
CDM

Algebra of Regular Languages

Klaus Sutner

Carnegie Mellon University

1 Stuff

2 FSM Computable Functions

3 Left Quotients

4 Conway Factorizations

5 2-DFA

6 FSM and Matrices

Recognizing Words 2

Given a word w, it is trivial to construct a DFA Mw on |w| + 2 states such that
L(Mw) = {w}. For example, for w = abba we get

0 1 2 3 4

⊥

a

b

b

a

b

a

a

b a, b

a, b

State 0 is initial, and 4 is final. ⊥ is a sink state and can be eliminated if we
allow partial DFAs.

Exercise
Show that |w| + 2 is indeed the state complexity of {w}.

Finite Languages 3

It follows from our closure properties that every finite language is also regular:
we can build a DFA M for any finite set of words

L(M) = {w1, w2, . . . , ws}.

by forming the product of the Mwi

Alas, this does not really work: the size of this product machine grows
exponentially.
But, there are several efficient algorithms to build machines for finite sets of
words. In fact, there is a whole industry of such algorithms. Bear in mind:
blind application of powerful methods sometimes leads to disaster.

1 Stuff

2 FSM Computable Functions

3 Left Quotients

4 Conway Factorizations

5 2-DFA

6 FSM and Matrices

Computing Functions 5

How can we use finite state machines to compute functions? The general
situation is a bit complicated, but if we restrict ourselves to functions with
finite codomain things are relatively straightforward.
Suppose we have a function f : Σ⋆ → ∆ where ∆ is a finite set (which we will
think of as an alphabet).
How could a DFA compute f? If ∆ = 2 = {0, 1} there is no problem: we can
think of the machine as returning output 1 on input x ∈ Σ⋆ whenever
δ(q0, x) ∈ F , and 0 otherwise.

Prouhet-Morse-Thue Word 6

This may not seem too interesting, but consider the following example. There
is a famous infinite binary word T = (tn) defined by

t0 = 0
t2n = tn

t2n+1 = tn

Here x denotes bitwise complement.
For example, the first 64 bits of T are

0110100110010110100101100110100110010110011010010110100110010110

No Cubes 7

T has many interesting properties, perhaps the most important one being the
fact that it is cube-free: it is impossible to write

T = . . . x x x . . .

for any non-empty finite word x. In fact, one cannot even get

T = . . . x x x1 . . .

Yet, there is a DFA that computes T in the sense that on input n, written in
binary, the DFA outputs tn.

The Logic Link 8

As already mentioned, one of the killer apps for automata is their use in solving
decision problems in logic, e.g. in program verification.

To this end we have to construct machines for various languages, quite often
over large alphabets of the form

Γ = Σ × Σ × . . . × Σ

This turns out to be the right environment for checking validity of logical
formulae over certain structures.

Example: Third Symbol from the End 9

Consider the input x = baaba. Here are the possible traces of M from above
with this input (for emphasis we write the transitions with arrows). The last
one leads from the initial state to the final state, so the machine accepts x.

3 b→ 3 a→ 3 a→ 3 b→ 3 a→ 3
3 b→ 3 a→ 3 a→ 3 b→ 3 a→ 2
3 b→ 3 a→ 3 a→ 2 b→ 1 a→ 0

But x = babaa is not accepted, none of runs has the right source and target.

3 b→ 3 a→ 3 b→ 3 a→ 3 a→ 3
3 b→ 3 a→ 3 b→ 3 a→ 3 a→ 2
3 b→ 3 a→ 3 b→ 3 a→ 2 a→ 1

Constructing a DFA by Hand 10

Challenge: can we construct this DFA by hand, without any automata
conversions?
Note that we need to remember the last 3 symbols of the input: if we’ve
reached the end we have enough information to decide whether we should
accept.

So we use Q = {a, b}3 and transitions

xyz
s−→ yzs

Final states are {aaa, aab, aba, abb}.

Initial state is bbb (a clever hack, otherwise we would have to add some more
states ε, a, b, aa, ab, . . .) and cone them on top of the strongly connected
part.

