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Counting 2

Counting is perhaps the most fundamental activity in mathematics.

How many

poker hands with 3 aces
00-free binary lists of length k

binary trees on k nodes
prime numbers
rational numbers
real numbers
C programs

are there?



Finite vs. Infinite 3

The first three questions seem reasonable.
We would expect an answer like “12345”, or k(k − 1) or some such.

But for the rest the intuitive answer is simply “infinitely many”. To make sense
out of this, we have to explain more carefully what we mean by “infinite”. It
turns out that there are levels on infinity, and one can have a classification
rather similar to the finite case.

Actually, infinite counting is often a whole lot easier.

But let’s postpone this for a moment.



Counting, Explained 4

Everybody knows how to count, but let’s be a bit formal about this.

By counting we mean determining the cardinality of some set S.

As long as S is finite (first three examples), this means to find the right
number n and to enumerate the set as

S = {a1, . . . , an}.

In other words, we have to establish a bijection f : [n]→ S as in the next table:

1 2 3 . . . n− 1 n
↕ ↕ ↕ . . . ↕ ↕
a1 a2 a3 . . . an−1 an



Ranking and Unranking 5

Usually one is only interested in n, but sometimes one needs to find an actual
bijection

f : [n]→ S

There are lots of possible bijections (n! to be precise).

Real Challenge:
Find a bijection that is easy to compute and places the elements
into some natural order.
Also, we want f−1 : S → [n] to be easily computable.

f−1 is called a ranking function and f is an unranking functions.



Example: Bitvectors 6

We know the cardinality of S = P([n]) is 2n.

To get a bijection f : [2n]→ P([n]) we can use binary expansions.

x = 1 +
∑
i<n

xi · 2i

f(x) = { i + 1 | xi = 1 }

This is just the old trick of thinking of the binary expansion (padded to n
digits) as a bitvector.
Always think about these bijections in the following.



What is an Answer? 7

One would like a simple answer, using only basic arithmetic: sums, products,
exponentials, factorials, logarithms, plus perhaps a little more.
We want a closed form solution, not some recurrence (though finding a
recurrence may be an important step).
As it turns out, we often need some special functions such Fibonacci numbers,
binomials, harmonic numbers, Stirling numbers, . . . .

To find nice solutions it is helpful to have a library of combinatorial identities:
equations that reduce once counting problem to another.

Example
The number of bijections on [n] is n!.
The number of functions from [m] to [n] is nm.



Counting in CS 8

In CS, we often have to count words, sets, lists, leaves, binary trees, graphs,
recursive calls, and so on. This is the subject of combinatorics.

This is a vast field, lots of amazing techniques, but you only have to know a
few basic facts to attack a fairly large number of problems.

So how about the poker hands with 3 aces?

There are 4 aces total, so we need to figure out how many ways we can select 3
of them.

Then we have to pick 2 of the remaining 52− 4 = 48 cards, and multiply the
two numbers together.



Sum and Product Rule 9

Here are the two most basic counting rules.

The Sum Rule
If one event can occur in n ways, and another in m ways, then the
two events can occur in n + m ways (one or the other, not both).

The Product Rule
If one event can occur in n ways, and another in m ways, then the
two events together can occur in n ·m ways.

OK, this is somewhat embarrassing.
But, we have already used the Product Rule in the poker problem: number of
ways to get the aces times number of ways to get the rest.



Cardinalities 10

What these rules really mean is this.
Let A and B be finite sets:

If A ∩B = ∅ then |A ∪B| = |A|+ |B|.
|A×B| = |A| · |B|.

Sometimes it is easier to think about “events” than about the cardinalities of
sets, that’s all.

However, one should not underestimate the importance of the right
psychological setup. Some apparently hard problems melt away once the right
approach has been found.



Application: All Functions 11

An application of the product rule (plus induction).

Claim
There are nm functions from [m] to [n].

Note that f(i) is independent of f(j) for any j ̸= i. So, we can pick f(1),
f(2), . . . , f(m) in nm ways.

Here is an alternative approach.

Claim
|[n]× [n]× . . .× [n]︸ ︷︷ ︸

m

| = nm

Alternatively, we can identify f : [m]→ [n] with the m-tuple (f(1), . . . , f(m))
of the function values. So [m]→ [n] is the same as [n]× [n]× . . .× [n].



Tip of an Iceberg 12

There are several other counting problems in connection with functions.
How many

functions
injective functions
surjective functions
bijective functions
strictly increasing functions
nondecreasing functions

from [m] to [n] are there?

Think about a these functions as arrays.
Last question: How many sorted arrays of size m with entries in [n] are there?



