CDM

Mealy Machines

KLAUS SUTNER

CARNEGIE MELLON UNIVERSITY
SPRING 2025

D080

IS

A Semigroup

Wreath Products

Knuth Normal Form

Group Theory

Where Are We?

We have an invertible Mealy automaton on 3 states:

a.a

We would like to understand the map 0 : 2* — 2*.

Claim: It is best to study the semigroup S generated by the maps 0, 1, 2.

Cycle-Cum-Chord Transducers

We will refer to the last machine as A3.

ala 0/1

®

a/a a/a

O— O

aja

More generally, A} is a Mealy machine that is based on a cycle of length n,

plus one chord corresponding to a stride of length k.

Surprise One

Since we are dealing with word maps one can use induction to establish some
of their properties. Of course, this requires a conjecture first.

Claim: S is commutative.

0(1(0z)) =0(00(x)) =12(0(x))
1(0(0z)) =1(12(x)) =10(2(x))
0(1(1z)) =0(10(x)) =01(0(x))
1(0(1z)) =1(01(x)) =00(1(x))

Simultaneous induction on all pairs of maps.

Generating Conjectures

Since we are dealing with FSMs, we have a whole arsenal of algorithms lying
around—and can use them to generate conjectures.

Lemma

Given two Mealy machines A and B, one can construct a new Mealy machine
A X B that determines the composition of maps defined by the two machines.

t b
A:p—>a/) P l’:v’:q—>/C q

produces a new transition in the product machine

Ax B (p,q) L5 (0 q)

Visualizing Product Machines

To keep the pictures manageable, we start with a state (p, ¢) and only
construct the part of the full product automaton that is accessible from there.

So we focus on the composition p o g, which seems like the right thing to do
to understand S.

In the following examples, we build Mealy machines for 0*.

The Machine

Yo
_

The Mealy machine A3.

All copy states have transitions to one target, indicated by gray edges.

Toggle state transitions are green and red.

Squared

The product transducer A3 x A3

Cubed

Q
o
%
o)
v
Pl »©
q O
»
"7
o!
A O PO
A
S 0
~ L O’
Y

The product transducer A3 x A3 x A3

Minimizing Invertible Mealy Machines 10

The machines are annoyingly complicated. One might wonder whether there is
a way to minimize them analogous to ordinary DFAs.

The answer is Yes, and it's actually quite cheap: think of a Mealy machine over
alphabet 2 as a PDFA over 2 x 2.

One problem, though: we have no final states to initialize the partition.

How do we get started?

We distinguish between copy and toggle states.
The parity of states is the only thing that matters here.

Powers 2, 3, 4, 5, Minimized

<
/\Oo

|

Powers 4, 8, 16, 32

@ ,()_.——O—/4

ﬁgpé

12

Conjectures

We can extract some conjectures from staring at the pictures.

Conjecture: The map sz copies the first 2k bits.

More precisely, for k even/odd respectively, we have

0% (uv)
0" (uv)

w0 (v) ful = 2k
2 () fu = 2k — 2

u0

Note that this explains the apparent periodicity in our first orbit pictures and
our observation on cycle lengths (at least partially).

13

And Proofs? 14

One can often prove these observations by induction on words.

But we can also use our machine algorithms directly, assuming that the
implementation is correct (ideally the algorithms should be formally verified).

E.g., the machine obtained from composing the automata for 1 o 0 is the same
as for 0 o1 (even without minimization).

Induction is arguably cleaner, but the second approach is attractive since it is
easily automated; at least for small identities we can simply crank out the
machines.

More Ildentities? 15

From our commutativity result we get a monoid epimorphism

:N' =S (a,b,c) —0“1°2°

Question: Are there any other interesting identities?

To search for identities we can systematically generate minimal machines for all
small products (say, a + b+ ¢ < 10) and check if some of them are isomorphic.

Surprise Two

Claim: S is a group.

This follows directly from the identity
0°1%2 =1

Proof is straightforward by induction:

0%(1%(2(az))) =0%(@0?(L(x))) =al2(0*(L(z)) ==

16

Which Group?

The group is 2-generated and we have an epimorphism

$:72° S (a,b)—0"1"

There might be more identities, but a computer search turns up nothing: if
they exist, the corresponding machines are too large to handle. After more
fumbling one winds up with

Conjecture: S is isomorphic to Z2.

17

2 Wreath Products

Towards a Proof 19

To show that our (semi-)group S is isomorphic to Z? it is a good idea to try to
find its “natural habitat.”

Claim: Aut(2*), the group of automorphisms of the binary tree,
is the right environment for our semigroup S.

To be clear, Aut(2*) is a monster of a group, uncountable and hopelessly
complicated.

