
CDM

Mealy Machines

Klaus Sutner

Carnegie Mellon University
Spring 2025

1 A Semigroup

2 Wreath Products

3 Knuth Normal Form

4 Group Theory

Where Are We? 2

We have an invertible Mealy automaton on 3 states:

0

1 2

0:1

1:0

a:a

a:a

We would like to understand the map 0 : 2⋆ → 2⋆ .

Claim: It is best to study the semigroup S generated by the maps 0 , 1 , 2 .

Cycle-Cum-Chord Transducers 3

We will refer to the last machine as A3
2.

0

1

2 3

4

0/1

1/0

a/a

a/a

a/a

a/a

More generally, An
k is a Mealy machine that is based on a cycle of length n,

plus one chord corresponding to a stride of length k.

Surprise One 4

Since we are dealing with word maps one can use induction to establish some
of their properties. Of course, this requires a conjecture first.

Claim: S is commutative.

0 (1 (0x)) = 0 (0 0 (x)) = 1 2 (0 (x))
1 (0 (0x)) = 1 (1 2 (x)) = 1 0 (2 (x))

0 (1 (1x)) = 0 (1 0 (x)) = 0 1 (0 (x))
1 (0 (1x)) = 1 (0 1 (x)) = 0 0 (1 (x))

Simultaneous induction on all pairs of maps.

Generating Conjectures 5

Since we are dealing with FSMs, we have a whole arsenal of algorithms lying
around—and can use them to generate conjectures.

Lemma
Given two Mealy machines A and B, one can construct a new Mealy machine
A × B that determines the composition of maps defined by the two machines.

A : p
a/b−−−→ p′ B : q

b/c−−−→ q′

produces a new transition in the product machine

A × B : (p, q) a/c−−−→ (p′, q′)

Visualizing Product Machines 6

To keep the pictures manageable, we start with a state (p, q) and only
construct the part of the full product automaton that is accessible from there.

So we focus on the composition p ◦ q , which seems like the right thing to do
to understand S.

In the following examples, we build Mealy machines for 0 k.

The Machine 7

The Mealy machine A3
2.

All copy states have transitions to one target, indicated by gray edges.

Toggle state transitions are green and red.

Squared 8

The product transducer A3
2 × A3

2.

Cubed 9

The product transducer A3
2 × A3

2 × A3
2.

Minimizing Invertible Mealy Machines 10

The machines are annoyingly complicated. One might wonder whether there is
a way to minimize them analogous to ordinary DFAs.

The answer is Yes, and it’s actually quite cheap: think of a Mealy machine over
alphabet 2 as a PDFA over 2 × 2.

One problem, though: we have no final states to initialize the partition.
How do we get started?

We distinguish between copy and toggle states.
The parity of states is the only thing that matters here.

Powers 2, 3, 4, 5, Minimized 11

Powers 4, 8, 16, 32 12

Conjectures 13

We can extract some conjectures from staring at the pictures.

Conjecture: The map 0 2k

copies the first 2k bits.

More precisely, for k even/odd respectively, we have

0 2k

(uv) = u 0 (v) |u| = 2k

0 2k

(uv) = u 0 2(v) |u| = 2k − 2

Note that this explains the apparent periodicity in our first orbit pictures and
our observation on cycle lengths (at least partially).

And Proofs? 14

One can often prove these observations by induction on words.

But we can also use our machine algorithms directly, assuming that the
implementation is correct (ideally the algorithms should be formally verified).

E.g., the machine obtained from composing the automata for 1 ◦ 0 is the same
as for 0 ◦ 1 (even without minimization).

Induction is arguably cleaner, but the second approach is attractive since it is
easily automated; at least for small identities we can simply crank out the
machines.

More Identities? 15

From our commutativity result we get a monoid epimorphism

Φ : N3 → S (a, b, c) 7→ 0 a1 b2 c

Question: Are there any other interesting identities?

To search for identities we can systematically generate minimal machines for all
small products (say, a + b + c ≤ 10) and check if some of them are isomorphic.

