
CDM

Automatic Structures

Klaus Sutner

Carnegie Mellon University
Spring 2025

1 Rational Relations

2 Synchronous Relations

3 Model Checking Automatic Structures

Recall: Word Structures 2

We were interested in structures that can be completely described in terms of
finite state machines.

C = ⟨A;R1, R2, . . . , Rk⟩

A ⊆ Σ⋆ is a recognizable language, and

Ri ⊆ Aℓi is a recognizable relation on words.

We already know how to handle the carrier set, but we have only one feeble
example of a “recognizable relation.”

Mealy Automata 3

We showed that the following structure based on the invertible Mealy
automaton A3

2

C = ⟨2⋆; 0 , 1 , 2 ⟩

describes a group, isomorphic to Z × Z.

Issues to attend to:

Mealy automata only produce relations (actually, functions) that are length-
preserving. We need to generalize.
An example unrelated to group theory would be reassuring. We will use
logic and give a decision procedure for Presburger arithmetic (arithmetic
without multiplication).

Rational Relations 4

A fairly good intuitive way to think about handling relations in general is to
modify our old finite state machines:

Keep the finite state control.
Allow 2 separate input tapes with separate read-only heads.

The read heads are still one-way, but they can move independently from each
other; in particular, one head can get arbitrarily far ahead of another.

When both heads have consumed all of their input, acceptance depends on
whether the machine is in a final state.

The relations obtained this way are called rational.

Two-Tape Machines 5

Y

N

ℳ

a b c a a b

b b
a a b a c a

Rational Examples 6

The identity relation on Σ⋆.

The unequal relation x ̸= y.

The prefix/factor/suffix relations.
Note that the last two require nondeterministic guessing.

Lexicographic order, length-lex order.

Concatenation as a ternary relation { (x, y, z) | xy = z }.

The addition relation { (x, y, z) | x+ y = z, x, y, z ∈ 2⋆ }.
Here the arguments are written in reverse binary.

Un-Equal 7

Here is a machine whose behavior is the relation x ̸= y.

a/b

a/ε

ε/a

a/a

∗

a/ε

ε/a

In the diagram, a and b are supposed to range over Σ, and a ̸= b.
∗ means eternal bliss.

Substitution 8

A transducer that (essentially) replaces the first occurrence of abbb by baaa.

0 1 2 3 4 5
a/ε

b/b

b/ε

a/a

b/ε

a/ab

b/ε

a/abb

ε/baaa

s/s

Exercise
Why does this transducer not quite work? Fix the problem.
Change the machine so that all occurrences are replaced.

Non-Rational Relations 9

The reversal relation x = yop.

The copy relation { (x, xx) | x ∈ Σ⋆ }.

The permutation relation { (x, π(x)) | x ∈ Σ⋆, π permutation }

The multiplication relation { (x, y, z) | x · y = z, x, y, z ∈ 2⋆ }.
Here the arguments are written in reverse binary.

Less interesting: any non-recognizable language L is non-rational as a unary
relation.

Disaster 10

Rational relations are very interesting and obviously useful, but they are a bit
too complicated for our purposes.

Here are some of the problems:

Rational relations are not closed under complementation or intersection.

Nondeterministic machines cannot be avoided in general.

The lack of Boolean closure means that we could not handle negations and
conjunctions, a total disaster for a decision algorithm.

Workaround 11

We will home in on a small subclass of rational relations, so-called synchronous
relations or automatic relations.

These are defined in a way that essentially preserves all the strong results we
have wrto recognizable languages.

And, they are still expressive enough to produce interesting applications.

1 Rational Relations

2 Synchronous Relations

3 Model Checking Automatic Structures

Scaling Back 13

Inspired by Mealy machines one might try to make do with length-preserving
relations only: R(x, y) implies |x| = |y|.

x1 x2 . . . xn
y1 y2 . . . yn

In this case we could think of R ⊆ (Σ ×Σ)⋆, so our 2-track words are actually
words over the product alphabet Σ ×Σ. The hope is that one can then use an
ordinary 1-tape finite state machine to recognize them (see below for a theorem
the justifies this hope).

Relaxing the Length Condition 14

Alas, strictly length-preserving relations are bit too restricted for our purposes.
We can relax things a little by using a padding symbol #: Σ# = Σ ∪ {#}
where # /∈ Σ.

The alphabet for 2-track words is ∆# = Σ# ×Σ#:

x:y = x1 x2 . . . xn # . . . #
y1 y2 . . . yn yn+1 . . . ym

This is called the convolution† of x and y and is written x:y.

†Horrible terminology, this has nothing to do with the integral transform by the same name.