We only care about a small, well-behaved subgroup, but it helps to have the
big ambient group in the background.

Tree Automorphisms 20

We think of 2* as a rooted, regular, infinite tree 7 ¢ is the root, and node
x € 2* has two successors 0 and 1.

An automorphism of T is a bijection f : 2* — 2* that preserves adjacencies
(and in particular length):

f(za) = f(x)b some b € 2

Since f is a bijection there must be a permutation o, € G4 such that

f(za) = f(z) 02(a)

Residuals

We can push the last observation a bit further:

flzy) = f(z) 0: f(y)
where 0, f is another automorphism depending on f and z.

The operator 0 is called residuation.

0:1 0 =2
0=1
9a1 =0
9.2 =1

a:a

21

Recursive Decomposition 22

From a computational angle, we can describe the action of an automorphism f
recursively by specifying 3 data items:

@ a parity bit indicating copy/toggle, and

@ two automorphisms acting on the subtrees.

One often writes

f:(f07f1)5 where aaf:fmSEGQ

This is analogous to the transition function of an invertible Mealy automaton.

And residuation is analogous to left quotients for DFA.

Once more ...

0:1

S

(N [l ()

~—

= 1o Ino
= o =
—

®

a:a

Here o stands for the transposition (1,2) and the identity is not written.

23

Digression: General Automorphisms

Can we describe any automorphism f of 7 as a Mealy machine?

Yes and no. We have to allow infinitely many states.

Similarly we could build a “DFA" for any language. Finiteness is really critical
here.

24

Group Operation

We have a natural isomorphism
Aut(2") = Aut(2%) x Aut(2*) x &2

The group operation on the left is just composition of functions.

What is the group operation on the right?

Unfortunately, the pointwise approach in a plain Cartesian product does not
work:

(fo, f1,8) - (g0, g1,t) = (fogo, f191, st)

is plain wrong.

25

The Lamplighter Group

Suppose you have a ring of n lamps; each lamp is either on or off.

There is an eponymous lamplighter, some dude who walks around and turns
lights on and off.

26

More Precisely ...

The lamplighter can perform two atomic actions:

«@ move to the next lamp, or

T toggle the state of the current lamp.

The actions are clearly reversible, so there must be a group plus action hiding
somewhere.

It is obvious that ™ =1 and 72 = 1.

The group does not commute, ar # T (assuming n > 1).

But what exactly is the group, and how does it act?

27

Configuration Space

Clearly we can describe the space of configurations as

X =2"%X7Zn,

So we are dealing with bitvectors and modular numbers.

The picture shows the configurations (000000, 0) and (101100, 2).

28

The Group

We need the group G generated by « and 7, something like

(a,7|a™,7%,777)

but we don't have all the necessary identities for this kind of description.

For example, one can check that

(rara™')? =1

It seem like a good idea to try to write the group elements in two parts:

@ part 1 describes the changes in lights (toggle pattern), and

@ part 2 describes the movement of the lamplighter.

29

An Attempt

Surely, G must be some sort of product.

A first and not unreasonable guess would be the Cartesian product

G=2"X12Zn

The first part describes the toggles, the second the lamplighter's displacement.

(a, s) should act on (z,p) as follows:

flip the lights in « according to a, change p according to s.

30

Details

Let e; € 2" be ith unit vector (0-indexed).
Our intended interpretation of the two generators is

T~ (eo,0): toggle the lamp at the current position.
a~ (0,1): the lamplighter moves forward by one.

And (eo @ e1,3) means: toggle the lights in relative positions 0 and 1, then
move forward by 3 places, corresponding to TaTa?.

Does G = 2" x Z,, properly reflect this intuition?
(a,7)(b,s) = (a®b,r+s)

where @ stands for bit-wise xor and addition is modulo n.

31

The Mismatch

Consider the group element Tara.
According to our attempt, we have
(eo,1)(eo0,1) = (eo P €o,2) = (0,2)
Our model thinks that TaTa = o2, which sadly is false: the position is right,
but not the toggle pattern.
What we need instead is

(eo,1)(eq,1) = (eo ® e1,2)

32

Location, Location, Location

We need to take into account the position of the lamplighter: when the
lamplighter moves, the next switch-vector has to be adjusted accordingly.

More technically, a modular number s acts on a by rotating the sequence by s
places.

To fix our group, keep the carrier set, but adjust the group operation to
(a,7)(b,s) = (a®rot"(b),r + s)

where rot is a cyclic rotation.

33

Four Lamps

34

Four Lamps

Full Disclosure

The actual lamplighter group in the literature is based on a biinfinite row of
lamps, with only finitely many lamps lit.

So the configurations are

X = (@Zz> x 7

The identities here are
=1 (@'ra” N Tra™) = (dra™) (a'Ta™")

The group is finitely generated, but not finitely presentable.

