
15-354: CDM K. Sutner

Assignment 4 Due: Sep. 27, 2024, 24:00.

1. Word Binomials (40)

Background
By a subsequence or subword of a word v = v1v2 . . . vm we mean any word u = vi1vi2 . . . vir where 1 ≤ i1 < i2 <
. . . ir ≤ m is a strictly increasing sequence of indices. In other words, we can erase a few letters in v to get u. Thus
bbc and cab are subsequences of ababacaba but cbb is not.

Note that a specific word can occur multiple times as a subsequence of another. For example, aab appears 7 times in
ababacaba. We write (

v

u

)
= C(v, u) = number of occurrences of u as a subsequence of v.

The notation is justified since “word binomials” generalize ordinary binomial coefficients:
(

n
k

)
=

(
an

ak

)
. Note that

instances of u as a subsequence of v in general overlap, e.g., C(a3, a2) = 3.

Task
Recall the Kronecker delta defined by δa,b = 1 iff a = b, 0 otherwise. Let a, b ∈ Σ and u, v, ui, vi ∈ Σ⋆.

A. Show that (
va

ub

)
=

(
v

ub

)
+ δa,b

(
v

u

)
B. Show that (

v1v2

u

)
=

∑
u=u1u2

(
v1

u1

)(
v2

u2

)
C. Give an efficient algorithm to compute word binomials.

D. Give a simple description (in terms of union, concatenation and Kleene star) of the language

L = { v ∈ {a, b}⋆ | C(v, ab) = 3 }

E. Construct the minimal DFA for L by diagram chasing (aka doodling).

F. Generalize: given a word u and an integer r construct a DFA that accepts

L(u, r) = { v ∈ Σ⋆ | C(v, u) = r }

Is your machine always minimal?

Comment
For what it’s worth, here is a picture of the smallest possible DFA checking for 6 subwords aab. Make sure you
understand how this machine works. Your construction will probably produce a much larger machine–but one that is
also much easier to describe than this minimal one.



subword aab 6-count
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2. Semilinear Counting (30)

Background
It is often stated that “finite state machines cannot count.” To a point, that is correct, but there are special cases
when a finite state machine is perfectly capable of counting. Here are some fairly involved examples of counting in
zero space.

Recall that a set C ⊆ N is semilinear if it is a finite union of sets of the form

t + pN = { t + i p | i ≥ 0 }

where t, p ∈ N; for p = 0 this is just the singleton {t} (think of transient and period). Let LC = { 0ℓ | ℓ ∈ C } ⊆ 0⋆,
the numbers in C written in unary.

Let U ⊆ Σ+ be a regular language. A U -factorization of x ∈ Σ+ is a sequence u1, . . . , uℓ of words in U such that
x = u1 . . . uℓ, ℓ ≥ 1. Write fac(x, U) for the set of all U -factorizations of x and define

L(U, C) = { x ∈ Σ+ | |fac(x, U)| ∈ C }

Thus, L(U, C) collects all words that have exactly ℓ many U -factorizations where ℓ ∈ C.

Task

A. Construct the minimal automaton for LC .

B. Conclude that the semilinear sets form a Boolean algebra.

C. Show that L(U, C) is regular.

Comment For (A), make sure your automaton is really minimal. For the last part, you probably want to use a
pebbling argument and closure properties. Try C = {3} first, then C = evens.
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3. Blowup (30)

Background
Write An for the (boring) automaton on n states whose diagram is the circulant with n nodes and strides 1 and 2.
The edges with stride 1 are labeled a and the edges with stride 2 are labeled b. For example, the following picture
shows A6. We assume I = F = Q.

a

a

a

a

a

a

b

b
b

b

b
b

Let Bn be the (interesting) automaton obtained from An by switching one of the b labels to an a label; write Kn for
the acceptance language of Bn.

Task

A. Show that determinization of Bn produces an accessible automaton B′
n of 2n states.

B. Argue that B′
n is already reduced and conclude that Kn has state complexity 2n.

Comment
The language Kn has no particular significance (as far as I know). Thinking about pebble automata might help with
the argument.

Extra credit: If you switch an a to a b, there is still full blow-up for odd n, but for even n the power automaton has
only size 2n − 1.
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