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Upcoming Attractions 2

Burnside/Pólya/Redfield is an application of group theory to combinatorial
counting, a sort of computational problem.

Next we will go in the opposite direction and show how computability, and in
particular the theory of finite state machines can be applied to group theory.

As it turns out, FSMs can provide very concise and elegant descriptions of
groups with amazing properties (added benefit: the machines are often tiny).



Wisdom 3

The author (along with many other people) has come recently
to the conclusion that the functions computed by the various
machines are more important–or at least more basic–than the
sets accepted by these devices.

Dana Scott
Some Definitional Suggestions for Automata Theory
1967



First-Order Structures 4

One of the key ideas of Bourbaki is to organize mathematics around the study
of structures, and in particular first-order structures of the form

C = ⟨A; f1, f2, . . . , fk, R1, R2, . . . , Rℓ⟩

Here A is the carrier set, the fi are functions on A, and the Ri are relations on
A. The signature of the structure describes the arity of these functions and
relations.

We can use first-order logic over the language L(f1, . . . , fk, R1, . . . , Rℓ) to
describe properties of such structures.



Relational Structures 5

For our purposes it is convenient to think of functions as just being special
kinds of relations and simply deal exclusively with the latter.

A relational structure is a FO structure of the form

C = ⟨A; R1, R2, . . . , Rk⟩

Again, this is no serious restriction, we can always fake functions as relations:

x _ y ⇐⇒ f(x) = y

Here _ is just a binary relation with certain special properties (total and
single-valued).



White Lie 6

Note that this switch to relations changes our formulae a bit.

For example, consider the simple atomic formula f(f(a)) = b.
Utterly standard and useful notation, but it actually hides a quantifier:

∃ z
(
f(a) = z ∧ f(z) = b

)
To be clear, the notation is perfectly good, but any algorithm dealing with the
formula has to cope with this invisible quantifier, one way or another.

In a purely relational structure everything is clearly visible, we have to write
something like

∃ z
(
a _ z ∧ z _ b

)
This can make life very slightly easier for algorithms.



But Why? 7

Following Scott’s suggestion, here is a moon shot.

Wild Idea:
Can one describe mathematical structures using only FSM?

From a certain perspective, these structures would be fairly simple, though
nowhere near as simple as one might suspect. They are by no means trivial.

The hope is that we can use the perfectly algorithmic theory of FSMs to
analyze these structures and understand them in great detail.



A Word Structure 8

The structures we are interested in have the restricted form

C = ⟨A; R1, R2, . . . , Rk⟩

where everything is represented by finite state machines.:

A ⊆ Σ⋆ is a recognizable language, and

Ri ⊆ Aℓi is a recognizable relation on words.

We already know how to handle the carrier set, but we do not have any
concept “recognizable relation” at this point.



FSMs versus Relations 9

There are two basic options to generalize our machines from languages to
relations:

Modify the machines so that they by recognize relations (i.e., k-tuples of
words) rather than just words.

Generalize Kleene’s algebraic characterization of regular languages in
terms of regular expressions.

The first option is critical for algorithms; we can lift some (but emphatically
not all) algorithms from regular languages to relations.

The algebraic approach serves as a sanity check and is in many ways less ad
hoc; the generalization is fairly canonical.



From Languages to Relations 10

So the next project is to generalize recognizable languages to some reasonable
class of recognizable relations, which are often called rational relations.

As already mentioned, we have two basic options to tackle this problem:

Invent some kind of memoryless machine that takes k-tuples of words as
input, rather than just single words.

Exploit Kleene’s algebraic characterization in terms of regular expressions
and modify them from languages to relations.

We’ll start with the machine model and then develop the corresponding
algebraic approach. As it turns out, they agree entirely.



Transductions 11

A transduction is a relation of the form

ρ ⊆ Σ⋆ × Γ ⋆

In other words, ρ is a binary relation on words (or, alternatively, a language of
2-track words). Usually we have Σ = Γ , but occasionally the general form is
more useful.

It often helps to think of such a relation as a map

ρ : Σ⋆ −→ P(Γ ⋆)

where ρ(x) = { y | ρ(x, y) }. We are given x as input, and want to compute y
as output (but note that transductions are not single-valued in general).



Higher Arities 12

Our definition nicely generalizes to k-ary relations for k > 2. Instead of single
words over an alphabet we have k-tuples of words, possibly over different
alphabets:

u ∈ Σ⋆
1 × Σ⋆

2 × . . . × Σ⋆
k

To emphasize that we still have word-specific operations such as concatenation
on these objects we will refer to them as k-track words or multi-words.

To display the component words we usually write

u = u1:u2: . . . :uk

The most important case is when k = 2 and we will write

x:y or x/y

to indicate that x is replaced by y.



So What? 13

Wurzelbrunft immediately concludes the following: We are living in
StringWorldTM, so we can easily code up a relation R ⊆ Σ⋆ × Σ⋆ as

R# = { x # y | x, y ∈ Σ⋆, R(x, y) } ⊆ Σ⋆#Σ⋆

where # /∈ Σ.