36

Exercises

Exercise
Verify (atar™")? = 1.

Exercise

Interpret (atiar™")? = 1 geometrically.

Exercise

What would happen if we were to interpret (a,r) as “move first by r, then
toggle according to a”?

37

Semidirect Products 38

Here is a more systematic look at the last construction.

Definition
Let ¢ : B — Aut(A) be a group homomorphism. The semidirect product
A %, B is defined on the Cartesian product of the carrier sets of A and B by

(a1,b1)(az, b2) = (a1 p(b1)(az), b1 bz)

For ¢ the constant map b — I, we get the ordinary direct product.

Quoi?

It is not even clear that this operation is associative.

((a1,b1)(az2,b2))(as, bs) = (a1 ¢(b1)(az2), bibz2)(as, bs)
= (a1 p(b1)(az) p(bib2)(as), b1b2bs)

(a1,b1)((az,b2)(as, b3)) = (a1,b1)(az p(b2)(as), b2bs)
= (a1 p(b1)(az w(b2)(as)), b1b2bs)
= (al @(bl)(CLQ) Lp(blbz)(ag), blbzbg)

The neutral element is (14,15) and the inverse is

(@)™ = (0™)@),07")

39

Dihedral Group, Explained

In the dihedral group D,,, rotation « has order n, and reflection 8 has order 2,
but D,, is not isomorphic to the Cartesian product Z,, X Zsz. To fix this, we
define ¢ : B — Aut(A)

e0)(x) =z p()(@)=a""
o duly is a group homomorphism since Z,, is commutative.

Then the dihedral group D,, is isomorphic to A X, B: rotation corresponds to
(1,0) and reflection corresponds to (0, 1).

Ba = (0,1)(1,)
= (04 ¢(1)(1),1+0)
:(n—l,l)

= a_lﬁ

40

Wreath Products

We need one more type of product, a special kind of semidirect product.
The first group is a Cartesian product A", A a group and n > 2.

Suppose B C S, is some permutation group and define ¢ : B — Aut(A™) by

w(b)(a) = (%—1(1): .. '7ab—1(n))

So (b) simply permutes the elements of vector a € A™.

Definition
The wreath product A! B of A and B is the semidirect product A™ %, B.

41

Scaling Back 42

We are only interested in n =2 and B = G,.
So our wreath products look like

Angz(AxA)x62

For convenience, we will use 0-indexing, so the elements are ((ao7 ai), s) and
the group operation is

((ao,a1),s) ((bo,bl),t) = ((aobs(o),albs(l)),st)

Yup ... 43

This is exactly the way we wrote our tree automorphisms: two residuals plus
one parity bit.

Aut(2") ~ Aut(27) 1 &2 = (Aut(2) X Aut(2")) x &2

Aut(2*) is a perfect example of a wreath product.

This may sound like much ado about nothing, but it actually helps quite a bit.

Wreath Induction a4

E.g., we can establish commutativity by induction in the group directly, without
the detour of induction on words (which is really an argument about the group
action).

More Wreath Induction 45

A wreath induction proof for the group identity, using commutativity:

Again, this is a bit more elegant than the approach using induction on words.

Digression: Boolean Functions 46

Recall NP-equivalence of Boolean functions: one can negate and/or permuted
the inputs.

Negation is handled by the Boolean group 2* and permutation by the
symmetric group G;. A Cartesian product does not work, essentially for the
same reasons as in the lamplighter/dihedral scenario.

Instead one needs a wreath product 2 &y.

And one needs to figure out how to calculate the cycle index polynomial.

3 Knuth Normal Form

The Infinity Machine 48

Our 3-state machine A3 produces

0=(2,1)0 1=(0,0) 2=(1,1)
Insane ldea:
How about adding a state 3 with 3 = (2,2)?
And infinitely more, 4, 5, ..., n, ...

So we add an infinite chain of copy states, anchored at the the old state 2.
This produces a new, infinite machine A3,

ala 0/1

1/0

What??? 50

First we have to make sure the new machine does not produce any new group
elements, Grp(A3) = Grp(A3™).

This is handled by establishing a new identity:

k? =k+2 k+3

To see why, note that both sides are even, and residuation produces
k—12 = k41 k+2 for k > 1. For k = 0 we get

0°=(2,1)0(2,1)0=(12,12)=(1,1)(2,2) =23

Done by wreath induction.

A similar argument shows that

A Normal Form

The new identities give us a rewrite system for automorphisms in S:

cancellation identity

shift identity

So cancellation removes terms and shift flattens them out, at the cost of
pushing things to the right. The hope is that by using both we can write all
group elements in a particulary nice form.