1 Stuff

2 FSM Computable Functions

3 Left Quotients

4 Conway Factorizations

5 2-DFA

6 FSM and Matrices

Language Semiring 12

From now on, we will focus on one particular Kleene algebra, the language
semiring

L(Σ) = ⟨P(Σ⋆), ∪, ·, ⋆, ∅, {ε}⟩

As defined, this is an uncountable structure, but we will be mostly interested in
the case where the carrier set is just the regular languages over Σ.

In order to emphasize the algebraic angle, we will often write + instead of ∪, 1
instead of {ε}, and so on.

Atoms 13

Note that, strictly speaking, a word w is not an element of L(Σ). But the
singleton {w} is, and so it makes sense to be sloppy with notation and identify
the two.

If that sends shivers up and down your type-theoretic spine note that we can
filter out singletons using only algebra.

In any Kleene algebra, define x to be an atom if x ̸= 0 but y ≤ x implies y = 0
or y = x.

For example, 1 is an atom.

In the language semiring, atoms are exactly the singletons.

Quotients 14

How about the missing operations, subtraction and division?

For subtraction we would need an additive cancellation monoid: x + y = x + z
implies y = z. This is hopelessly false in our setting: x + x = x = x + 0.

So how about some operation resembling division? Since our multiplication is
not commutative, let’s focus on left division for the time being. Here is a
plausible approach.

Definition
Let L ⊆ Σ⋆ be a language and x ∈ Σ⋆. The left quotient of L by x is

x−1 L = { y ∈ Σ⋆ | xy ∈ L }.

So we are simply removing a prefix x from all words in the language that start
with this prefix. If there is no such prefix we get an empty quotient.

Rant on Notation 15

It is standard to write left quotients as

x−1 L

Here is the bad news: left quotients are actually a right action of Σ⋆ on L(Σ).

As a consequence, the first law of left quotients below looks backward at first
sight.

We could fix the problem by writing something like L/x but that’s awkward
since it seems to suggest that we are removing a suffix.

Algebra of Quotients 16

Lemma
Let a ∈ Σ, x, y ∈ Σ⋆ and L, K ⊆ Σ⋆. Then the following hold:

(xy)−1L = y−1x−1L,

x−1(L ⊙ K) = x−1L ⊙ x−1K where ⊙ is one of ∪, ∩ or −,

a−1(LK) = (a−1L)K + χL a−1K,

a−1L⋆ = (a−1L) L⋆.

Here we have used the abbreviation χL to simplify notation:

χL =
{

1 if ε ∈ L,
0 otherwise.

So χL is either zero or one in the language semiring and simulates an
if-then-else.

Comments 17

Note that (xy)−1L = y−1x−1L and NOT x−1y−1L. As already mentioned,
the problem is that algebraically left quotients are a right action.

Quotients coexist peacefully with Boolean operations, we can just push the
quotients inside.

But for concatenation and Kleene star things are a bit more involved; the
lemma makes no claims about the general case where we divide by a word
rather than a single letter.

Exercise
Prove the last lemma.

Exercise
Generalize the rules for concatenation and Kleene star to words.

Killer App 18

The ultimate reason we are interested in quotients is that they provide an
elegant tool to construct the minimal automaton for a regular language. And
the associated algorithms can be made very efficient.

For the time being, though, let us focus on the algebra. We write Q(L) for the
set of all quotients of a language L.

How would we go about computing Q(L)?

In general this will be difficult, but for languages described in terms of Kleene’s
operations we can use algebra (there is a little glitch, though).

1 Stuff

2 FSM Computable Functions

3 Left Quotients

4 Conway Factorizations

5 2-DFA

6 FSM and Matrices

Conway Factorizations 20

Fix some language L once and for all.

Definition
A k-subfactorization (of L) is a k-tuple of languages Xi, 1 ≤ i ≤ k, such that

X1X2 . . . Xk ⊆ L

For emphasis, we write X1:X2: . . . :Xk for a subfactorization.
A k-factorization (of L) is a k-subfactorization where every term is maximal:
adding another word to Xi breaks the inclusion, for all i ∈ [k].

Note that . . . :X:Y : . . . is a subfactorization iff . . . :XY : . . . is a
subfactorization. Alas, the corresponding result for factorizations is wrong, in
either direction.

We are mostly interested in the case k = 2, 3.