Selecting Thingies 13

The first argument we used to count functions is very important: “repeatedly
select something out of a group of objects”.

You are standing in front of a box containing n balls.

How many ways are there to pick k balls,
one at a time, from the box?

This is often called an urn model.
Urn sounds like graveyard, so let’s call it a box instead.

May sound clear and completely specified, but there are several subtle variants.



Details 14

Suppose the box contains elements {a, b, c, d, e}.

Order does not count: combinations
Selection a, b, c is considered the same as c, a, b.

Order does count: permutations
Selection a, b, c is considered different from c, a, b.

With replacement:
Can select a, a, a, b.

Without replacement:
Cannot select any object twice.

So combinations without replacement correspond to subsets, but with
replacement we get multi-sets.



Applications 15

How about the poker problem?
Does order count?
Do we have replacement?

How about counting functions [m]→ [n] ?
Does order count?
Do we have replacement?

How about counting injective functions?
Does order count?
Do we have replacement?



Boxes and Balls versus Formal Models 16

Boxes and balls are very helpful to develop intuition, but it is also important to
be able to pin down the real mathematical content (think implementations for
example).

A combination is really a set, or a multi-set in the case of replacement.
Multi-set means: there may by multiple occurrences, but order does not
count.
A permutation is really a sequence, a function with domain [k].
Without replacement we have an injective function, with replacement an
arbitrary one.

So, we are really counting sets, multi-set, functions and injective functions.



Notation 17

For the number of k-combinations and k-permutations of n objects write

C(n, k) = no. of k-combinations of n objects
Cr(n, k) = same with replacement
P (n, k) = no. of k-permutations of n objects

Pr(n, k) = same with replacement

We already know Pr(n, m) = nm:
the number of m-tuples of elements of [n],
the number of functions [m]→ [n].

We also know P (n, n) = n!:
the number of permutations (bijections) of [n].



k-Permutations 18

But how about k-permutations?

Lemma

P (n, k) = n!
(n− k)!

Proof.
Start with all n! permutations of [n].
Then chop off the last n− k items.

aπ(1), aπ(2), . . . , aπ(k), aπ(k+1), . . . , aπ(n)︸ ︷︷ ︸
Produces every k-permutation exactly (n− k)! times.
Divide by (n− k)! to compensate for over-counting. 2



example 19

Example
There are P (4, 3) = 4!/1! = 24 3-permutations over {a, b, c, d}:

(a, b, c), (a, b, d), (a, c, b), (a, c, d), (a, d, b), (a, d, c),
(b, a, c), (b, a, d), (b, c, a), (b, c, d), (b, d, a), (b, d, c),
(c, a, b), (c, a, d), (c, b, a), (c, b, d), (c, d, a), (c, d, b),
(d, a, b), (d, a, c), (d, b, a), (d, b, c), (d, c, a), (d, c, b)

Example
10-permutations over [20]:

P (20, 10) = 20!/10! = 2432902008176640000
3628800 = 670442572800



Stirling’s Approximation 20

This is quite typical: the numbers become huge very quickly. Many algorithms
die miserable deaths because of this blow-up.

For factorials there is a nice approximation formula due to Stirling.

n! ≈
√

2πn · (n/e)n

One can get a very precise bound on the error if needed:

n! =
√

2πn · (n/e)n · (1 + 1
12n

+ O(n−2)).

Example
P (20, 10) ≈ 6.7046 · 1011



Falling Factorial Powers 21

Here is some handy notation.
For any (real) number x and non negative integer k define the falling factorial
power

xk = x(x− 1)(x− 2) . . . (x− k + 1).

So we have

P (n, k) = nk

Pr(n, k) = nk

Example
There are nm injective functions from [m] to [n].

Can think of xk as a polynomial in x:

x5 = x5 − 10 x4 + 35 x3 − 50 x2 + 24 x



What’s the Next Term? 22

Consider the sequence (an) starting with

10, 10, 12, 16, 22, 30, ??

What is the next term?

Any educated guesses?

What if the sequence were

−1,−2,−1, 8, 31, 74, ??

or
1, 1, 0,−1, 0, 7, 28, 79, ??



A Precise Problem 23

As stated, the problem is meaningless: anything could be the next term.

But assume that an = p(n) where p(x) is some simple function.
In particular, let’s say p(x) is a polynomial. We could try to find coefficients ci

such that

p(x) =
k∑

i=0

ci · xi

matches the given values for x = 0, . . . , 5 .

Actually, we don’t even know the degree k. k = 5 will be enough, no matter
what, but perhaps something smaller will work.

