15-354: CDM K. Sutner

Assignment 4 Due: Sep. 27, 2024, 24:00.

1. Word Binomials (40)

Background

By a subsequence or subword of a word v = v1vy...v,, we mean any word u = v;,V;, ... v;,. where 1 < i < 49 <
...4» < m is a strictly increasing sequence of indices. In other words, we can erase a few letters in v to get u. Thus
bbc and cab are subsequences of ababacaba but cbb is not.

Note that a specific word can occur multiple times as a subsequence of another. For example, aab appears 7 times in
ababacaba. We write

v
( ) = C(v,u) = number of occurrences of u as a subsequence of v.
u

The notation is justified since “word binomials” generalize ordinary binomial coefficients: (Z) = (Z:) Note that
instances of u as a subsequence of v in general overlap, e.g., C(a3,a?) = 3.

Task
Recall the Kronecker delta defined by d, = 1 iff a = b, 0 otherwise. Let a,b € X and u, v, u;,v; € ™.

A. Show that

B. Show that

()= ()()

U=UuU1uU2
C. Give an efficient algorithm to compute word binomials.

D. Give a simple description (in terms of union, concatenation and Kleene star) of the language
L={ve{ab}|C(v,ab) =3}

E. Construct the minimal DFA for L by diagram chasing (aka doodling).
F. Generalize: given a word u and an integer r construct a DFA that accepts
L(u,r) ={ve X | Cw,u)=r}

Is your machine always minimal?

Comment

For what it’s worth, here is a picture of the smallest possible DFA checking for 6 subwords aab. Make sure you
understand how this machine works. Your construction will probably produce a much larger machine—but one that is
also much easier to describe than this minimal one.



subword aab 6-count
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2. Semilinear Counting (30)

Background

It is often stated that “finite state machines cannot count.” To a point, that is correct, but there are special cases
when a finite state machine is perfectly capable of counting. Here are some fairly involved examples of counting in
Zero space.

Recall that a set C' C N is semilinear if it is a finite union of sets of the form
t+pN={t+ip|i>0}

where t,p € N; for p = 0 this is just the singleton {¢} (think of transient and period). Let Lo = {0° | £ € C'} C 0,
the numbers in C' written in unary.

Let U C X7 be a regular language. A U-factorization of x € X% is a sequence uq,...,us of words in U such that
T =wuy...ug £ >1. Write fac(x,U) for the set of all U-factorizations of z and define

LU, C)={z e X" | [fac(z,U)| € C}
Thus, L(U, C) collects all words that have exactly £ many U-factorizations where ¢ € C.
Task
A. Construct the minimal automaton for L¢.

B. Conclude that the semilinear sets form a Boolean algebra.

C. Show that L(U,C) is regular.

Comment For (A), make sure your automaton is really minimal. For the last part, you probably want to use a
pebbling argument and closure properties. Try C = {3} first, then C' = evens.
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3. Blowup (30)

Background

Write A,, for the (boring) automaton on n states whose diagram is the circulant with n nodes and strides 1 and 2.
The edges with stride 1 are labeled a and the edges with stride 2 are labeled b. For example, the following picture
shows Ag. We assume [ = F = Q.

Let B,, be the (interesting) automaton obtained from A,, by switching one of the b labels to an a label; write K,, for
the acceptance language of B,,.

Task

A. Show that determinization of B,, produces an accessible automaton B, of 2" states.

B. Argue that B, is already reduced and conclude that K, has state complexity 2.

Comment
The language K, has no particular significance (as far as I know). Thinking about pebble automata might help with
the argument.

Extra credit: If you switch an a to a b, there is still full blow-up for odd n, but for even n the power automaton has
only size 2™ — 1.
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