Factors 21

A subfactorization X1:X2: . . . :Xk dominates as subfactorization Y1:Y2: . . . :Yk

if Yi ⊆ Xi for all i. So a factorization is a subfactorization that is not
dominated by another.

A factor is a term that appears in some place in some factorization. A
left/right factor is one that appears at the left/right end of a factorization.

Question: For a regular language L, what can we say about its factors?

There is a surprisingly detailed answer, but we need to build up a few tools
first.

Basics 22

Claim 1: Every subfactorization can be extended to a factorization. Maximal
terms are preserved in the process.

Proof. For simplicity consider a 2-factorization X:Y . We can saturate, say,
the left term via X ′ =

⋃
{ Z | ZY ⊆ L }. Then X ′:Y is still a subfactorization,

dominates X:Y , and X ′ is maximal. Repeat for Y . 2

But note that the process does not commute: the final result depends on the
saturation order. For example, for most L, we could extend 0:0 to either Σ⋆:0
or 0:Σ⋆. In fact, there are many other ways we can saturate the components
by adding words in some fairly arbitrary manner.

Exercise
Figure out a general algorithm to extend 0:0 to all possible factorizations.

More Basics 23

Claim 2: There is a one-one correspondence between all left factors and all
right factors.

Proof. Suppose X is a left factor and let X:Y be a corresponding
factorization. Since Y is maximal there can be no other right factor matching
X. The same argument works in the opposite direction, done. 2

We write ρ(X) for the right factor corresponding to left factor X, and λ(Y) for
the inverse function. For example, for L = a⋆ ⊆ (a + b)⋆ we have ρ(0) = Σ⋆,
ρ(a⋆) = a⋆ and ρ(Σ⋆) = 0.

All Factors 24

Now saturate the middle term in X:0:Y , X and Y left/right factors, and write
Z = Z(X, Y) for the result. From Claim 1 we have that all factors occur as
one of these Z(X, Y).

Claim 3: The language L itself is a right factor ρ(X ′) as well as a left factor
λ(Y ′). Moreover, all left factors are of the form Z(X ′, Y), and all right factors
are of the form Z(X, Y ′). Lastly, Z(X ′, Y ′) = L.

Proof.
1:L is a subfactorization and uniquely saturates to X ′:L, so that X ′ = λ(L).
By symmetry, Y ′ = ρ(L).
By our choice of X ′, X ′:λ(Y):Y is a subfactorization and even a factorization
(check). The claim about enumerating left factors follows; right factors are
analogous. Lastly, X ′:L:Y ′ is a factorization, and we are done. 2

Regular Case 25

Theorem
The number of factors of L is finite iff L is regular. Moreover, the number of
left/right factors is ∆(L) in this case.

Proof. To see why, let X:Y be a factorization of L. We have
Y =

⋂
w∈X

w−1L. To saturate the left term we choose X maximal so as to
maintain the intersection. More precisely, by complementing we get

Y =
⋃

w∈X

w−1L = X−1L

But L is regular iff the number of quotients (word or language) is finite.
2

Careful, though: in general ∆(L) ̸= ∆(L), unlike with δ. It follows that there
are at most 2δ(L) many left/right pairs.

Computation 26

Suppose A is the minimal DFA for L. As just mentioned, we need to determine
all intersections

Y =
⋂

p∈P

JpK

where P ⊆ Q. Let’s call P critical if P produces Y in this manner, and P is
maximal such. Note that P must actually be maximum (just take unions).

Given P critical for right factor Y we obtain the corresponding left factor λ(Y)
as

X = L(A(q0, P))

Hence we can construct a list

X1:Y1, X2:Y2, . . . , Xm:Ym

of all left/right pairs where Yi = ρ(Xi).

More Computation 27

Suppose U, V ⊆ Q are critical, and let X be the left factor for U , and Y the
right factor for V . To determine Z = Z(X, Y) note that

w /∈ Z ⇔ ∃ x ∈ X, y ∈ Y (xwy /∈ L)

⇔ ∃ q ∈ U, y ∈ Y (q · wy /∈ F)

⇔ ∃ q ∈ U (Y ̸⊆ Jq · wK)

⇔ ∃ q ∈ U (q · w /∈ V)

But then Z is the language of A(U, V).