Could resort to calculus type interpolation: fit a polynomial to the data points
(i, ai) for 1 = 0, . . . , 5 .



Magic 24

Let’s use magic instead. Write a table

0 1 2 3 4 5 6
0 : 10 10 12 16 22 30
1 : 0 2 4 6 8
2 : 2 2 2 2
3 : 0 0 0

We’re just taking differences between consecutive terms.
Doing this 3 times seems to produce 0 everywhere.
Now we can reverse-engineer the whole sequence . . .



What’s Going On? 25

Differences and falling factorials coexist very peacefully.

Claim

(x + 1)k − xk = k · xk−1

But note that (x + 1)k − xk is a big mess. Let’s write

(∆f)(x) = f(x + 1)− f(x)

This looks a lot like differentiation, but there are no limits here. So

∆xk = k · xk−1

and by iterating ∆ k times we get

∆kxk = k!

a constant. Hence ∆k+1xk = 0.



Linearity 26

But note that ∆ is linear in the sense

∆(f + g) = ∆f + ∆g

∆(c · f) = c ·∆f

So if we write

p(x) =
k∑

i=0

ci · xi

we have ∆k+1p = 0.

For the table, we have values of a degree k − 1 polynomial in row 1. And so
on: row k will be constant, and row k + 1 all 0.

So magic works, as long as the original sequence really is polynomial.



Choice Sequences 27

To count combinations we introduce another useful concept: a binary choice
sequence.

(0, 0, 1, 0, 1, . . . , 1, 1, 0)

Think of making n Yes/No decisions.

Yes: pick the ith ball in the box.
No: don’t pick the ith ball in the box.

Clearly, there are 2n choice sequences of length n.

Claim
There are C(n, k) choice sequences of length n that contain exactly k many
1’s.



Some Values 28

Some values of C(n, k) are easy to compute:

C(n, 0) = C(n, n) = 1
C(n, 1) = n

C(n, 2) = n(n− 1)/2

But we want a nice, general formula.

Lemma

C(n, k) = n!
k!(n− k)! = nk

k!

Note that
C(n, k) = C(n, n− k)



Proof 29

Proof.
We use our old trick: over-count, and then correct the result.
First assume all the 0’s and 1’s are distinct.

11, 12, . . . , 1k, 01, 02, . . . , 0n−k

Can be arranged in n! ways (permutations).
But since really 0i = 0, and 1i = 1, we over-counted by k!(n− k)!.
Hence C(n, k) = n!/k!(n− k)!.

2



Mississippi 30

Distinguishing the indistinguishable is a very important idea.

How many ways can one arrange the letters in Mississippi?

Pretend
M1i1s1s2i2s3s4i3p1p2i4

Letter counts: M: 1, i: 4, s: 4, p: 2.

11!
1! 4! 4! 2! = 39916800

1152 = 34650



Choice Sequences and Subsets 31

We can think of a choice sequence as a bitvector (characteristic function)
representing a subset of [n]. The number of 1’s in the sequence is the
cardinality of the set.

Lemma
There are C(n, k) k-element subsets of an n-set.

An interesting computational problem is to generate all the k-subsets of [n].

Of course, without constructing the whole power set first: that has exponential
size, but there are only C(n, k) = Θ(nk) subsets of fixed size k.
For fixed k you can use k nested loops, but how about a function
powerset(n,k) of two variables?



Poker 32

At long last, we can really handle our poker problem. We’re talking 5-card
hands here.
There are C(4, 3) = 4 ways to select the 3 aces.
There are C(48, 2) = 1128 ways to select the other 2 cards.

Hence the total answer is 4 · 1128 = 4512.

And for 2 aces the answer would be

C(4, 2) · C(48, 3) = 6 · 17296 = 103776

The total number of poker hands is

C(52, 5) = 2598960



More Poker 33

How many ways to get a flush (all cards of the same suit)?

4 · C(13, 5) = 5148

How many ways to have at least one card of the each suit? E.g.,
2♣+ 1♢+ 1♡+ 1♠

4 · C(13, 2) · C(13, 1)3 = 685464

How many ways to have exactly three of a kind?

4 · C(13, 3) · C(48, 2) = 18048



Binomial Coefficients 34

Definition
The binomial coefficient

(
n
k

)
is defined to be the coefficient of xk in the

expansion of (1 + x)n. Here 0 ≤ k ≤ n.

Read “n choose k”. Also written Cn
k .

Example
For n = 10, k = 0, 1, . . . , n, we get

1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1

Theorem (Binomial theorem)

(a + b)n =
n∑

i=0

(
n

i

)
aibn−i.