Convolution Language 15

Note that we are not using all of ∆⋆
but only the recognizable subset coming

from convolutions. In other words, # can only appear as a suffix, and in at
most one track. For example,

a # b #
a b a a

a b b # #
a b a b #

are not allowed.

It is easy to see that the collection of all convolutions forms a recognizable
language over ∆#.

As always, a similar approach clearly works for kary relations.

Synchronous Relations 16

Here is an idea going back to Büchi and Elgot in 1965.

Definition
A relation R ⊆ Σ⋆ ×Σ⋆ is synchronous or automatic if there is a finite state
machine A over ∆# such that

L(A) = {x:y | R(x, y) } ⊆ ∆⋆
#

k-ary relations are treated similarly.

Note that this machine A is just a language recognizer, not a transducer: since
we pad, we can read one symbol in each track at each step.

In a sense, synchronous relations are the most basic examples of transductions
that are not entirely trivial.

By contrast, one sometimes refers to arbitrary rational relations as
asynchronous.

(Counter)Examples 17

Equality and inequality are synchronous.

Lexicographic order is synchronous.

The prefix-relation is synchronous.

The ternary addition relation is synchronous.

The suffix-relation is not synchronous.

The relations “x is a factor of y” and “x is a (scattered) subword of y”
are not synchronous.

The Difference? 18

For any accepting computation π on x:y ∈ L, define its lag to be the maximum
distance between the two heads. The lag of x:y is the minimum lag over all
computations π.

If there is a universal bound B on the lag of all x:y ∈ L one can construct a
synchronous transducer that accepts the same language. Essentially, keep track
of a word d ∈ Σ≤B representing the part of the input that the leading head has
already read. If the heads are in the same position, d = ε.

E.g., if the leading head moves forward and reads an a we update d to da if
|d| < B, and crash otherwise. If the trailing head reads a we replace d by
tail(d) if d ̸= ε, otherwise we set d = a.

A Justification 19

If the lag is unbounded, then the transduction cannot be length-preserving.

Theorem (Elgot, Mezei 1965)
Any length-preserving rational relation is already synchronous.

It is a good exercise to produce a constructive proof that builds the
synchronous machine as efficiently as possible (in general there will be an
exponential blow-up in size).

Boolean Operations 20

Claim
Given two k-ary synchronous relations ρ and σ on Σ⋆, the following relations
are also synchronous:

ρ ⊔ σ ρ ⊓ σ ρ− σ

The proof is very similar to the argument for recognizable languages: one can
effectively construct the corresponding automata using the standard product
machine idea.

This is a hugely important difference between general rational relations and
synchronous relations: the latter do form an effective Boolean algebra, but we
have already seen that the former are not closed under intersection (nor
complement).

Synchronous Composition 21

On the upside, synchronous relations are closed under composition.

Suppose we have two binary relations ρ ⊆ Σ⋆ × Γ ⋆ and σ ⊆ Γ ⋆ ×∆⋆.

Theorem
If both ρ and σ are synchronous relations, then so is their composition ρ ◦ σ.

Exercise
Prove the theorem.

Projections 22

Here is another important closure property. Suppose ρ is a k-ary relation on
words. We define the projection of ρ to be

ρ′(x2, . . . , xk) ⇐⇒ ∃ z ρ(z, x2, . . . , xk)

Lemma
Whenever ρ is synchronous, so is its projection ρ′.

Proof.
The proof is nearly trivial: simply erase the first track in the k-track alphabet:

p
a1:a2:...:ak−−−−−−−−→ q ⇝ p

a2:...:ak−−−−−−→ q

Done! 2

Flies and Ointments 23

The same result holds for rational relations in general, with the same proof.

From the machine perspective, projections are easily linear time.

Alas, erasing a track will usually turn a deterministic machine into a
nondeterministic one. If we need to determinize later (e.g., to handle negation)
this may be a source of exponential blow-up.

1 Rational Relations

2 Synchronous Relations

3 Model Checking Automatic Structures

Warm-Up 25

Recall the tree automorphisms defined by reversible Mealy machines. Their
study involves composition, iteration and group theory; overall, it is fairly
difficult to get good results.

Here is a dream: could we build a decision algorithm for simple assertions that
exploits our algorithmic machinery for finite state machines?

Since relational structures are easier to handle, we think of a function
Σ⋆ → Σ⋆ as a binary relation _. We are interested in statements about

C = ⟨ 2⋆; _⟩

Examples 26

∀x, y, z (x _ y ∧ x _ z ⇒ y = z)

∀x, y, z (x _ y ∧ z _ y ⇒ x = z)

∀x ∃ y (y _ x)

∃x, y, z (x _ y ∧ y _ z ∧ z _ x ∧ x ̸= y)

∀x ∃ y, z
(
(y _ x ∧ z _ x ∧ y ̸= z) ∧ ∀u (u _ x ⇒ u = y ∨ u = z)

)

What is the meaning of these formulae?

