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Pancake Sorting 3

An old problem in combinatorics:

Given a stack of pancakes of different sizes, sort it by picking
up some of the pancakes on top with a spatula, flipping the
substack over, and placing it back on top of the rest.

More technically, one applies prefix reversals to sort a list.

Note that sorting is always possible: first, move the largest pancake on
top, then to the bottom—done by induction.

The interesting question is: how many flips does sorting take at most?



Bounds 4

Alas, it is quite difficult to come up with lower and upper bounds on the
optimal number of flips m needed to sort any stack of n pancakes. The
best result known today is

15
14 n ≤ m ≤ 18

11 n

Bill Gates and Christos Papadimitriou published a paper with weaker
bounds in 1979.

See Pancake Sorting for more background.

https://en.wikipedia.org/wiki/Pancake_sorting


Deterministic Pancakes 5

Here is a deterministic variant of the flipping operation.
Given a permutation π

Reverse exactly the first π(1) elements.

We will write T (π) for this operation. So the permutation

π = a1, a2, . . . , ak−1, ak, ak+1, . . . , an

where k = a1 = π(1) turns into

T (π) = ak, ak−1, . . . , a2, a1, ak+1, . . . , an



Pebble Model 6

For intuition, think of a permutation as a sequence of numbered pebbles

1 2 3 4 5 6

4 5 1 6 3 2

One application of T turns this into

1 2 3 4 5 6

6 1 5 4 3 2



The Question 7

What happens if we apply T repeatedly?

This is a beautiful example of a hopelessly open-ended question.

Figure out if anything interesting is happening with T .
Come up with an appropriate conjecture.
Lastly, prove the conjecture.



Orbits 8

Since there are only finitely many permutations of length n, each orbit
must consist of a transient and a period.

Obvious Question:
What are the transients/periods for T , depending on n?



Some Orbits 9

6 10 4 8 3 9 2 1 7 5
9 3 8 4 10 6 2 1 7 5
7 1 2 6 10 4 8 3 9 5
8 4 10 6 2 1 7 3 9 5
3 7 1 2 6 10 4 8 9 5
1 7 3 2 6 10 4 8 9 5

6 10 1 4 8 5 2 9 7 3
5 8 4 1 10 6 2 9 7 3

10 1 4 8 5 6 2 9 7 3
3 7 9 2 6 5 8 4 1 10
9 7 3 2 6 5 8 4 1 10
1 4 8 5 6 2 3 7 9 10

Orbits of some permutations of length 10.



Another Orbit 10

7 10 8 9 1 4 6 2 3 5
6 4 1 9 8 10 7 2 3 5

10 8 9 1 4 6 7 2 3 5
5 3 2 7 6 4 1 9 8 10
6 7 2 3 5 4 1 9 8 10
4 5 3 2 7 6 1 9 8 10
2 3 5 4 7 6 1 9 8 10
3 2 5 4 7 6 1 9 8 10
5 2 3 4 7 6 1 9 8 10
7 4 3 2 5 6 1 9 8 10
1 6 5 2 3 4 7 9 8 10



Visualization 11

Large tables are difficult for humans to understand.

It is better to visualize orbits in terms of the functional digraph of T .

vertices: permutations

edges: π → T (π)

Every node has outdegree 1, and each connected component contains
exactly one cycle.



n = 5 12



Big Component 13



Stable Permutations 14

All orbits have period 1, they end in a fixed point.
Enshrine this in a definition:

A permutation π is stable iff T (π) = π.

Since reversal of a prefix of length greater than 1 always changes the
permutation, there is a simple characterization:

π is stable iff π(1) = 1



Premature Conjecture 15

Conjecture:
All orbits end in a stable permutation.

Before one attempts a proof, it is probably a good idea to amass more
computational evidence.

All permutations of length n ≤ 14.

Millions of randomly chosen permutations for larger values of n.



Why 14? 16

13! = 6, 227, 020, 800

14! = 87, 178, 291, 200

15! = 1, 307, 674, 368, 000

Building the whole graph is not a good idea.

Instead we try to compute only the orbits generated by leaves.



Wisdom 17

Think before you hack.
Always.

Before one starts computing, it’s a good idea to check if there is any
low-hanging fruit as far as streamlining things is concerned.
With luck, this will guide the computations and help to avoid wasting
time.



