
15-354: CDM K. Sutner

Assignment 6 Due: Oct. 31, 2024, 24:00.

1. Single Functions (30)

Background
Automatic structures have only relations, no functions. For this problem we consider the opposite scenario: a structure
with only functions, but no relations other than equality. For simplicity, we only allow one single, unary function
symbol f .

Task

A. Suppose we have only a single axiom of the form γn ≡ fn(x) = x, n ≥ 0. Find all the models of γn up to
isomorphism.

B. There is a natural way to define the product M = M1 × M2 of two models Mi of γn. Show that M is again a
model of γn. What do these products look like?

C. Now consider an arbitray equation γ ≡ s = t where s and t are terms in our language. Again, determine all the
models of γ.

D. Wurzelbrunft realizes that one could produce many more equational axioms if we had more unary functions
in our vocabulary. In particular, he believes that with about a billion function symbols he can write down an
exceedingly clever collection of such axioms that has only infinite models. What do you say?

Comment For part (C), be careful with the variables in the equation.



2. Reversibility of ECA (30)

Background
Suppose ρ : 23 → 2 is the local map of an elementary cellular automaton (i.e., a ternary Boolean function). We have
seen how to construct from ρ a synchronous transducer A_ that checks whether a finite bit sequence x evolves to
y in one step under fixed boundary conditions. Naturally, there is a similar machine for cyclic boundary conditions,
though things are a bit messier than in the fixed case.

Reversibility of a cellular automaton is expressed by the first-order formula

inj ≡ ∀ x, y, z (x _ z ∧ y _ z ⇒ x = y)

It is slightly easier to work with irreversibility, expressed by the negation ninj = ¬inj.

Task

A. Construct a synchronous 2-track transducer B_ that checks whether a finite bit sequence x evolves to y in one
step under cyclic boundary conditions.

B. Then build a synchronous 3-track transducer A that accepts the language defined by the matrix of ninj.

C. What does A have to do with injectivity of the global map on 2n?

D. Explain how one can directly construct a 2-track transducer A′ that still can be used to check ninj. This machine
should be of the form A′ = A0 × U where U is the un-equal transducer on 2 tracks.

Comment
For part (A), nondeterminism is critical (see the construction for the fixed boundary condition case). To avoid a silly
edge case, let’s assume that all words are non-empty.
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3. Arithmetic Transducers (40)

Background
Applying transducers to arithmetic requires a bit of care when it comes to representing numbers as strings. In
the following we will use the numeration based on reverse binary, no empty string, (zero is represented by 0), no
trailing zeros. Thus, numbers are represented by the regular language N = {0} ∪ {0, 1}⋆1 and the value of a string
x = x0x1 . . . xn−1 ∈ N is val(x) =

∑
i<n xi2i; from our definitions, val is a bijection.

Now suppose we have some transducer T defining a transduction τ ⊆ N × N . We say that T with behavior τ
implements an arithmetic function f : N → N if

f = { (val(x), val(y) | x:y ∈ τ }

For example, the following transducer implements the successor function:

1 2
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4
0/1

1/0

1/1

0/1
ε/1

1/0

a/a

0/1

Task

A. Construct a transducer that implements the function n 7→ n + 2.

B. Construct a transducer that implements the function n 7→ n + 3.

C. Construct a transducer that implements the Collatz function n 7→ n/2 for n even, n 7→ 3n + 1 otherwise.

D. Argue that your transducers work as advertised.

Comment
1. Just to be clear: there is no need for synchronous transducers, anything goes.
2. “Construct” here means: build it explicitly, don’t just argue that it must exist. The machines only require 5/7/7
states (assuming I did not screw up somewhere). It may help to assume initially that ε for zero and trailing zeros are
allowed, and then refine the machines so that they handle the additional constraints.
3. The Collatz function is defined only for positive arguments.
4. The correctness argument should be compelling, but a real formal proof is too much of a mess to consider. Say
something reasonable.

Extra Credit: Find all the errors in the solutions.
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