The Model Checking Algorithm 27

Suppose we have a synchronous relation _ and some FO sentence Φ in the
language L(_).

We want an algorithm to test whether Φ holds over C = ⟨ 2⋆; _⟩ .

For simplicity, we may assume that quantifiers use distinct variables and that
the formula is in prenex-normal-form†, say:

Φ = ∃x1 ∀x2 ∀x3 . . .∃xk φ(x1, . . . , xk)

The matrix φ(x1, . . . , xk) is quantifier-free, so all we have there is Boolean
combinations of atomic formulae.

†This is actually a bad idea for efficiency reasons, but it simplifies the discussion of the basic
algorithm.

Atomic 28

In our case, there are only two possible atomic cases:

xi = xj

xi _ xj

Given an assignment for xi and xj (i.e., actual strings) we can easily test these
atomic formulae using two synchronous transducers A= and A_.

So φ(x1, . . . , xk) defines a k-ary relation over 2⋆, constructed from _ and =
using Boolean operators.

Atomic to Quantifier-Free 29

The next step is to build a k-track synchronous machine that recognizes the
k-ary relation on 2⋆ defined by the quantifier-free formula

φ(x1, x2, . . . , xk)

We can do this by induction on the subformulae of φ.

The atomic pieces read from two appropriate tracks and check _ or =.

Note that there is a bureaucratic problem: the atomic machines are 2-track,
but the machine for the matrix is usually k-track for some k > 2.

Embeddings 30

More precisely, use superscripts to indicate the number of tracks of a machine
as in A(2)

_ and A(2)
= .

Let m ≤ n. We need an embedding operation

emb(n)
t : m-track −→ n-track

where t = t1, . . . , tm, ti ∈ [n], all distinct.

So emb(n)
t (A(m)) = B(n) means that track i of A(m) is identified with track ti

in B(n). The other tracks are free (all possible transitions). This does not
affect the state set, but it can cause potentially very large alphabets and,
correspondingly, large numbers of transitions in the embedded automaton†.

†One of the reasons why state complexity alone is not really a good measure of the size of an
automaton, one needs to add the number of transitions.

Two Steps 31

→

→

x

y

z

A product machine to check x _ y ∧ y _ z.

Relational Composition 32

Slightly more generally, we can combine any two 2-track machines A(2)
i and

construct the product machine

B = emb(3)
1,2

(
A(2)

1
)

× emb(3)
2,3

(
A(2)

2
)

B checks for strings x:y:z such that A1 recognizes x:y and A2 recognizes y:z.

An so on for any number of embedded automata. Note that the product
machine construction can produce uncomfortably large state sets.

Boolean Connectives 33

Suppose φ = ψ1 ∧ ψ2 with corresponding machines Aψ1 and Aψ2 . We can use
a product machine construction to get Aφ.

Disjunctions are even easier: just take the disjoint union, there is really no way
to get around nondeterminism here.

But negations are potentially expensive: we have to determinize first.

At any rate, we wind up with a composite automaton Aφ that recognizes the
relation defined by the matrix:

L(Aφ) = {u1:u2: . . . :uk | C |= φ(u1, u2, . . . , uk) }

Projections 34

There is a natural dual to embeddings: projections.

Let m ≤ n. We have a projection operation

prj(n)
t : n-track −→ m-track

where t = t1, . . . , tn′ , n′ ≤ n, ti ∈ [n], all distinct, m = n− n′.

So prj(n)
t (A(n)) = B(m) means that, for all transitions in A(n), the tracks ti of

the transition labels have been erased, producing Bm. The state set is
unaffected.

It is fine to have n = n′, in which case it is understood that we are left with an
unlabeled digraph (with special initial and final nodes).

Quantifiers 35

It remains to deal with all the quantifiers in the prefix of Φ. First consider a
single existential quantifier, say

∃xψ(x)

We have a machine A(n)
ψ that has a track t for variable x.

Simply erase the x-track from all the transition labels.

In other words, prj(n)
t (A(n)) corresponds exactly to existential quantification

over variable x.

Alas, for universal quantifiers we have to use the old equivalence ∀ ≡ ¬ ∃ ¬.

This is all permissible, since projections and negations do not disturb
automaticity–though they may increase the machine size substantially.

Composition Machine 36

Recall the machine checking x _ y ∧ y _ z.