Surprise Two 16

Claim: S is a group.

This follows directly from the identity

0 21 22 = I

Proof is straightforward by induction:

0 2(1 2(2 (ax))) = 0 2(a 0 2(1 (x))) = a 1 2 (0 2(1 (x))) = x

Which Group? 17

The group is 2-generated and we have an epimorphism

Φ : Z2 → S (a, b) 7→ 0 a1 b

There might be more identities, but a computer search turns up nothing: if
they exist, the corresponding machines are too large to handle. After more
fumbling one winds up with

Conjecture: S is isomorphic to Z2.

1 A Semigroup

2 Wreath Products

3 Knuth Normal Form

4 Group Theory

Towards a Proof 19

To show that our (semi-)group S is isomorphic to Z2 it is a good idea to try to
find its “natural habitat.”

Claim: Aut(2⋆), the group of automorphisms of the binary tree,
is the right environment for our semigroup S.

To be clear, Aut(2⋆) is a monster of a group, uncountable and hopelessly
complicated.

We only care about a small, well-behaved subgroup, but it helps to have the
big ambient group in the background.

Tree Automorphisms 20

We think of 2⋆ as a rooted, regular, infinite tree T : ε is the root, and node
x ∈ 2⋆ has two successors x0 and x1.

An automorphism of T is a bijection f : 2⋆ → 2⋆ that preserves adjacencies
(and in particular length):

f(ε) = ε

f(xa) = f(x) b some b ∈ 2

Since f is a bijection there must be a permutation σx ∈ S2 such that

f(xa) = f(x) σx(a)

Residuals 21

We can push the last observation a bit further:

f(xy) = f(x) ∂x f(y)

where ∂x f is another automorphism depending on f and x.
The operator ∂ is called residuation.

0

1 2

0:1

1:0

a:a

a:a

∂0 0 = 2
∂1 0 = 1
∂a 1 = 0
∂a 2 = 1

Recursive Decomposition 22

From a computational angle, we can describe the action of an automorphism f
recursively by specifying 3 data items:

a parity bit indicating copy/toggle, and
two automorphisms acting on the subtrees.

One often writes

f = (f0, f1)s where ∂a f = fa, s ∈ S2

This is analogous to the transition function of an invertible Mealy automaton.

And residuation is analogous to left quotients for DFA.

Once more . . . 23

0

1 2

0:1

1:0

a:a

a:a
0 = (2 , 1)σ
1 = (0 , 0)
2 = (1 , 1)

Here σ stands for the transposition (1, 2) and the identity is not written.

Digression: General Automorphisms 24

Can we describe any automorphism f of T as a Mealy machine?

Yes and no. We have to allow infinitely many states.

Similarly we could build a “DFA” for any language. Finiteness is really critical
here.

Group Operation 25

We have a natural isomorphism

Aut(2⋆) ∼= Aut(2⋆) × Aut(2⋆) × S2

The group operation on the left is just composition of functions.

What is the group operation on the right?

Unfortunately, the pointwise approach in a plain Cartesian product does not
work:

(f0, f1, s) · (g0, g1, t) = (f0g0, f1g1, st)

is plain wrong.

The Lamplighter Group 26

Suppose you have a ring of n lamps; each lamp is either on or off.

Figure 1. A fancy model of the 6-lamp machine M6 (illustration by Ruben de Vela).

6-lamp machine M6 in its initial state: all the lamps off (empty circles) and the lighter
pointed at the topmost lamp. Figure 2(b) shows a less pristine state of M6. Every state
of the machine can be encoded by an n-bit string to indicate the state of the lamps
(clockwise starting from the lighter, with 1’s for lit lamps), together with an integer in
{0, . . . , n − 1} indicating the position of the lighter. There are n · 2n possible states for
a machine with n lamps.

(a) Initial state: (000000, 0). (b) (100010, 3), the result of
applying αρ2αρ to (a).