Preimages 18

We should avoid computing orbits not starting at leaves.

Can we characterize the leaves?

If position k ∈ [n] is a fixed point of π = a1, . . . , an, (meaning
π(k) = ak = k), then T (σ) = π where

σ = k, ak−1, . . . , a2, a1, ak+1, . . . , an

More generally, the number of preimages of π is exactly the number of
fixed points in π.

A permutation has no preimages iff it has no fixed points; these are
commonly referred to as derangements.



Counting Derangements 19

The number of derangements is sometimes written !n, we have

!n ≈ n!/e

So roughly a third of all permutations will have no preimage under T .

Recurrences for !n:

!n = (n− 1)
(
!(n−1) + !(n−2)

)
!n = n · !(n−1) + (−1)n

The values up to 10 are

1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961

https://en.wikipedia.org/wiki/Derangement


Towards a Proof 20

Let’s fix a bit of notation:

πt = T t(π)
πt(1) the pivot at time t

E.g., for π = 7, 10, 8, 9, 1, 4, 6, 2, 3, 5, the pivot sequence is

7, 6, 10, 5, 6, 4, 2, 3, 5, 7, 1

Note that there are repetitions.

We need to show that 1 always is a pivot.
One strongly suspects that induction on n might be useful.



Maximum Pivot 21

Let m be the maximum pivot in the orbit of π.

Case 1: m = n

Then πt(n) = n for all sufficiently large t: we are essentially dealing with
a permutation of length n− 1, done by induction.

Case 2: m < n

Then k = π(n) = πt(n) for all t. Neither k nor n can be pivots, so we
may swap them without affecting the transient and period of the
orbit—think about the pebble interpretation. Again done by induction.

2
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Next Question 23

We know that the periods of all orbits are 1.

How about the transients?

The pictures indicate that things might be messy, so it’s best to tackle a
special case: what are the longest transients?



Maximum Transients 24

We would like to understand the function

S(n) = maximum transient for length n

Finding a closed form solutions is probably not so easy, so one should try
to find lower and upper bounds for S.

My C++ code handles n ≤ 14 in about 45 minutes.

0, 1, 2, 4, 7, 10, 16, 22, 30, 38, 51, 65, 80, 101

Not exactly clear what sort of growth this is.



A Recursive Function 25

Here is another way to express our stability conjecture.
It may seem a bit overblown, but bear with me.

Define the map T ⋆ on permutations by

T ⋆(π) =
{

T ⋆(T (π)) if π is not stable,
π otherwise.

Then our conjecture is equivalent to T ⋆ always terminating.



Termination 26

One fairly standard method to establish termination is to look for a
potential function, a map Φ : P → N such that

Φ
(
T (π)

)
< Φ(π) if π is not stable

Φ
(
T (π)

)
= Φ(π) otherwise.

Claim: T ⋆ always terminates iff it has a potential function.



Proof 27

⇒: The mother of all potential functions:

Φ0(π) = min
(

t ≥ 0 | πt stable
)

⇐: The natural numbers are well-ordered, so there are no infinite
descending chains. Hence πt is always stable for sufficiently large t.



Bounds 28

Alas, our termination argument is non-constructive, it provides no
bounds.

Of course, n! is a trivial upper bound, but the computation of S(n) up to
n = 14 strongly suggests that it is way off.

Hope: Maybe we can find a nice, easily computable potential function
that helps to bring the bound down.



“Easily Computable” 29

More generally, one often encounters the following scenario:

We are interested in a class C of functions.
We know that there is a computable function in C.

Challenge:
Find a simple algorithm to compute some function in C.
Find a simple algorithm to compute a “good” function in C.



Complexity 30

To be clear, Φ0 is the perfect potential function.

But we don’t know how to compute this potential without enumerating
the whole orbit. What we need is something more “local,” a nice closed
form expression would be ideal.

Making the idea of a nice potential precise is hard. One can try to argue
in terms of complexity theory, but even that does not capture our
intuition perfectly.



Embarrassing Detour 31

Or: Sometimes, knowledge is a dangerous thing.

Initially, I could not see an “easily computable” potential function†.
So, I decided to look for a more general type of potential function first:

Φ : P → On

where On is the class of ordinals, transfinite extensions of the naturals.

That may sound insane, but it’s fairly straightforward for someone used
to working with ordinals.