Proof 35

Proof. We may assume b ̸= 0. Then

(a + b)n = (1 + a/b)n · bn

Done by the definition of binomial coefficient. 2

This problem appears to have been tackled first by the eleventh century Persian
astronomer Omar Khayyam.

From the theorem we get a proof of(
n

k

)
=

(
n

n− k

)
.

Do you see why?



Binomials Everywhere 36

Like Fibonacci numbers, binomials appear in many places.
Donald Knuth devotes all of chapter 5 of “Concrete Mathematics” to binomial
coefficients.

A little Knuth story: in 1972 someone published a paper on an improved merge
sort algorithm.
The improvement supposedly was (number of saved transfers):

t =
n∑

i=0

i

(
m− i− 1
m− n− 1

) / (
m

n

)
The author even thanks the referee for having produced this much simplified
formula – his original mess was worse.



A Simplification 37

Alas, Knuth produces another simplification:

t = n

m− n + 1

So: knowing a bit about binomials is crucial.
The original formula is just about useless!

Embarrassing fact: even the Computer Algebra system Mathematica can do
the simplification.



Binomials and Combinations 38

Are binomials a new idea?

No, they are just another example of choice sequences: in each term (x + 1) in
the product

(x + 1)(x + 1)(x + 1) . . . (x + 1)(x + 1)

we have to pick either 1 or x.
To get xk, we have to pick x exactly k times.

Lemma(
n
k

)
= C(n, k) = n!

k!(n−k)!

It follows immediately that
n∑

i=0

(
n

i

)
= 2n



A Bijection, Non-Constructively 39

Can also squeeze out information the other way around:∑
i

(
n

2i + 1

)
=

∑
i

(
n

2i

)
Just set a = 1, b = −1 in the binomial theorem.

By the last equation, there is a bijection

Podd(A)←→ Peven(A)

But we don’t know what such a bijection might look like.

Exercise
Find an explicit bijection between the even- and odd-cardinality subsets of [n].



Even-Odd 40

Let A be an arbitrary finite set and pick an element a ∈ A.
Define

f : P(A)→ P(A)

f(X) =
{

X − {a} if a ∈ X,
X ∪ {a} otherwise.

It is clear that f ◦ f = I.
Hence f is a bijection.
Thinking of f as a permutation of P(A) we can see that its cycle
decomposition contains only 2-cycles.
Each 2-cycle associates an even cardinality set with an odd cardinality set.



Approximations 41

We can use Stirling’s approximation to get an idea of the size of C(n, k).
For example, the central binomial coefficient is

C(2n, n) ≈ 1√
πn
· 22n

Thus, C(100, 50) ≈ 1.008913 · 1029.

Since there are only 22n subsets of [2n], a surprisingly large number of these
subsets has size n.
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Multinomial Coefficients 43

How about the coefficients in the expansion of (a + b + c)n or (a + b + c + d)n

? These coefficients are called multinomial coefficients and usually written

C(n; k1, k2, . . . , km) =
(

n

k1, k2, . . . , km

)
where

∑
ki = n.

Theorem
Multinomial theorem

(x1 + . . . + xm)n =
∑ (

n

k1, k2, . . . , km

)
xk1

1 xk2
2 . . . xkm

m

Note that (
n

k1, k2, . . . , km

)
= n!

k1!k2! . . . km!

Example
DNA chains consisting of 3 A’s, 2 C’s, 2 U’s, 3 G’s: C(10; 3, 2, 2, 3) = 25200.



Manhattan Walks 44

One excellent model for choice sequences and binomials is to think of
North-East walks in a grid.

1 2 3 4 5

1

2

3

4

Exercise
Prove the that number of walks from (0, 0) to (n, m) is C(n + m, m), in as
many ways as possible.



Proof 1 45

There are exactly n + m steps on any walk from (0, 0) to (n, m).

Moreover, exactly n of these steps are “East”, and m are “North”.

This follows easily from the fact that any walk (xi, yi)i is monotonic with
respect to both the x-axis and the y-axis: i < j implies xi ≤ xj and yi ≤ yj .

But then there are C(n + m, n) = C(n + m, m) paths from (0, 0) to (n, m).



Proof 2 46

Let’s write p(n, m) for the number of walks from (0, 0) to (n, m). Clearly

p(0, m) = p(n, 0) = 1

For any interior node (n, m) we have to predecessors:

(n− 1, m) → (n, m)
↑

(n, m− 1)

By induction, p(n, m) = p(n− 1, m) + p(n, m− 1) = C(n + m− 1, m) =
C(n + m− 1, m− 1) = C(n + m, m).