Figure 2. Two states of the 6-lamp machine.

The group Ln consists of actions on Mn . It is generated by ρ, the action of moving
the lighter to the next lamp clockwise, and α, the action of toggling whichever lamp
the lighter is pointing to: turning it on if it’s off, or vice versa. Both operations are
invertible, as α is its own inverse, and ρ−1 = ρn−1 in Ln . Order matters, since ρα
(“toggle the current lamp, then move the lighter clockwise”) has a different effect than
αρ (“move the lighter clockwise, then toggle that lamp”). I use the usual order for
composition of functions: the rightmost action occurs first. For example, Figure 2(b)
can be achieved by αρ2αρ, or just as well by ρ2αρ4αρ3.

There’s an important principle here: group elements in Ln (actions) can be identi-
fied, bijectively, with states of Mn by identifying each group element with the result of
its action on the initial state. This reveals any lamps toggled by the action (they end up
lit) and how far the lighter ultimately moves, relative to its initial position. In this way,
every ordered pair has a useful double meaning. For one thing, it tells us immediately
that Ln is a group of n · 2n elements. This double meaning is potentially confusing,
however, so let’s examine the example of Figure 2 carefully. As a state, (100010, 3)
represents the static picture of Figure 2(b). As a group element, (100010, 3) denotes
that action which changes Figure 2(a) to Figure 2(b). This action could be repeated,
followed by other actions, applied to any other state of the machine, and so on. The ac-
tion of group element β = (100010, 3) is summed up as “The pointer advances three

204 „ THE MATHEMATICAL ASSOCIATION OF AMERICA

There is an eponymous lamplighter, some dude who walks around and turns
lights on and off.

More Precisely . . . 27

The lamplighter can perform two atomic actions:

α move to the next lamp, or

τ toggle the state of the current lamp.

The actions are clearly reversible, so there must be a group plus action hiding
somewhere.

It is obvious that αn = 1 and τ2 = 1.

The group does not commute, ατ ̸= τα (assuming n > 1).

But what exactly is the group, and how does it act?

Configuration Space 28

Clearly we can describe the space of configurations as

X = 2n × Zn

So we are dealing with bitvectors and modular numbers.

The picture shows the configurations (000000, 0) and (101100, 2).

The Group 29

We need the group G generated by α and τ , something like

⟨ α, τ | αn, τ2, ??? ⟩

but we don’t have all the necessary identities for this kind of description.

For example, one can check that

(τατα−1)2 = 1

It seem like a good idea to try to write the group elements in two parts:

part 1 describes the changes in lights (toggle pattern), and

part 2 describes the movement of the lamplighter.

An Attempt 30

Surely, G must be some sort of product.

A first and not unreasonable guess would be the Cartesian product

G = 2n × Zn

The first part describes the toggles, the second the lamplighter’s displacement.

(a, s) should act on (x, p) as follows:

flip the lights in x according to a, change p according to s.

Details 31

Let ei ∈ 2n be ith unit vector (0-indexed).

Our intended interpretation of the two generators is

τ ; (e0, 0): toggle the lamp at the current position.

α ; (0, 1): the lamplighter moves forward by one.

And (e0 ⊕ e1, 3) means: toggle the lights in relative positions 0 and 1, then
move forward by 3 places, corresponding to τατα2.

Does G = 2n × Zn properly reflect this intuition?

(a, r)(b, s) = (a ⊕ b, r + s)

where ⊕ stands for bit-wise xor and addition is modulo n.

The Mismatch 32

Consider the group element τατα.

According to our attempt, we have

(e0, 1)(e0, 1) = (e0 ⊕ e0, 2) = (0, 2)

Our model thinks that τατα = α2, which sadly is false: the position is right,
but not the toggle pattern.

What we need instead is

(e0, 1)(e0, 1) = (e0 ⊕ e1, 2)

Location, Location, Location 33

We need to take into account the position of the lamplighter: when the
lamplighter moves, the next switch-vector has to be adjusted accordingly.