B = emb(3)
1,2

(
A_

)
× emb(3)

2,3
(
A_

)
Projecting away the y-track

B′ = prj(n)
2 (B)

produces a machine that recognizes x:z such that ∃ y (x _ y ∧ y _ z).

Similarly we can handle fk(x) = z for any fixed value of k. However, the size
of the machine is only bounded by mk.

Finale Furioso 37

In the process of removing quantifiers, we lose one track at each step and get
intermediate machines Bφ,ℓ

L(Bφ,ℓ) = {u1:u2: . . . :uℓ | C |= φℓ(u1, u2, . . . , uℓ) }

for ℓ ≤ k. In the end ℓ = 0, and we are left with an unlabeled transition system
Bφ,0. This transition system has a path from I to F iff the original sentence Φ
is valid.

So the final test is nearly trivial (DFS anyone?), but it does take a bit of work
to construct the right machine.

Closure to the Rescue 38

Why does this all work, fundamentally? It is all a direct consequence of various
closure properties:

∨ union
∧ intersection
¬ complement
∃ homomorphism
emb inverse homomorphism

Needless to say, all the closures are effective: we have algorithms to construct
all the corresponding machines.

Efficiency 39

∨ and ∃ are linear if we allow nondeterminism.

∧ is at most quadratic via a product machine construction.

¬ is potentially exponential since we need to determinize first.

∀ well . . .

So this is a bit disappointing: we may run out of computational steam even
when the formula is not terribly large. Universal quantifiers, in particular, can
be a major problem.

A huge amount of work has gone into streamlining this and similar algorithms
to deal with instances that are of practical relevance.

Example: 3-Cycles 40

Let’s figure out the details on how to determine the existence of a 3-cycle in C.
The obvious formula to use is this:

Φ ≡ ∃x, y, z (x _ y ∧ y _ z ∧ z _ x ∧ x ̸= y ∧ x ̸= z ∧ y ̸= z)

The first part ensures that there is a cycle, and the second part prevents the
cycle from being shorter than 3.

Perfectly correct, but note the following. Suppose the basic machine A_ that
checks _ has m states. Then the first part of the formula produces a machine
of possibly m3 states. The non-equal part blows things up further to at least
8m3 states.

Optimizing 41

We could replace Φ by any equivalent formula, which would be usefully if we
could find a smaller formula. It seems hard to get around the m3 part,
checking for each inequality doubles the size of the machine, so we get
something 8 times larger than the machine for the raw 3-cycle. It is better to
realize that since _ is functional, the last formula is equivalent to

∃x, y, z (x _ y ∧ y _ z ∧ z _ x ∧ x ̸= y)

Exercise
Figure out how to deal with k-cycles for arbitrary k.

The 3-Cycle Transducer 42

So, based on the better formula, we use the 3-track alphabet 23 = 2 × 2 × 2
plus padding to recognize

{u:v:w | u _ v _ w _ u ∧ u ̸= v }

Let Ai,j = emb(3)
i,j

(
A(2)

_

)
. Also, let D(2)

̸= be the machine that checks for
inequality and D = emb(3)

1,2
(
D(2)

̸=

)
.

We can now concoct a 3-track product machine for the conjunctions:

B = A1,2 × A2,3 × A3,1 × D

where A_,i,j tests if the word in track i evolves to the word in track j.

Projecting 43

So we get a machine B that is roughly cubic in the size of A_ (disregarding
possible savings for accessibility).

Once B3 is built, we erase all the labels and are left with a digraph (since φ has
no universal quantifiers there is no problem with negation).

This digraph has a path from an initial state to a final state if, and only if,
there is a 3-cycle under _.

Note, though, how the machines grow if we want to test for longer cycles: the
size of Bk is bounded only by mk, where m is the size of A_, so this will not
work for long cycles. And, we need several products with Di,j , each at least
doubling the size of the product.

Example: Elementary Cellular Automata 44

A elementary cellular automaton (ECA) is a Boolean function ρ : 23 → 2 .

We can extend ρ to a map ρ̂ : 2Z → 2Z by chopping X ∈ 2Z into overlapping
blocks of 3 bits, and applying ρ pointwise.

ρ̂(X)(i) = ρ(Xi−1, Xi, Xi+1)

The two maps are called the local map and global map, respectively. Don’t
worry about the biinfinite words, we’ll get back to finite in a moment.

What would the basic one-step automaton A_ for an ECA look like?

First, an automaton that corresponds to sliding a window of length 2 across the
configuration. The states will naturally be 22, and the edges corresponds to
just having seen 3 bits in a row.