Induction on what?



Slaughtering Identities 47

Lemma

∑ (
n

i

)2

=
(

2n

n

)

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Can you see the proof in the picture?



Proof by Pathcounting 48

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Every point on the diagonal is a bottle-neck: each path must pass through
exactly one diagonal point (i, n− i).

By the Product Rule, get
(

n
i

)2 paths through each point. By the Sum Rule,
add to get the desired result.



Recursion and C(n, k) 49

Lemma

(
n

k

)
= n

k

(
n− 1
k − 1

)
(

n

k

)
= n

n− k

(
n− 1

k

)
(

n

k

)
= n− k + 1

k

(
n

k − 1

)
Addition Rule: (

n

k

)
=

(
n− 1

k

)
+

(
n− 1
k − 1

)



Pascal’s Triangle . . . 50

The Addition Rule is the basis for Pascal’s triangle . . .

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

Ponder deeply.



Same modulo 2 51



Proofs 52

All the identities above have straightforward algebraic proofs using the fact that(
n

k

)
= n!

k!(n− k)! .

Just plug in the factorial expressions, simplify a bit, done.

Correct, but infinitely boring.

Much more interesting are proofs based on combinatorial meaning. E.g., for
the first identity (

n

k

)
= n

k

(
n− 1
k − 1

)
we can argue in terms of k-subsets of an n-set.



A Counting Proof 53

Consider a set A = {a1, . . . , an}.
Set Ai = A− {ai}.
Write Pk(S) for all k-subsets of S.
Then

Pk(A) =
n⋃

i=1

{X ∪ {ai} | X ∈ Pk−1(Ai) }

Each of the collections Pk−1(A− {ai}) in the union has
(

n−1
k−1

)
elements, and

there are n of them.

But: we are over-counting by a factor of k: each k-element subset can be
generated in exactly k ways by throwing the missing element ai back in.

So, we have to divide by k in the end.
2



Binomial Identities 54

There are countless equations involving binomials that range from the obvious
to the impossible-to-prove.

(
n

m

)(
m

k

)
=

(
n

k

)(
n− k

m− k

)
(

n + m

k

)
=

∑
i

(
n

i

)(
m

k − i

)
Proof. For the first equation, think about pairs (A, B) where B ⊆ A ⊆ [n]
and |A| = m, |B| = k.
Could first pick A, and then B, or first B and then A.
Second equation is an exercise. 2



Occupancy Problem 55

Here is another important class of problems:

How many ways are there to place
n balls into k boxes?

Again, there are several cases:

Objects distinguishable: think of balls numbered 1, 2, . . . , n.

Objects indistinguishable: think of n identical balls.

Boxes distinguishable: think of boxes numbered 1, 2, . . . , k.
Boxes indistinguishable: think of k identical boxes.



Non-Emptiness 56

One more twist: sometimes none of the boxes are allowed to be empty (this is
much, much harder). So there are 8 possibilities, but we won’t treat them
systematically.

The non-empty condition pops up naturally e.g. when we try to count the
number of surjective functions [n]→ [k]:
we need to distribute n distinguishable balls into k distinguishable boxes so
that no box remains empty.
Incidentally, for n ≥ k the answer is

k∑
i=0

(−1)k−i

(
k

i

)
i n.

A horror.
For n = 5, k = 3 we get 150 surjections.



Only Boxes Distinguishable 57

How many different ways can we distribute n indistinguishable balls into k
distinguishable boxes?

Sounds like a new problem, but isn’t really.

Example
8 balls and 4 boxes

• • | • • • | • | • • → 2, 3, 1, 2
• • | • • • | | • •• → 2, 3, 0, 3
• • • • • • • • | | | → 8, 0, 0, 0

Every distribution of balls can be represented as a sequence of bullets and lines.



The Answer 58

So putting n balls into k boxes boils down to placing k − 1 vertical lines in a
line of n bullets.

There are a total of n + k − 1 possible positions for the bars.

Hence there are
(

n+k−1
k−1

)
=

(
n+k−1

n

)
ways of selecting the k − 1 positions.

So the answer is: (
n + k − 1

n

)
.

Example
n = 8, k = 4: 165
n = 20, k = 10: 10015005



Non-Decreasing Functions 59

Lemma
The number of nondecreasing functions [p]→ [q] is(

p + q − 1
p

)

Example
p = 3 and q = 4: 20 nondecreasing functions.

(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 2, 2), (1, 2, 3), (1, 2, 4),
(1, 3, 3), (1, 3, 4), (1, 4, 4), (2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 3, 3),

(2, 3, 4), (2, 4, 4), (3, 3, 3), (3, 3, 4), (3, 4, 4), (4, 4, 4)

How do we reduce this problem to something already known?