More technically, a modular number s acts on a by rotating the sequence by s
places.

To fix our group, keep the carrier set, but adjust the group operation to

(a, r)(b, s) = (a ⊕ rotr(b), r + s)

where rot is a cyclic rotation.

Four Lamps 34

Four Lamps 35

Full Disclosure 36

The actual lamplighter group in the literature is based on a biinfinite row of
lamps, with only finitely many lamps lit.

So the configurations are
X =

(⊕
Z

2
)

× Z

The identities here are

τ2 = 1 (αiτα−i)(αjτα−j) = (αjτα−j)(αiτα−i)

The group is finitely generated, but not finitely presentable.

Exercises 37

Exercise
Verify (ατ iατ−i)2 = 1.

Exercise
Interpret (ατ iατ−i)2 = 1 geometrically.

Exercise
What would happen if we were to interpret (a, r) as “move first by r, then
toggle according to a”?

Semidirect Products 38

Here is a more systematic look at the last construction.

Definition
Let φ : B → Aut(A) be a group homomorphism. The semidirect product
A ⋊φ B is defined on the Cartesian product of the carrier sets of A and B by

(a1, b1)(a2, b2) =
(
a1 φ(b1)(a2), b1 b2

)

For φ the constant map b 7→ I, we get the ordinary direct product.

Quoi? 39

It is not even clear that this operation is associative.

((a1, b1)(a2, b2))(a3, b3) = (a1 φ(b1)(a2), b1b2)(a3, b3)
= (a1 φ(b1)(a2) φ(b1b2)(a3), b1b2b3)

(a1, b1)((a2, b2)(a3, b3)) = (a1, b1)(a2 φ(b2)(a3), b2b3)
= (a1 φ(b1)(a2 φ(b2)(a3)), b1b2b3)
= (a1 φ(b1)(a2) φ(b1b2)(a3), b1b2b3)

The neutral element is (1A, 1B) and the inverse is

(a, b)−1 = (φ(b−1)(a−1), b−1)

Dihedral Group, Explained 40

In the dihedral group Dn, rotation α has order n, and reflection β has order 2,
but Dn is not isomorphic to the Cartesian product Zn × Z2. To fix this, we
define φ : B → Aut(A)

φ(0)(x) = x φ(1)(x) = x−1

φ duly is a group homomorphism since Zn is commutative.

Then the dihedral group Dn is isomorphic to A ⋊φ B: rotation corresponds to
(1, 0) and reflection corresponds to (0, 1).

βα = (0, 1)(1, 0)

=
(
0 + φ(1)(1), 1 + 0

)
= (n − 1, 1)
= α−1β

Wreath Products 41

We need one more type of product, a special kind of semidirect product.

The first group is a Cartesian product An, A a group and n ≥ 2.

Suppose B ⊆ Sn is some permutation group and define φ : B → Aut(An) by

φ(b)(a) = (ab−1(1), . . . , ab−1(n))

So φ(b) simply permutes the elements of vector a ∈ An.

Definition
The wreath product A ≀ B of A and B is the semidirect product An ⋊φ B.

Scaling Back 42

We are only interested in n = 2 and B = S2.

So our wreath products look like

A ≀ S2 =
(
A × A

)
⋊S2

For convenience, we will use 0-indexing, so the elements are
(
(a0, a1), s

)
and

the group operation is(
(a0, a1), s

) (
(b0, b1), t

)
=

(
(a0bs(0), a1bs(1)), s t

)

Yup . . . 43

This is exactly the way we wrote our tree automorphisms: two residuals plus
one parity bit.

Aut(2⋆) ≃ Aut(2⋆) ≀ S2 = (Aut(2⋆) × Aut(2⋆)) ⋊S2

Aut(2⋆) is a perfect example of a wreath product.

This may sound like much ado about nothing, but it actually helps quite a bit.

Wreath Induction 44

E.g., we can establish commutativity by induction in the group directly, without
the detour of induction on words (which is really an argument about the group
action).