†No doubt a combinatorialist would find this to be quite obvious.



Crash Course in Ordinals 32

Think of the naturals as a total order ⟨N; <⟩.

0, 1, 2, . . . , n, n+1, . . .

There are exactly two kinds of elements in this order:

0, the minimum element
successors

Here y is the successor of x (and x the predecessor of y) if

x < y ∧ ¬∃ z (x < z < y)



Stages 33

Now think of the natural numbers as time, or as counting steps in a
process, or stages in a construction.

In computability, we are mostly interested in finite processes, but it also
makes sense to consider infinite ones. For example, an algorithm that
enumerates all prime numbers obviously would never terminate.

This enumeration algorithm runs forever, but we can think of it as
terminating after “infinitely many steps.” This is utterly wishy-washy, we
need to make it precise to get any use out of this idea.



Complete Enumeration 34

The infinitely many steps look like so:†

0, 1, 2, . . . , n, n+1, . . . |

We are using the notation . . . | to indicate that we want to think of all
the previous stages (here all finite stages) as being completed. All primes
have been generated.

†The ellipsis is one of the most consistently abused symbols in all of math. Here
the first one stands for finitely many steps, but the second one for infinitely many.



Omega 35

The next step is to assign a name to this stage at infinity:

ω

When we append ω at the end, we now have a new order that looks like

0, 1, 2, . . . , n, n+1, . . . ω

Note that ω is neither 0 nor a successor, it is the first limit ordinal.

The ordinals α < ω are exactly all the natural numbers.



Towards Infinity 36

Once we have reached level ω, we can take one more step and get to the
successor ω + 1. E.g., our prime enumeration algorithm could print the
comforting message “All done.”

And then to ω + 2, . . . , ω + n, and so on. If we keep going, we finally
wind up at

0, 1, 2, . . . , n, . . . ω, ω+1, ω+2, . . . , ω+n, . . . |

The new limit ordinal is called ω + ω = ω · 2.
So we have two infinite blocks, one after the other†.

†On the other hand, 2 · ω = ω when one defines ordinal arithmetic formally.



. . . and Beyond 37

You guessed it, we can also get ω + ω + ω = ω · 3.

In fact, we can get an infinite sequence of increasing limit ordinals

ω, ω · 2, ω · 3, . . . , ω · n, . . . |

We denote this level by ω · ω = ω2: ω many blocks of size ω each.

And we can get ωk for any natural number k†.

†In fact, this is just the very tip of the iceberg, but it’s enough for our purposes.



Lists 38

Another simple way to produce the orders ωk is to sort Nk in the
standard lexicographic way.

E.g., N2 produces the same order as ω2:

(u, x) < (u, y) for all x < y

(u, x) < (v, y) for all u < v

☠ So why bother with ordinals, why not just use lists of naturals?

Because ordinals allow us to express infinite stages purely in terms of
numbers, albeit transfinite ones. These numbers come equipped with a
full arithmetic that we can exploit.



Comment: ITTMs 39

There is an interesting model of computation called infinite time Turing
machines (ITTM) that uses ordinals to make strict technical sense out of
the intuitive notion of running a Turing machine for “infinitely many
steps.”

There are lots of interesting results about ITTMs and the model is more
appealing than many other approaches to generalized computability.

Full Disclosure: We will talk about ITTMs later.



The Key 40

Ordinals have a critical property that makes them important for recursion
and induction:

Theorem
Ordinals are well-ordered.

In other words, there is no infinite descending chain of ordinals:

α0 > α1 > . . . > αn > . . .

Hence, if we can find a potential function Φ : P → On , we still have a
proof that all orbits must end in a stable permutation.



So What? 41

Why should it be easier to find Φ : P → On rather than Φ : P → N ?

Because there is much more room in On, we can spread things out at
infinite distances without worrying about details. Asserting that
Φ(π) = ω2 + 123 does not provide a concrete finite bound on the
transient, it just forces it to be finite.

To be clear, this is mostly psychology, not logic.

For humans, psychology is critical.



Layers 42

For our purposes, we can think of a permutation π of length n− 1

π = a1, a2, . . . , an−1

as a permutation of length n

π′ = a1, a2, . . . , an−1, n

This is part of the induction argument, once πt(n) = n we’re done.