A Trick 60

Here is a trick: Place q − 1 indistinguishable balls into p + 1 distinguishable
boxes.

Define

f(1) = 1 + no. balls in box 1
f(i + 1) = f(i) + no. balls in box i + 1

Clearly, this function is nondecreasing.

Example
p = 5, q = 8.

b b b b b
b

b

The corresponding function is (3, 3, 4, 7, 7).



No Misses 61

But every nondecreasing function can be obtained in this way: the number of
balls in box i + 1 is just f(i + 1)− f(i) ≥ 0.

In other words, there is a bijection between nondecreasing functions [p]→ [q]
and some p + 1-tuples of natural numbers:

(b1, b2, . . . , bp+1) where
∑

bi = q − 1

corresponds to
f(k) = 1 +

∑
i≤k

bi.

Box p + 1 is just for over-flow.

Note:
(

p+q−1
p

)
is thus the number of sorted arrays of length p with entries in

[q].
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We still don’t have a formula for Cr(n, k).
Or do we? Here are the 20 3-combinations over {a, b, c, d}:

(a, a, a), (a, a, b), (a, a, c), (a, a, d), (a, b, b), (a, b, c), (a, b, d),
(a, c, c), (a, c, d), (a, d, d), (b, b, b), (b, b, c), (b, b, d), (b, c, c),

(b, c, d), (b, d, d), (c, c, c), (c, c, d), (c, d, d), (d, d, d)

But this is really just another way of talking about non-decreasing functions:
we can sort each combination, to get such a function.

It’s crucial that we are dealing with combinations here, not permutations.
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Hence we have:

Lemma

Cr(n, k) = C(n + k − 1, k)

So, combinations all boil down to binomial coefficients.

C(n, k) =
(

n

k

)
Cr(n, k) =

(
n + k − 1

k

)



Application: Fred’s Books 64

Fred Hacker has 10 math books, 12 physics books, and 15 CS books.

How many ways can they be put on a bookshelf?

What if we don’t distinguish between books in each field?

What if we want to keep books in each field contiguous?

What if we want every math book to be followed by a physics book?

What is the relative order of these numbers?
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13763753091226345046315979581580902400000000
≈ 1.3764 · 1043

6055322318004960
≈ 6.0553 · 1015

13638005412495768944640000000
≈ 1.3638 · 1028

10888869450418352160768000000
≈ 1.0889 · 1028

Do you see where these numbers come from?



Only Balls Distinguishable 66

Suppose we want to count the number of ways n distinguishable balls can be
placed into k indistinguishable boxes so that no box remains empty.

This appears to be quite difficult, there is no obvious reduction to any or our
previous results.

Definition
Call this number the Stirling number (of the second kind), written S2(n, k).

These Stirling numbers are an important counting device. There are also
Stirling numbers of the first kind, but they are not as important.

Thus, S2(n, k) is the number of ways an n-set can be partitioned into k
nonempty blocks. In other words, S2(n, k) is the number of equivalence
relations on [n] with exactly k blocks.
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What if we drop the non-emptiness condition? Then we get the number of all
equivalence relations with at most k blocks, or

k∑
i=1

S(n, i)

which does not look any easier to deal. An important special case is the total
number of equivalence relations on [n], the so-called Bell number

Bn =
n∑

i=1

S(n, i)

Example
Here are the values for S2(10, i), i = 0, . . . , 10 :

0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1

Hence B10 = 115975
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Lemma

S2(n, 0) = 0 for n > 0
S2(n, n) = 1 for n ≥ 0
S2(n, k) = k · S2(n− 1, k) + S2(n− 1, k − 1)

Claim
There are k! S(n, k) surjective functions from [n] to [k].

Proof.
For every surjective function f : [n]→ [k] the kernel equivalence Kf has
exactly k classes.
But Kf = Kg iff f = π ◦ g for some permutation π of [k].
Hence, each partition into k classes corresponds to k! many surjections. 2



Falling Factorials 69

Stirling numbers appear when one tries to rewrite xn as a polynomial
constructed from falling factorials xk.

Lemma

xn =
∑
i≤n

S2(n, i) · xi

Naturally one also wants to be able to go in the opposite direction: rewrite xn

as an ordinary polynomial.
This leads to Stirling numbers of the first kind, written S1(n, k).

