of
the reals.

It was recognized more than a century ago that the collection of all subsets of
the reals is hopelessly complicated. For example, one cannot even determine
whether there is a set of reals whose cardinality lies strictly between the
cardinality of N and R (Cantor’s infamous Continuum Hypothesis).

Fortunately, for most purposes one only needs to deal with fairly tame sets of
reals. Émile Borel came up with a particularly useful definition of a
well-behaved, yet large family of sets of reals. These are hugely important e.g.
in probability theory.

Borel Sets 77

Borel sets in Rn are defined inductively as follows.

The atoms are all open subsets of Rn.
Constructors are complement and countable union.

The combination of complement and countable union also provides countable
intersection.

One might wonder how often one has to apply these operations before no new
sets appear.

The answer is ω1, the least uncountable ordinal.

1 Inevitable Example

2 Induction and Recursion

3 Natural Numbers

4 Induction Proofs

5 Well-Orders

6 Lists

7 Trees

Axioms for Lists 79

Fix some ground set A. Here is an inductive definition of the collection List(A)
of all lists over A.
Suppose a ∈ A and L ∈ List(A).

Atom: the empty list nil.

Constructor: the prepend operation prep(a, L).

To lighten notation we usually write a :: L instead of prep(a, L).
What is ordinarily written as the list (a1, a2, . . . , an) is now represented by the
composite object

a1 :: a2 :: . . . :: an :: nil

This is a basic idea in Lisp and has since been incorporated in many
programming languages.

Decomposition 80

We can introduce destructors

head : List(A) → A

tail : List(A) → List(A)

such that

K = prep(a, L) implies a = head(K), L = tail(K)

Note that both operations are undefined for nil but for n > 0 we have

L = a1 :: a2 :: . . . :: an :: nil

yields

head(L) = a1

tail(L) = a2 :: . . . :: an :: nil

The Inductive Set 81

One usually does not bother to spell this out, but as before for N, we want
List(A) to be the least set that

contains the atom nil

contains prep(a, L) for any a ∈ A whenever it contains L.

Just as in the case of N, this minimality condition excludes weird and
unintended monsters like infinite lists.

Structural Induction on Lists 82

Theorem (Induction for Lists)
Suppose X ⊆ List(A), nil ∈ X and for all L ∈ X, a ∈ A we have
prep(a, L) ∈ X.
Then X = List(A).

Informally: any property that nil has, and that is inherited by L from tail(L),
must already hold for all lists.

As before for natural numbers, this inductive framework can be used to

define operations on lists, and
prove basic properties these operations.

Note that when A = {•} then we are basically dealing again with the natural
numbers, so this is a direct generalization.

Left and Right 83

One could also use an append operation instead of prepend (see below for
definitions). As a result, there are two types of induction.

Standard induction on the left:

Base case (empty list): show φ(nil)
Induction step:
assuming φ(L), show φ(prep(a, L))

Alternatively, we can use induction on the right:

Base case (empty list): show φ(nil)
Induction step:
assuming φ(L), show φ(app(a, L))

Careful, sometimes one version is significantly easier than the other.

More Operations 84

Here is a definition of append in our framework.

app(a, nil) = a :: nil
app(a, b :: L) = b :: app(a, L)

Joining two lists together

join(nil, K) = K

join(a :: L, K) = a :: join(L, K)

For legibility we often write L :: a instead of app(a, L) and K :: L instead of
join(K, L).
Careful with parens, though. The law for append says
(b :: L) :: a = b :: (L :: a).

Yet More Operations 85

Erasing all occurrences of a from a list

erase(nil) = nil
erase(a :: L) = erase(L)
erase(b :: L) = b :: erase(L) a ̸= b

Keeping the first occurrence of a:

keep1(nil) = nil
keep1(a :: L) = a :: erase(L)
keep1(b :: L) = b :: keep1(L) a ̸= b

Mixed Operation 86

The objects involved need not all be lists.
For example, we can define the length of a list as follows:

len(nil) = 0
len(a :: L) = len(L) + 1

We will use the naturals informally here, but one could express everything quite
easily in terms of the inductive definitions from above.

Claim
len(join(K, L)) = len(K) + len(L)

Proof 87

Claim: len(join(K, L)) = len(K) + len(L)

Proof.
Base case: K = nil

len(nil :: L) = len(L) = 0 + len(L) = len(nil) + len(L)

Induction step: K = a :: A.

len((a :: A) :: L) = len(a :: (A :: L)) = 1 + len(A :: L)
= 1 + len(A) + len(L) = len(K) + len(L)

2

Efficiency Considerations 88

Claim
The basic operations empty, head, tail and prep can all be implemented in
O(1) time.

app, join and erase are all linear time.
nodup is quadratic time.