The de Bruijn Automaton 45

00

01

11

10

000

001

010

011

100

101

110

111

Each configuration in 2Z corresponds to exactly one biinfinite path in this
automaton. And every biinfinite path corresponds to a configuration (at least if
we are a bit relaxed about where the origin is).

The Basic Transducer 46

00

01

11

10

0/ρ(000)

1/ρ(001)

0/ρ(010)

1/ρ(011)

0/ρ(100)

1/ρ(101)

0/ρ(110)

1/ρ(111)

If we replace the edge labels xyz by xyz/ρ(xyz), where ρ is the local map, we
get a transducer that corresponds to the global map. All states are initial and
final, we are interested in biinfinite runs.

Example: Rule 90 47

The ECA ρ(x, y, z) = x⊕ z (the 8 values are 90 written in binary).

00

01

11

10

0/0

1/1

0/0

1/1

0/1

1/0

0/1

1/0

This happens to be an invertible Mealy automaton, but that is just
coincidence; arbitrary ECA produce more complicated machines.

Boundary Conditions 48

Computationally, we need to deal with finite configurations rather than
biinfinite ones. To extend ρ to finite binary words we need to deal with the
endpoints: a priori they have no left/right neighbors.

Cyclic boundary conditions: assume the configuration wraps around.
Fixed boundary conditions: assume there are two phantom bits 0 pre/ap-
pended.

So for x = x1x2 . . . xn we apply the local map to n many 3-blocks:

CBC xnx1x2 x1x2x3 . . . xn−1xnx1

FBC 0x1x2 x1x2x3 . . . xn−1xn0

The Finite Case 49

We need to modify the transducer for 2Z to work for plain 2n. Say, we use fixed
boundary conditions. The central problem is this: we are scanning two words

u:v = u1 u2 . . . un
v1 v2 . . . vn

But a synchronous transducer must read the letters in pairs, both read heads
move in lockstep.

We need to check whether v1 = ρ(0, u1, u2), and we do not know u2 after
scanning just the first bit pair.

It seems that some kind of look-ahead is required (memory versus
anticipation), but synchronous automata don’t do look-ahead, they live in the
here-and-now. Looks like we are sunk.

Elgot/Mezei to the Rescue 50

If we drop the synchronicity condition, there is no problem: it easy to see that
_ is rational. And _ is clearly length-preserving.

But remember the theorem by Elgot and Mezei:

Rational and length-preserving implies synchronous.

So our relation must be synchronous. Of course, that’s not enough: we need to
be able to construct the right transducer, not just wax poetically about its
existence.

Exercise
Show that _ is rational.

A Synchronous Transducer 51

Nondeterminism saves the day: we can guess what x2 is and then verify in the
next step.
Automaton A_ uses state set Q = {⊥,⊤} ∪ 23.
⊥ is the initial state, ⊤ the final state and the transitions are given by

⊥ a/e−−−→ 0ab e = ρ(0, a, b)

abc
c/e−−−→ bcd e = ρ(b, c, d)

abc
c/e−−−→ ⊤ e = ρ(b, c, 0)

So, this is more complicated than the plain de Bruijn transducer for 2Z.

A Computation 52

input state condition

− ⊥ −

u1:v1 0 u1u2 v1 = ρ(0u1u2)

u2:v2 u1u2u3 v2 = ρ(u1u2u3)

u3:v3 u2u3u4 v3 = ρ(u3u3u4)

...

un−1:vn−1 un−2un−1un vn = ρ(un−1un0)

un:vn ⊤ −

A successful computation on input u1u2 . . . un:v1v2 . . . vn.

Reversibility Testing 53

Define a 3-track machine that checks whether x and y both evolve to z; then
project away the z-track.

A = prj(3)
3

(
emb(3)

1,3
(
A_

)
× emb(3)

2,3
(
A_

))
Then

L(A) = {x:y | ρ̂(x) = ρ̂(y) }

So we only need to check
L(A × A̸=) = ∅

to verify that the global map ρ̂ is injective.

Tricks 54

State-explosion is a major issues with our approach, it may well happen that
some of the (intermediate) machines are so large that they cannot be handled.

One way of keeping the machines small is to rewrite the formula under
consideration into an equivalent one that produces smaller machines. Typical
example: checking for 3-cycles. One also should avoid prenex-normal-form like
the plague and try to handle projections early.

If the outermost block of quantifiers is universal, the last check can be more
naturally phrased in terms of Universality rather than Emptiness. In this case
one should try to use Universality testing algorithms without complementation
(e.g., the antichain method that avoids direct determinization).

	Rational Relations
	Synchronous Relations
	Model Checking Automatic Structures