Lemma

xn =
∑
i≤n

(−1)n−iS1(n, i) · xi
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S1(n, k) is the number of permutations of [n] with exactly k cycles.
Thus, S1(n, k) is the number of ways an n-set can be partitioned into k cycles
(rather than blocks). A cycle is a sequence, but we identify sequences that can
be obtained from each other by rotation.
So, as cycles a, b, c, d and c, d, a, b are the same.

Example
S1(4, 2) = 11, and the cycle decompositions are

(a), (b, c, d) (a), (b, d, c)
(b), (a, c, d) (b), (a, d, c)
(c), (a, b, d) (c), (a, d, b)
(d), (a, b, c) (a), (a, c, d)
(a, b), (c, d) (a, c), (b, d)
(a, d), (b, c)
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It follows that ∑
i≤n

S1(n, i) = n!

Lemma

S1(n, 0) = 0 for n > 0
S1(n, n) = 1 for n ≥ 0
S1(n, k) = (n− 1) · S1(n− 1, k) + S1(n− 1, k − 1)



Everything Indistinguishable 72

In this case we are looking for all nondecreasing sequences (ni) such that

k∑
i=1

ni = n

where ni ≥ 0 in the general case, and ni > 0 when only non-empty boxes are
allowed.
This is usually called a partition problem.

Equivalently, we have to find non-negative integer solutions of

x1 + 2x2 + 3x3 + . . . + nxn = n

Here xi is the number of boxes containing i elements.



Too Hard 73

Unfortunately, this is rather difficult. Suffice it to say that the number can be
obtained as the coefficient of xn in the power series expansion of

1
(1− x)(1− x2) . . . (1− xn)

Example ∏
(1− x)−i = 1 + x + 2 x2 + 3 x3 + 5 x4 + 7 x5 + O(x6)

Hence, there are 7 unrestricted partitions of 5.

1, 1, 1, 1, 1 1, 1, 3
1, 1, 1, 2 1, 4

1, 2, 2 5
2, 3



Occupancy Table 74

Here is a summary of our results.

objects boxes empty
+ + + kn

+ + – k! S2(n, k)
+ – + Bn

+ – – S2(n, k)
– + + C(n + k − 1, k)
– + – C(n− 1, k − 1)
– – +
– – –



1 Counting

2 Multinomials

3 Inclusion-Exclusion
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How many ways can one rearrange the letters in “wedigmath” so that neither
“we” nor “dig” nor “math” appears?
All letters are distinct, so there are 9! permutations of the letters. Let U be all
these permutations.
Let A1 all words containing “we”, A2 all words containing “dig”, and A3 all
words containing “math”.

We want
|U | − |A1 ∪A2 ∪A3|

But

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C|
− |B ∩ C|+ |A ∩B ∩ C|
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|U | = 9!
|A1| = 8!
|A2| = 7!
|A3| = 6!

|A1 ∩A2| = 6!
|A1 ∩A3| = 5!
|A2 ∩A3| = 4!

|A1 ∩A2 ∩A3| = 3!

Hence we get

9!− 8!− 7!− 6! + 6! + 5! + 4!− 3! = 317658



Inclusion-Exclusion Principle 78

The last example is based on computing the cardinality of a union of sets.

|A ∪B| = |A|+ |B| − |A ∩B|

|A ∪B ∪ C| = |A|+ |B|+ |C|
− |A ∩B| − |A ∩ C| − |B ∩ C|
+ |A ∩B ∩ C|

How does this generalize to |A1 ∪A2 ∪ . . . ∪An| ?

We should expect a large, alternating sum involving intersections of k sets, for
all k = 1, . . . , n .
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Lemma (Sylvester)
Let A = {A1, A2, . . . , An} and
U =

⋃
A = A1 ∪A2 ∪ . . . ∪An.

|U | =
∑

∅≠B⊆A

(−1)|B|+1∣∣ ⋂
B

∣∣

Note that B here is a family of subsets of U , so
⋂

B is a subset of U .

This theorem can be proved by induction, or by clever manipulations of
functions, but we will forego the opportunity.
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How many integer solutions are there for

x1 + x2 + x3 + x4 = 40
0 ≤ xi ≤ 15

Main line of attack: express as an occupancy problem: place 40 balls into four
boxes.

Ignoring the constraint xi ≤ 15 there are

C(40 + 4− 1, 4− 1) = C(43, 3) = 12341

solutions x = (x1, x2, x3, x4).