Let n = |L|, from repeated calls to erase get
∑n

i=1 O(n − i) = O(n2).

There is a faster algorithm based on sorting (takes O(n log n) steps), followed
by a scan (takes linear time).

Exercise
Do both algorithms produce the same output?

Pairs 89

Forming all pairs (ai, bi) from two given lists (a1, . . . , an) and (b1, . . . , bn)

pair(nil, nil) = nil
pair(a :: L, b :: K) = (a, b) :: pair(L, K)

Recall that (a, b) is just short for prep(a, prep(b, nil)).

Note that this operation assumes input lists are of equal length. The output
type is a list of lists.

Exercise
Implement a class NList that provides arbitrarily nested lists of, say, integers,
together with a nice collection of operations.

Reversal 90

Here is a definition of the reversal operation on lists:

rev(nil) = nil,
rev(a :: L) = rev(L) :: a

If you worry about implementation this may look unappealing: append as
defined is linear time on singly-linked lists, so this definition would produce a
quadratic time reversal.
Solution: change the data structure.
Don’t worry about implementation details too soon.

A Reversal Proof 91

Claim
rev(L :: a) = a :: rev(L) for all L, a.

Proof.
Base case: L = nil

rev(nil :: a) = rev(a :: nil)
= rev(nil) :: a

= nil :: a

= a :: nil

Induction step: let L = b :: K.

rev((b :: K) :: a) = rev(b :: (K :: a))
= rev(K :: a) :: b

= (a :: rev(K)) :: b

= a :: (rev(K) :: b)
= a :: rev(b :: K)

Proof Fatigue 92

Note that every single step in this type of proof is really simple: we only need
to decide which axiom to use and when to apply the induction hypothesis.

This type of argument is called equational logic and is relatively easy to
automate.

Alas, for humans it’s not so simple: everyone’s eyes glaze over after half a
dozen steps. Plus, it’s really easy to make silly mistakes.

Exercises 93

Exercise
Prove the following claims by induction on lists.
Claim: rev(L :: K) = rev(K) :: rev(L) for all L, K.
Claim: rev(rev(L)) = L for all L.

Exercise
Write rot(L) for the result of rotating L cyclically by one place to the left. Give
an inductive definition of rot and characterize the lists L such that rot(L) = L.

The Rotation Problem 94

Problem: Rotation
Instance: An array of A, a positive integer s.
Solution: Rotate A by s places.

Of course, the challenge is to do this with minimal resources.

How about linear time and O(1) extra space?

This is surprisingly difficult. Clearly, we can rotate by one place in linear time
and O(1) extra space. But we cannot repeat s = O(n) times without violating
the linearity constraint.

Alternatively, we can use scratch space O(s) to move the first s elements out
of the way, and move everything in linear time, but that violates the space
constraint.

The Reversal Trick 95

A clever and far from obvious trick is to use reversal to implement rotation.
The key observation is that

rot(u :: v, s) = rev(rev(u) :: rev(v))

where u has length s.

In other words, reverse the initial segment of A of length s, then reverse the
remainder, and in one last step reverse the whole array.
Since reversal can clearly be handled in linear time and O(1) extra space, done.

Code 96

// reverse block from lo to hi, inclusive
void reverse(int lo, int hi) {

int i,j, m = (hi-lo)/2;
for(i=lo,j=hi; i<m; i++,j--)

swap(i, j);
}

// rotate left, len length of array
void rotate_left(int s) {

s = s mod len;
reverse(0, s-1);
reverse(s, len-1);
reverse(0, len-1);

}

Exercise
What happens if we perform the reverse(0, len-1) operation first?

Structural Induction on Lists 97

Define a partial order on List(A) by taking the transitive closure of
L ≺ prep(a, L).

Lemma
≺ is well-founded.

This is essentially induction on the length of the list: assume claim is true for
shorter lists.
Boils down to

Base case (empty list): show φ(nil)
Induction step:
show φ(prep(a, L)) assuming φ(L).

Alternatively, we can use “induction on the right”:

show φ(app(a, L)) assuming φ(L).

Note, though, that in the usual singly-linked pointer implementation, recursion
on the left is more efficient.

Pairs 98

Forming all pairs (ai, bi) from two given lists (a1, . . . , an) and (b1, . . . , bn)

pair(nil, nil) = nil
pair(a :: L, b :: K) = (a, b) :: pair(L, K)

Recall that (a, b) is just short for prep(a, prep(b, nil)).

Note that this operation assumes input lists are of equal length. The output
type is a list of lists.

Exercise
Implement a class NList that provides arbitrarily nested lists of, say, integers,
together with a nice collection of operations.

Borel Sets 99

Here is an example from pure math that shows that induction can usefully
extend to transfinite domains.

As a rectype, Borel set are defined by:

Primitive elements are all open sets.
There are two constructors: complement and countable union.