A Transfinite Potential 43

Wild Guess:
We should use a potential that drops radically when πt(n) = n, less so
for position n− 1, and so on.

With ordinals, this is fairly easy. We use base ω and consider numbers

Φ(π) = ωn−1 · dn + ωn−2 · dn−1 + . . . + ω · d2 + d1

Here the digits dk are natural numbers and depend on whether k is a
fixed point of π.



Conjuring Digits 44

Probably the most natural choice for the digits is to measure the distance
between k and π(k):

dk = |k − π(k)| < n

But, there is a simpler version using only binary digits:

dk =
{

1 if π(k) ̸= k
0 otherwise.



Why? 45

Let π(1) = k > 1, write d′
i for the digits of the potential of T (π).

Then

π dk = 1

T (π) d′
k = 0 d′

i = di for all i > k

The most significant digits stay the same, digit k drops, and the
remaining digits do not matter: they cannot compensate for the change
in ωk−1 (even if all of them switch from 0 to 1).



Duh! 46

This has nothing do with ordinals, instead of base ω we can simply use
base 2, and the argument goes through unchanged.

Φ(π) = dn 2n−1 + dn−1 2n−2 + . . . + d2 2 + d1

With this Φ, the derangements all have potential 2n − 1, and the identity
has potential 0.

This is better than the factorial bound, but still way off.
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A Challenge 48

The binary potential function arguably provides a better proof for our
conjecture, and at least some non-trivial upper bound on maximum
transients.

But: it does not help much with explaining the observed transients.
Recall that S(10) = 38, but derangements have potential 1023.
Also, it says nothing about lower bounds, not even linear ones.

Find better upper and lower bounds.
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Symbolic Computation 50

So far, we have only used a bit of symbolic computation to provide
evidence that the easy conjecture holds up.

Presumably this will help wasting time trying to find a proof for a wrong
conjecture.

Warning:
Building confidence via computation is important, but tricky. What if the
smallest counterexample were to appear for n = 1000? Maybe one needs
that much space to build a “data-structure” that ruins stability.



OEIS 51

Once we have the first 14 values of S, we can check Sloane’s Online
Encyclopedia of Integer Sequences.

It does: A000375.

Turns out, S(n) has been computed explicitly up to n = 19.

0, 1, 2, 4, 7, 10, 16, 22, 30, 38, 51, 65, 80, 101, 113, 139, 159, 191, 221

Since 19! ≈ 1.22× 1017 this is quite remarkable.

https://oeis.org/A000375


GPT-5 52

Given a description of the operation, GPT immediately recognized it as
the topswop operation, due to John Conway in 1973; it also provided all
(?) the relevant references.

It knew about the binary potential function (due to H. Wilf) and
produced a corresponding proof.

When challenged to come up with a potential-free argument it produced
the following slides.

Question: Is this argument correct?



GPT-5: Theorem (Conway’s topswap halts) 53

Given a permutation A = (A[1], . . . , A[n]), repeat:

m := A[1], A[1..m]← reverse
(
A[1..m]

)
.

Then the process halts with A[1] = 1.



GPT-5: Induction on n + Record tops 54

Induction. Base n = 1 trivial. Assume true for all < n.
Let At be the deck at time t, Tt := At[1]. A time t is a record if Tt

exceeds all previous tops. Let the distinct record tops be r1 < r2 < · · · .
Locking between records. When a record r occurs, the flip places card
r at position r. Until a larger record appears, every flip has length ≤ r,
so only positions 1..r move; positions r + 1..n (and card r) stay fixed.



GPT-5: Finish the induction 55

Case 1: Records are bounded by M < n.
From the first time M appears, flips have length ≤M ; positions M+1..n
are frozen. The run reduces to size M , so by IH it reaches top 1.
Case 2: n appears as a record. That flip puts card n at position n
forever. The run reduces to size n−1, so by IH it reaches top 1.
In both cases we get a contradiction to “never reaches 1,” so the process
halts with A[1] = 1. 2



An Ordinal Calculator 56

Paul Budnik implemented a calculator for ordinals.
It’s quite sophisticated, but there is a learning curve.

Ordinal Calculator

Ordcalc Manual

https://www.cs.cmu.edu/~cdm/resources/Budnik2012-ordinal-calculator.pdf
https://www.cs.cmu.edu/~cdm/resources/Budnik2012-ordcalc.pdf
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