Together with the list of left/right pairs we now have a coordinate system and
can organize the collection of all factors into a m × m matrix F with entries
Zij = Z(Xi, Yj).

Example: a⋆b⋆c⋆ 28

The star-free language L = a⋆b⋆c⋆ has 5 left/right factors:

left Σ⋆ L a⋆b⋆ a⋆ 0
right 0 c⋆ b⋆c⋆ L Σ⋆

Factor matrix F = (Zij):

0 c⋆ b⋆c⋆ L Σ⋆

Σ⋆ Σ⋆ 0 0 0 0
L Σ⋆ c⋆ 0 0 0
a⋆b⋆ Σ⋆ b⋆c⋆ b⋆ 0 0
a⋆ Σ⋆ L a⋆b⋆ a⋆ 0
0 Σ⋆ Σ⋆ Σ⋆ Σ⋆ Σ⋆

The Factor Matrix 29

Theorem
Consider the m × m factor matrix F = (Zij). Then

ZijZjk ≤ Zik

X1X2 . . . Xs ≤ L iff Xj ≤ Zij-1ij for some ij ∈ [m], j ∈ [s], where
i0 = λ(L) and is = ρ(L).

Proof. By definition, XiZijYj ≤ L, so that XiZij ≤ Xj . Hence
XiZijZjkYk ≤ XjZjkYk ≤ L, and our claim follows.

It suffices to prove the binary case: XY ≤ Zik iff there is some j such that
X ≤ Zij and Y ≤ Zjk.
To see this, note that (XiX)(Y Yk) ≤ L, so that XiX ≤ Xj and Y Yj ≤ Yj for
some j. But then XiXYj ≤ L and XJ Y Yk ≤ L, and the claim follows.

More 30

This may seem obvious, but we now have a proof that the factors of a factor
are again factors of the original language. OK, a bit anticlimactic . . .

Recall that F itself lives in another Kleene algebra and thus has a star. We
have F⋆ = F.

Exercise
Extract this information from the last theorem.

Reversal Symmetry 31

Back to our original complaint: the lack of invariance under string reversal.

Theorem (Conway)
Let L be a regular language. Then ∆(L) = ∆(Lop).

Proof.
Consider all 2-factorizations X:Y of L.

As we have just seen, there are ∆(L) choices for X.

By symmetry, there are ∆(Lop) choices for Y .

But we already know that these two numbers agree.
2

Left-To-Right 32

From the definition of a Turing machine, the read-only input tape can be
scanned repeatedly and the tape head may move back and forth over it.

As it turns out, one can assume without loss of generality that the read head
only moves from left to right only: at each step one symbol is scanned and
then the head moves right and never returns.

Theorem (Rabin/Scott, Shepherdson)
Every decision problem solved by a constant space two-way machine can
already be solved by a constant space one-way machine.

The original proof of this result is quite messy, see Rabin/Scott 59. Here is a
sketch.

http://www.cs.cmu.edu/~cdm/resources/RabinScott59.pdf

1 Stuff

2 FSM Computable Functions

3 Left Quotients

4 Conway Factorizations

5 2-DFA

6 FSM and Matrices

2-DFA 34

Right moves of the 2-DFA are easily simulated by the new DFA, so consider a
left move. Say, the current configuration is xpa and δ(p, a) = (p, L). Then the
machine enters the block x and we need to keep track of the state q it is in
when it leaves the block to the right. Of course, this may never happen: the
machine may have fallen off the left end of x, or may be stuck in an infinite
loop. To deal with this issue, we augment Q by an additional state ⊥. We also
abuse ⊥ to keep track of the state of the actual computation of the 2-DFA.
More formally, we define state vectors Vx : Q⊥ → Q⊥ for all non-empty words
x as follows:

Vx(p) =

{
q if w = ua, upa ⊢ uaq, p ∈ Q
q if w = ua, q0w ⊢ wq, p = ⊥
⊥ otherwise.