So initially we have only open sets.
By complementation we obtain all closed sets.
Countable unions of closed sets are known in analysis as Fσ sets.
Countable intersections of open sets are Gδ, and so on and so forth.

One can show that this hierarchy is proper and extends all the way to the first
uncountable ordinal (there are as many Borel sets as there are reals).

One important property of Borel sets is that they are measurable; another is
that they obey the Continuum Hypothesis.

1 Inevitable Example

2 Induction and Recursion

3 Natural Numbers

4 Induction Proofs

5 Well-Orders

6 Lists

7 Trees

Total Recall: Trees 101

a

b

c d

e

f

g

h i

j

l

a is the root, c, d, h, i, j, l are leaves, everybody else (including the root) is an
interior node.
A branch is a root-to-leaf path such as a, e, f, g, i.
The depth of the tree is the maximum length of any branch. The sample tree
has depth 4.

Implementing Trees 102

Data structures for trees are very similar to lists.

For simplicity, consider binary trees over a groundset A. Atoms and
constructors are as follows:

The empty tree nil is in BTree(A).

For a ∈ A and T1, T2 ∈ BTree(A), cons(a, T1, T2) is in BTree(A).

So here nil stands for the empty tree, and cons(a, T1, T2) is the tree

a

T1 T2

Destructors 103

We can dismantle a non-empty tree like so:

cons(a, T, T ′) ̸= nil.

cons(a, T1, T2) = cons(b, T ′
1, T ′

2) implies a = b and Ti = T ′
i .

Thus we obtain an element in the groundset (the label of the root) plus two
trees, and these pieces are uniquely determined by the given tree.

Induction on Trees 104

Theorem (Induction for Trees)
Suppose X ⊆ BTree(A), nil ∈ X and for all Ti ∈ X, a ∈ A we have
cons(a, T1, T2) ∈ X. Then X = BTree(A).

The underlying well-founded partial order is the transitive closure of

T1, T2 ≺ cons(a, T1, T2)

Exercise
Explain what this has to do with induction on the depth of the tree.

Exercise
Generalize to other kinds of trees

Depth and Leaf-Count 105

As an example of an inductively defined operation, consider the depth function
for finite trees.

d(nil) = −1
d(cons(a, T1, T2)) = max(d(T1), d(T2)) + 1

Note the depth of the empty tree.

And here is the number of nodes in the tree.

nc(nil) = 0
nc(cons(a, T1, T2)) = nc(T1) + nc(T2) + 1

Exercise
Find an inductive way to count the number of leaves in a tree.

Flattening a Tree 106

Here is an operation that turns a tree into a linear list, inorder traversal.

flat(nil) = nilL
flat(cons(a, T1, T2) = join(flat(T1), (a), flat(T2))

We have written nilL for the empty list to avoid confusion.

a

b

c d

e

f g

flattens out to (d,b,e,a,f,c,g)

Binary Search Trees 107

Definition
A labeled binary tree T is a binary search tree (BST) if flat(T) is sorted.

We can search very efficiently in a BST:

search(nil, a) = ff
search(cons(a, T1, T2), a) = tt
search(cons(b, T1, T2), a) = search(T1, a) if a < b

search(cons(b, T1, T2), a) = search(T2, a) if a > b

This algorithm only walks down one branch, so most nodes in the tree are
never touched.
Thus, the worst case cost of a search is the depth of the tree.

Binary Trees and Nested List 108

Binary trees are important since they are particularly easy to implement.

We can convert nested lists (over some ground set A) into binary trees (with
leaves labeled in A), and back.

l2t : NList → BTree
t2l : BTree ↛ NList

We want
l2t ◦ t2l = INList and t2l ◦ l2t ⊆ IBTree

The map t2l is partial since not every tree corresponds to a nested list.

We write nil for the empty list and ⊥ for the unlabeled one-node tree.

l2t 109

1

2

3

4 ⟂

l2t(nilL) = nil
l2t(a :: L) = cons

(
a, l2t(L)

)
l2t(K :: L) = cons

(
l2t(K), l2t(L)

)

l2t
(
(1, 2, 3, 4)

)

(1, (2, 3), 4, 5, 6, (7)) 110

1

2

3 ⟂

4

5

6

7 ⟂

⟂

t2l 111

Now in the opposite direction:

t2l(nil) = nilL
t2l

(
cons(a, T2)

)
= a :: t2l(T2)

t2l
(
cons(T1, T2)

)
= t2l(T1) :: t2l(T2)

Exercise
Find a simple decision procedure for the domain of t2l.

Exercise
Prove that these functions are mutually inverse.

	Inevitable Example
	Induction and Recursion
	Natural Numbers
	Induction Proofs
	Well-Orders
	Lists
	Trees