0 1 = (2 , 1)σ (0 , 0)

= (2 0 , 1 0)

= (0 2 , 0 1)

= (0 , 0)(2 , 1)σ

= 1 0

More Wreath Induction 45

A wreath induction proof for the group identity, using commutativity:

0 2 1 2 2 =
(
(2 , 1)σ

)2(0 , 0)2(1 , 1)

= (2 1 , 1 2)(0 , 0)(0 , 0)(1 , 1)

= (2 1 0 0 1 , 1 2 0 0 1)

=
(
0 2 1 2 2 , 0 2 1 2 2

)

Again, this is a bit more elegant than the approach using induction on words.

Digression: Boolean Functions 46

Recall NP-equivalence of Boolean functions: one can negate and/or permuted
the inputs.

Negation is handled by the Boolean group 2k and permutation by the
symmetric group Sk. A Cartesian product does not work, essentially for the
same reasons as in the lamplighter/dihedral scenario.

Instead one needs a wreath product 2 ≀ Sk.

And one needs to figure out how to calculate the cycle index polynomial.

1 A Semigroup

2 Wreath Products

3 Knuth Normal Form

4 Group Theory

The Infinity Machine 48

Our 3-state machine A3
2 produces

0 = (2 , 1) σ 1 = (0 , 0) 2 = (1 , 1)

Insane Idea:
How about adding a state 3 with 3 = (2 , 2)?
And infinitely more, 4, 5, . . . , n, . . .

So we add an infinite chain of copy states, anchored at the the old state 2.
This produces a new, infinite machine A3∞

2 .

0

21

0/1

1/0

a/a

a/a

3 4 5
a/a a/a a/a a/a

What??? 50

First we have to make sure the new machine does not produce any new group
elements, Grp(A3

2) = Grp(A3∞
2).

This is handled by establishing a new identity:

k 2 = k+2 k+3

To see why, note that both sides are even, and residuation produces
k−1 2 = k+1 k+2 for k > 1. For k = 0 we get

0 2 = (2 , 1)σ (2 , 1)σ = (1 2 , 1 2) = (1 , 1)(2 , 2) = 2 3

Done by wreath induction.

A similar argument shows that

k 2 k+1 2 k+2 = I

A Normal Form 51

The new identities give us a rewrite system for automorphisms in S:

cancellation identity

k 2 k+1 2 k+2 ⇝ I

shift identity

k 2 ⇝ k+2 k+3

So cancellation removes terms and shift flattens them out, at the cost of
pushing things to the right. The hope is that by using both we can write all
group elements in a particulary nice form.

Normal Form Theorem 52

Theorem (Knuth)
Every automorphism f of S has a unique normal form

f = k1 k2 . . . kn

where ki < ki+1, n ≥ 0.

Corollary
S is isomorphic to Z2.

Termination Worries 53

Unfortunately, our rewrite system is not quite terminating.

We must use cancellation before shift, otherwise we wind up with

0 2 1 2 2 ⇝ 2 2 3 2 4 ⇝ 4 2 5 2 6 ⇝ . . .

It is a character building exercise to show that the system terminates with a
unique result given this “cancellation-first” proviso.

KNF for 0 201 20 54

0 1 2 3 4 5 6 7 8 9
20 20
0 20 10 10
0 10 0 5
0 0 0 10 5
0 0 0 0 5 5 5
0 0 0 0 1 1 3
0 0 0 0 1 1 1 0 1 1

KNF(0 201 20) = 4 5 6 8 9

KNF for 0 i 55

KNFs for 0 i, 0 ≤ i ≤ 64.
Each column represents the normal form as a bitvector.

KNF for 0 i 56

Again, KNFs for 0 i, 0 ≤ i ≤ 64.
The coefficients ku are color coded.

KNF for 0 i 57

KNF Length 58

KNF Max 59

KNF Total 60

Gaussian Integers 61

Since S ∼= Z × Z, it is natural to ask whether there is some particularly simple
isomorphism.