Simulation by DFA 35

It is not hard to check that these vectors have the property that Vx = Vy

implies Vxa = Vya. Hence, they can be used to define a right semigroup action,
giving rise to a one-way DFA. Let V be the set of all state vectors and add an
extra initial state ⊤. Define a transition function γ on V⊤ by

γ(⊤, a) = Va

γ(Vx, a) = Vxa

and final states by

F ′ = { Vx | Vx(⊥) ∈ F }

If necessary, we can adjust to deal with ε.

Small 2-DFA 36

Consider the finite languages

Ln = { #abe1 abe2 a . . . aben ckbek # | ei, k ∈ [n] }

There is a linear size 2-dfa for Ln, but every 1-dfa has exponentially many
states.

Application: Roots 37

Consider a regular language L ⊆ Σ+ and define

root(L) = { x ∈ Σ+ | x+ ∩ L ̸= ∅ }

We want to show that root(L) is again regular. This can be done using a
monoid automaton, but a very simple argument can be based on 2-DFAs.

Using endmarkers, we can build a 2-DFA that scans x and checks if it lies in L;
if so, it accepts. Otherwise, it stores the current state q of the DFA for L, and
rescans x, this time starting in state q. Rinse and repeat. If x is in root(L),
this will lead to acceptance; otherwise, the 2-DFA is stuck in an infinite loop.

If you find this offensive, keep track of all states q seen so far at the end of a
scan, and reject whenever a duplicate appears.

Monoid Automaton 38

Let A be a DFA. We can define an equivalent DFA Asgr whose state set is the
monoid of maps Q → Q. The right action, initial and final states are given by

f · a = f ◦ δa

q0 = I

F ′ = { f | f(q0) ∈ F }

This machine is useful for conceptual purposes such as establishing a link
between finite state machines and monoids, but is obviously problematic from
an algorithmic perspective (even if we restrict the state set to the monoid
generated by the δa.

Roots 39

As and example, consider L ⊆ Σ+ and define

root(L) = { x ∈ Σ+ | x+ ∩ L ̸= ∅ }

Proposition
root(L) is regular whenever L is so regular.

Proof.
Change the final states in the monoid automaton for L to be

F = { f : Q → Q | orb+(q0; f) ∩ FA ̸= ∅ }

The new automaton accepts x iff there is some k ≥ 1 such that xk ∈ L, as
required. 2

First Principle of FSM 40

Figure out what the darn states are.

1 Stuff

2 FSM Computable Functions

3 Left Quotients

4 Conway Factorizations

5 2-DFA

6 FSM and Matrices

Matrices 42

There are many ways one can associate a matrix with a finite state machine.
Say, we are dealing with a DFA A.

Probably the most obvious approach is to consider the transition function of A
as a matrix ΣQ×Σ . This is useful from a data structure perspective, but not
particularly interesting.

Much more useful is to consider square matrices MQ×Q that live in some
monoid, with matrix multiplication as the operation. In particular we can
associate every input symbol to a Boolean matrix

φ : Σ → 2Q×Q

giving rise to a monoid homomorphism. We have

x ∈ L ⇐⇒ I · φ(x) · F = 1

where I and F are Boolean vectors indicating the initial and final states.

1 Stuff

2 FSM Computable Functions

3 Left Quotients

4 Conway Factorizations

5 2-DFA

6 FSM and Matrices

Transformation Semigroups 44

Suppose we have some set X and a collection F of endofunctions on X.

Definition
(X, F) is a transformation semigroup or composition semigroup if F is closed
under composition, and a transformation monoid if, in addition, F contains a
unit element.

If you prefer, you can think of the semigroup F as acting on X on the left in
the natural way:

f · x = f(x)

This is for standard composition; if we use diagrammatic composition (which is
more natural in connection with finite state machines), we get a right action.

The Algebra Perspective 45

To see the connection to finite state machines, note that we can think of the
transition function of a DFA as a Σ-indexed list of functions from states to
states:

δa : Q → Q

δa(p) = δ(p, a)

This turns the DFA into a Σ-algebra

A = ⟨Q; δa1 , . . . , δak ⟩

This may seem like a pointless exercise, but it naturally leads to another
interesting perspective: algebra.

But Why? 46

First off, nothing is lost: we can “iterate” these functions according to some
input word u = u1u2 . . . un (diagrammatic composition):

δu = δu1 ◦ δu2 ◦ . . . δun−1 ◦ δun

Acceptance then translates into: A accepts a word u iff δu(q0) ∈ F .