No good: we must subtract “bad” solutions: that’s where Inc/Exc comes in.
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Define

Ai = solutions with xi ≥ 16
A = {A1, A2, A3, A4}
U = A1 ∪A2 ∪A3 ∪A4

So U is the set of all bad solutions.
By I/E, we need to compute

|U | =
∑

∅≠B⊆A

(−1)|B|+1∣∣ ⋂
B

∣∣
But we can only have at most 2 bad xi’s in any bad solution x: otherwise we
get a sum of at least 48.
Hence

⋂
B = ∅ for |B| > 2.
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So, we only need to deal with B = {Ai} and B = {Ai, Aj}.
By symmetry we get 4 · C(27, 3) in the first case: there are four choices for i,
but the value of i does not matter. Let’s assume i = 1 .
Think of placing 16 balls into x1, and then distributing the remaining
24 = 40− 16 balls into the four boxes. There are
C(24 + 4− 1, 4− 1) = C(27, 3) ways of doing this.

In the second case we similarly obtain 6 · C(11, 3) = 10710.

So, the number of solutions is

12341− (11700− 990) = 1631.

Make sure you understand the details, this is a bit tricky.
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We already know that the number of surjective functions from [n] to [k] is
k! S2(n, k).
Can we avoid Stirling numbers? Sounds very hard, but Inclusion/Exclusion
takes care of it. Let

Ai = { f : [n]→ [k] | i /∈ rngf }

Note that f is surjective iff f /∈ U = A1 ∪ . . . ∪Ak.
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Now apply the Inclusion/Exclusion Principle:

kn − |U | = kn −
∑

∅≠B⊆A

(−1)|B|+1∣∣ ⋂
B

∣∣
=

∑
B⊆A

(−1)|B|∣∣ ⋂
B

∣∣
=

∑
B⊆A

(−1)|B|(k − |B|)n

=
k∑

i=0

(−1)k−i

(
k

i

)
in
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Definition
The nth harmonic number Hn is defined by

Hn = 1 + 1/2 + 1/3 + . . . + 1/n

The first few values of Hn are

1,
3
2 ,

11
6 ,

25
12 ,

137
60 ,

49
20 ,

363
140 ,

761
280 ,

7129
2520 ,

7381
2520

From calculus, the series
∑

1/n diverges, so Hn →∞ as n→∞.
But divergence is glacially slow: H10000 ≈ 9.79.
The numerator of this fraction has 4346 digits, and the denominator has 4345.
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Note that
Hn − 1 <

∫ n

1

1
x

dx < Hn−1

so that 0 ≤ Hn − ln n ≤ 1.
One wonders whether Hn − ln n converges to a particular value as n tends to
infinity. Euler showed that the limit indeed exists. Nowadays it is referred to as
the Euler-Mascheroni constant and usually written γ. We have

γ ≈ 0.5772156649015328

Here is an estimate of convergence:

Hn − ln n = γ + 1
2n

+ O(n−2)

Amazingly, it is not known whether γ is irrational.
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Lemma
Let 1 ≤ m < n. Then Hn −Hm is not integral.

Proof.
Let 1 ≤ m < n. It is not hard to see that the sequence m, m + 1, . . . , n
contains a unique element p that maximizes ν2, say, p = p02k where p0 is odd.
Forming the sum of the fractions with denominator lcm(m, . . . , n) = 2kα, α
odd, leads to a numerator of the form α′ + β where α′ = α/p0 is odd, and β is
even.
Hence Hn −Hm cannot be an integer.

2



Decimal Explanations 88

Lemma
The decimal expansion of Hn is non-terminating except for H1 = 1, H2 = 1.5
and H6 = 2.45.

The lemma is easy to verify for, say, n ≤ 100, but somewhat difficult to prove.
Write Hn = an/bn where the fraction is in lowest common terms. Then one
can show that all primes p such that (n + 1)/2 ≤ p ≤ n divide bn. Use the
Bertrand-Chebyshev theorem to show that this guarantees the existence of a
prime dividing bn other than 2 and 5.
E.g. here is the factorization of H50:

25 33 52 72 11 13 17 19 23 29 31 37 41 43 47



Summing Harmonic Numbers 89

Here is a little challenge: determine

Hn =
∑
k≤n

Hk

To get some rough idea what the value of Hn should be it is a good idea to
switch to integrals:

Hn ≈
∫ n

1
ln x dx = n ln n− n + 1

So an educated first guess would be Hn ≈ nHn − n.
But how do we go about calculating the discrete sum rather than the integral?
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Hn =
n∑

k=1

k∑
i=1

1/i

=
n∑

i=1

1/i

i∑
k=1

1

=
n∑

i=1

(n− i + 1)/i

=
n∑

i=1

(n + 1)/i − n

= (n + 1)Hn − n

Not bad at all. So we have
∑n

k=1 Hk = (n + 1) ·Hn − n.
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