A constructive way of describing an isomorphism is to translate Knuth normal
form into a Gaussian integer: Let ρ = i − 1 ∈ C and define

φ(f) = ρk1 + ρk2 + . . . + ρkt

where f = k1 k2 . . . kn is the normal form. Here we assume φ(nil) = 0.

Theorem
The map φ : S → Z[i] is an isomorphism.

Dragon Curve 62

1 A Semigroup

2 Wreath Products

3 Knuth Normal Form

4 Group Theory

Burnside’s Problem 64

Call a group torsion or periodic iff all its elements have finite order.

Burnside Problem (1902)
Suppose G is finitely generated torsion group.
Is G necessarily finite?

Some positive results were obtained initially, but the problem remained open for
a good long time.

Theorem (Golod, Shafarevich 1964)
The Burnside Problem fails in general.

Bounded Version 65

In the bounded version we strengthen periodicity to: for some fixed n, xn = 1
for all x ∈ G.

Theorem (Novikov, Adian 1968)
The bounded Burnside Problem fails for all odd n > 4381.

The rather complicated proof uses the Prouhet-Thue-Morse sequence.

Growth of a Group 66

Suppose we have a finitely generated group G. How many distinct group
elements can be reached in the Cayley graph of G starting at 1 on a path of
length at most n?

More precisely, use words over the symmetric alphabet Σ ∪ Σ to name group
elements. Write ∥x∥ for the shortes word that denotes x ∈ G and define the
growth function by

γ(n) = |{ x ∈ G | ∥x∥ ≤ n }|

It is easy to find groups of exponential growth (free groups) or polynomial
growth (Zn).

Milnor’s Problem 67

Milnor’s Problem (1960)
Are there finitely generated groups of intermediate growth?

E.g., growth like γ(n) ∼ 2
√

n is intermediate.

Such groups exist, but are rather difficult to construct.

Grigorchuk’s Solution 68

0/0
1/1

a/a

0/0 1/1

0/0

1/1

a/a

An invertible Mealy automaton on 5 states, with just a single toggle state, the
machine changes at most one bit in any input string.

The group has intermediate growth and also provides a counterexample for
Burnside’s problem.

Challenge: 2-States 69

Easy (?) Challenge: Find all groups generated by invertible
Mealy machines with just 2 states.

To exclude boring cases, we may make the following assumptions:

State 1 is toggle, state 2 is copy.

There is at least one transition between the states.

We can interchange symbols 0 and 1.

Here is what’s left.

Trivial 70

01 10 00 11

01 10 00 11

01 10

00 11

Easy 71

01 10 11 00

10 01 00 11

Harder 72

10

01

00 11

01 10

11

00

Very Hard 73

01

10

00

11

01

10

11

00

A Closer Look 74

Here is a slightly nicer diagram:

t c

0:1

1:1

1:0 0:0

In wreath notation this whole transducer comes down to this:

t = (c, t)σ c = (c, t)

This is very similar to the exotic counter from above where c = (t, t). It seems
like a reasonable guess that the group generated by this machine is pretty
simple . . .

Not So Fast 75

Big Surprise:
This machine generates the lamplighter group.

This is the real, infinite Lamplighter group, not the finite versions we talked
about. It has lots of interesting properties and has been studied extensively;
Google Scholar shows 22,000 hits.

It is quite amazing that a group of this complexity can be described in terms of
a 2-state machine.

3 States 76

On classification of groups generated by 3-state automata over a 2-letter
alphabet

I. Bondarenko, R. Grigorchuk, R. Kravchenko, Y. Muntyan,
V. Nekrashevych, D. Savchuk and Z. Šunić

Algebra and Discrete Mathematics, 1 (2008) 1–163

There are 5832 automata, though many of them produce the same group.

Theorem
There are at most 122 distinct groups generated by 3-state automata.

	A Semigroup
	Wreath Products
	Knuth Normal Form
	Group Theory