Plus, we get some additional concepts more or less for free: a subautomaton of
A is another Σ-algebra B = ⟨P ; γa1 , . . . , γak ⟩ such that P ⊆ Q and
γa(p) = δa(p).

And More 47

Similarly, a morphism φ : A → B of Σ-algebras must be a map φ : Q → P
such that

φ(δa(p)) = γa(φ(p))

One may want to augment this by conditions about initial and final states.

It is also straightforward to define products of the form

A × B

And we get congruences: an equivalence relation E on Q is a congruence if

p E q implies δa(p) E δa(q)

No Silver Bullet 48

To be sure, all these concepts can be developed without any appeal to algebra,
given enough thought.

But the whole point here is that they pop up for free, courtesy of some general,
universal ideas.

Exercise
Figure out exactly what morphism, product and congruence mean in this
context.

A Semigroup 49

The functions δa, a ∈ Σ, generate a transformation semigroup (monoid) T
over Q, a subsemigroup of the full monoid of endofunctions Q → Q.

Definition
T is called the transformation semigroup (monoid) of the DFA.

One way of writing down T is

T = { δx : Q → Q | x ∈ Σ⋆ } = ⟨δa | a ∈ Σ⟩

where δx(p) = δ(p, x).

Analyzing this semigroup can help quite a bit in getting a better understanding
of a DFA. And, there are powerful algebraic tools available that help in dealing
with the monoid.

Example 1: Even-Even 50

There is a natural 4-state DFA that accepts all strings over {a, b}⋆ that contain
an even number of a’s and an even number of b’s.

p 1 2 3 4
δa(p) 2 1 4 3
δb(p) 3 4 1 2

The initial state is 1 and F = {1}.
But note that

δa ◦ δa = I

δb ◦ δb = I

δa ◦ δb = δb ◦ δa

so that the transformation semigroup consists of {I, δa, δb, δa ◦ δb}. Note that
this is actually a monoid and even a group (Kleinsche Vierergruppe).

Moreover, from the equations it is easy to see that for any word x

δx = I ⇐⇒ #ax even, #bx even

Similarly we have
δx = δa ⇐⇒ #ax odd, #bx even

and so on.

At the very least this very elegant and concise.

Example 2: La,−2 52

The usual de Bruijn automaton

a

b

a

b

a

b

a

b

1

2

3

4

yields the transformations

p 1 2 3 4
δa(p) 1 3 1 3
δb(p) 2 4 2 4

These generate the semigroup (no monoid here)

(1, 3, 1, 3), (2, 4, 2, 4), (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3), (4, 4, 4, 4)

Question: What do the constant functions mean?

Semigroups versus Monoids 53

The distinction between semigroups and monoids here is a bit of a technical
nuisance, but there is no easy way to get rid of it.

At any rate, note that we can turn any semigroup S into a monoid S1 by
simply adding a new element 1 and defining

x · 1 = 1 · x = x

for all x in S.

Clearly, S and S1 are essentially the same.

Also note that a transformation semigroup may be a monoid without
containing the identity function.

Regularity and Algebra 54

The reason monoids are important here is because they provide a
characterization of regular languages that is free of any combinatorial aspect.
Always remember: algebra is the great simplifier.

Theorem
A language L ⊆ Σ⋆ is regular iff there is a finite monoid M , M0 ⊆ M and a
monoid homomorphism f : Σ⋆ → M such that L = f−1(M0).

Proof.
If L is regular, let M be the transformation monoid of a DFA that recognizes
L, and define f(x) = δx and M0 = { g ∈ M | g(q0) ∈ F }.

More Proof 55

The opposite direction is more interesting: we construct a DFA

A = ⟨M, Σ, δ; 1M , M0⟩

where δ(p, a) = p · f(a). Then δ(p, x) = p · f(x) and δ(q0, x) = f(x). 2

Message: anything goes as a state set, as long as the set is finite. For the
implementer, the state set is always [n], but that’s not a good way to think
about it.

Algebraic automata theory is a fascinating subject with lots of elegant results,
but it requires work and there is no essential algorithmic payoff. So, we won’t
go there.

