15-354: CDM K. Sutner

Assignment 4 Due: **Sep. 27, 2024, 24:00**.

1. Word Binomials (40)

Background

By a subsequence or subword of a word $v = v_1 v_2 \dots v_m$ we mean any word $u = v_{i_1} v_{i_2} \dots v_{i_r}$ where $1 \le i_1 < i_2 < \dots i_r \le m$ is a strictly increasing sequence of indices. In other words, we can erase a few letters in v to get u. Thus bbc and cab are subsequences of ababacaba but cbb is not.

Note that a specific word can occur multiple times as a subsequence of another. For example, aab appears 7 times in ababacaba. We write

 $\begin{pmatrix} v \\ u \end{pmatrix} = C(v, u) =$ number of occurrences of u as a subsequence of v.

The notation is justified since "word binomials" generalize ordinary binomial coefficients: $\binom{n}{k} = \binom{a^n}{a^k}$. Note that instances of u as a subsequence of v in general overlap, e.g., $C(a^3, a^2) = 3$.

Task

Recall the Kronecker delta defined by $\delta_{a,b} = 1$ iff a = b, 0 otherwise. Let $a, b \in \Sigma$ and $u, v, u_i, v_i \in \Sigma^*$.

A. Show that

$$\begin{pmatrix} va \\ ub \end{pmatrix} = \begin{pmatrix} v \\ ub \end{pmatrix} + \delta_{a,b} \begin{pmatrix} v \\ u \end{pmatrix}$$

B. Show that

$$\begin{pmatrix} v_1 v_2 \\ u \end{pmatrix} = \sum_{u=u_1 u_2} \begin{pmatrix} v_1 \\ u_1 \end{pmatrix} \begin{pmatrix} v_2 \\ u_2 \end{pmatrix}$$

- C. Give an efficient algorithm to compute word binomials.
- D. Give a simple description (in terms of union, concatenation and Kleene star) of the language

$$L = \{ v \in \{a, b\}^* \mid C(v, ab) = 3 \}$$

- E. Construct the minimal DFA for L by diagram chasing (aka doodling).
- F. Generalize: given a word u and an integer r construct a DFA that accepts

$$L(u,r) = \{ v \in \Sigma^* \mid C(v,u) = r \}$$

Is your machine always minimal?

Comment

For what it's worth, here is a picture of the smallest possible DFA checking for 6 subwords *aab*. Make sure you understand how this machine works. Your construction will probably produce a much larger machine—but one that is also much easier to describe than this minimal one.

subword aab 6-count

CDM HW 4 2 of 4

2. Semilinear Counting (30)

Background

It is often stated that "finite state machines cannot count." To a point, that is correct, but there are special cases when a finite state machine is perfectly capable of counting. Here are some fairly involved examples of counting in zero space.

Recall that a set $C \subseteq \mathbb{N}$ is semilinear if it is a finite union of sets of the form

$$t + p \, \mathbb{N} = \{ \, t + i \, p \mid i \geq 0 \, \}$$

where $t, p \in \mathbb{N}$; for p = 0 this is just the singleton $\{t\}$ (think of transient and period). Let $L_C = \{0^{\ell} \mid \ell \in C\} \subseteq 0^*$, the numbers in C written in unary.

Let $U \subseteq \Sigma^+$ be a regular language. A *U*-factorization of $x \in \Sigma^+$ is a sequence u_1, \ldots, u_ℓ of words in U such that $x = u_1 \ldots u_\ell, \ell \ge 1$. Write fac(x, U) for the set of all *U*-factorizations of x and define

$$L(U,C) = \{ x \in \Sigma^+ \mid |\mathsf{fac}(x,U)| \in C \}$$

Thus, L(U,C) collects all words that have exactly ℓ many U-factorizations where $\ell \in C$.

Task

- A. Construct the minimal automaton for L_C .
- B. Conclude that the semilinear sets form a Boolean algebra.
- C. Show that L(U,C) is regular.

Comment For (A), make sure your automaton is really minimal. For the last part, you probably want to use a pebbling argument and closure properties. Try $C = \{3\}$ first, then C = evens.

CDM HW 4 3 of 4

3. Blowup (30)

Background

Write A_n for the (boring) automaton on n states whose diagram is the circulant with n nodes and strides 1 and 2. The edges with stride 1 are labeled a and the edges with stride 2 are labeled b. For example, the following picture shows A_6 . We assume I = F = Q.

Let \mathcal{B}_n be the (interesting) automaton obtained from \mathcal{A}_n by switching one of the *b* labels to an *a* label; write K_n for the acceptance language of \mathcal{B}_n .

Task

- A. Show that determinization of \mathcal{B}_n produces an accessible automaton \mathcal{B}'_n of 2^n states.
- B. Argue that \mathcal{B}'_n is already reduced and conclude that K_n has state complexity 2^n .

Comment

The language K_n has no particular significance (as far as I know). Thinking about pebble automata might help with the argument.

Extra credit: If you switch an a to a b, there is still full blow-up for odd n, but for even n the power automaton has only size $2^n - 1$.

CDM HW 4 4 of 4