51

Normal Form Theorem

Theorem (Knuth)
Every automorphism f of S has a unique normal form
f=hiks ... kn

where k; < k¢+1, n > 0.

Corollary

S is isomorphic to Z.%.

52

Termination Worries

Unfortunately, our rewrite system is not quite terminating.

We must use cancellation before shift, otherwise we wind up with

02172222324+ 4°5%6 ~ ...

It is a character building exercise to show that the system terminates with a
unique result given this “cancellation-first” proviso.

53

KNF for 020120

0 1 2 3 4 5 6 7

20 20

0 20 10 10

0 10 0 5

0 0 0 10 5

0 0 0 0 5 5 5

0 0 0 0 1 1 3

0 0 0 0 1 1 1 0
KNF(0%°1%°) =45689

54

KNF for 0°

KNFs for Qi, 0<17<64.

Each column represents the normal form as a bitvector.

55

KNF for 0°

Again, KNFs for Qi, 0<i<64.

The coefficients k, are color coded.

56

KNF for 0° 2

s i i S St s e s s i i
s s et e dbe it it doc it

KNF Length

KNF Total

Gaussian Integers 61

Since S & Z X Z, it is natural to ask whether there is some particularly simple
isomorphism.

A constructive way of describing an isomorphism is to translate Knuth normal
form into a Gaussian integer: Let p =i — 1 € C and define

o(f) =p" +p" +... 4+ p"

where f = k1 ko ... ky is the normal form. Here we assume o(nil) = 0.

Theorem

The map ¢ : S — Z[i] is an isomorphism.

62

Dragon Curve

4 Group Theory

Burnside’s Problem 64

Call a group torsion or periodic iff all its elements have finite order.

Burnside Problem (1902)

Suppose G is finitely generated torsion group.
Is G necessarily finite?

Some positive results were obtained initially, but the problem remained open for
a good long time.

Theorem (Golod, Shafarevich 1964)

The Burnside Problem fails in general.

Bounded Version 65

In the bounded version we strengthen periodicity to: for some fixed n, 2" =1
for all z € G.

Theorem (Novikov, Adian 1968)
The bounded Burnside Problem fails for all odd n > 438]1.

The rather complicated proof uses the Prouhet-Thue-Morse sequence.

Growth of a Group

Suppose we have a finitely generated group G. How many distinct group
elements can be reached in the Cayley graph of GG starting at 1 on a path of
length at most n?

More precisely, use words over the symmetric alphabet X' U X' to name group
elements. Write ||z|| for the shortes word that denotes = € G and define the
growth function by

v(n) = [{z € G| el < n}

It is easy to find groups of exponential growth (free groups) or polynomial
growth (Z").

66

Milnor’s Problem

Milnor’s Problem (1960)

Are there finitely generated groups of intermediate growth?

E.g., growth like v(n) ~ 2V™ is intermediate.

Such groups exist, but are rather difficult to construct.

67

Grigorchuk’s Solution 68

r//'ﬁ (],/'U

ala
An invertible Mealy automaton on 5 states, with just a single toggle state, the
machine changes at most one bit in any input string.

The group has intermediate growth and also provides a counterexample for
Burnside's problem.

Challenge: 2-States

Easy (?) Challenge: Find all groups generated by invertible
Mealy machines with just 2 states.

To exclude boring cases, we may make the following assumptions:

@ State 1 is toggle, state 2 is copy.
@ There is at least one transition between the states.

@ We can interchange symbols 0 and 1.

Here is what's left.

69

Trivial

. o4

0044 .

70

Easy

0110

10

44

o4

00

0011

71

Harder

00

72

Very Hard

73

A Closer Look 74

Here is a slightly nicer diagram:

1:1

In wreath notation this whole transducer comes down to this:

t=(ct)o c=(c,t)

This is very similar to the exotic counter from above where ¢ = (¢,t). It seems
like a reasonable guess that the group generated by this machine is pretty
simple ...

Not So Fast 75

Big Surprise:

This machine generates the lamplighter group.

This is the real, infinite Lamplighter group, not the finite versions we talked

about. It has lots of interesting properties and has been studied extensively;
Google Scholar shows 22,000 hits.

It is quite amazing that a group of this complexity can be described in terms of
a 2-state machine.

3 States 76

On classification of groups generated by 3-state automata over a 2-letter
alphabet

I. Bondarenko, R. Grigorchuk, R. Kravvchenko, Y. Muntyan,
V. Nekrashevych, D.Savchuk and Z. Sunié

Algebra and Discrete Mathematics, 1 (2008) 1-163

There are 5832 automata, though many of them produce the same group.

Theorem
There are at most 122 distinct groups generated by 3-state automata.

	A Semigroup
	Wreath Products
	Knuth Normal Form
	Group Theory