Then we use a FSM to work with R#, done.

Sadly, no. Unless x is tiny, the machine will have forgotten almost all of it
when it gets to y.

We could not even handle “x is a prefix of y” this way.



Parallel Read 14

The simple solution is to not read x and y sequentially, but in parallel.

This requires to interleave the symbols in some way, either by alternating
between x and y as in strict shuffle.

Alternatively, we could switch to a product alphabet Σ × Σ and read one
symbol each at every step. To handle strings of different lengths we can use
padding.

Before we go into the weeds, a particularly simple example that is already very
important in group theory.
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Warm-Up: Mealy Machines 16

The most simple-minded transductions are alphabetic: each input symbol is
replaced by an output symbol in a completely deterministic manner.

In a Mealy machine, the transitions are described by a function

δ : Q × Σ −→ Σ × Q

So transitions are labeled by pairs of letters

p
a/b−−−→ q

Mealy machines are length-preserving: the output string has the same length as
the input string.



Alternative Definition 17

Instead of using a single transition function τ : Q × Σ → Σ × Q it is
sometimes more convenient to split things into two functions

δ : Q × Σ → Q state transitions
ρ : Q × Σ → Σ output function

In particular the curried versions of these functions

δa : Q → Q a ∈ Σ

ρp : Σ → Σ p ∈ Q

are often more convenient to use than the original definition.



Output Modules 18

Usually Mealy machines have initial and final states, but they don’t matter for
us at this point. Sam Eilenberg referred to these machines as output modules.

For any state p in a Mealy machine we get a transduction

p : Σ⋆ → Σ⋆

by considering runs starting at state p.

Since Mealy machines are deterministic, p really is a function.

Exercise
Give a formal inductive definition of p .



Successor 19

p q
0/1

1/0 a/a

We can describe the transductions defined by this machine as follows:

p (0x) = 1 q (x)
p (1x) = 0 p (x)
q (x) = x

On k-bit strings†, p is the successor modulo 2k.
In the literature, this is called the “adding machine.”

†On infinite strings we get the true successor function, but on 2-adic numbers.



Predecessor 20

The last machine has a special property: its transduction is a bijection on 2⋆.
In fact, we get a permutation of Σn for each n. The permutation is just a
cycle of length 2n.

p q
1/0

0/1 a/a

The transducer that computes the inverse function: simply swap all transition
labels in the successor machine.



Invertible Mealy Automata 21

Definition
A Mealy transducer is invertible if, for every state p, the output maps ρp are
permutations of Σ.

In particular for Σ = 2 there are only two types of states: copy and toggle.

p

q0

q1

p

q0

q1

0/0

1/1

0/1

1/0

For the moment, we will focus on invertible transducers.



Automaton (Semi-) Groups 22

In an invertible Mealy machine A we get a collection of transductions p , p ∈ Q
that are all permutations of Σ⋆ (and in fact of Σn). Define

Sgrp(A) = the semigroup generated by the p

Grp(A) = the group generated by the p

For the semigroup we take all possible compositions of the basic transductions,
producing an automaton semigroup.

For the group we add the inverse transductions p −1, producing an automaton
group.

Sometimes Sgrp(A) is already a group, but typically it is not.



Example: Successor 23

p q
1/0

0/1 a/a

The semigroup is (isomorphic to) ⟨N; +⟩:
p k corresponds to k ≥ 1 and q corresponds to 0.

The group is (isomorphic to) ⟨Z; +⟩:
we have to add the inverse p −k for k ≥ 1.



Terminology 24

. . . is suboptimal, as usual.

The notion of an automaton semi/group is the officially sanctioned one for our
Mealy machines.

But there are also automatic semi/groups, that also involve finite state
machine but in a different way. Essentially, there are finite state machines that
compute the group operations.

And there are transition semi/groups that are defined as the semigroups
generated by the maps δa of a DFA. In fact, these are historically the first
attempt to exploit algebra to understand finite state machines (algebraic
automata theory).

Right now, automaton semi/groups are all that matters to us.



But Why? 25

Why should anyone care about these semigroups/groups?

Two reasons:

Automaton groups have become the goto source for examples and coun-
terexamples in group theory. The key is that some enormously compli-
cated groups have descriptions in terms of automata with just a handful
of states.

Automatic groups are important in studying low dimensional manifolds
(Thurston et al., solvable word problem).

Transducers operating on binary and 2-adic numbers are quite useful in
understanding digital circuits. Take a look at Vuillemin.

https://cs.cmu.edu/~syco/resources/Vuillemin1993.pdf


Jean-Pierre Serre 26

Fields Medal, Abel Prize, Steele Prize,
Wolf Prize

Member Bourbaki

Arbres, Amalgames, SL2 (1977)
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A Pebble Game 28

Take a row of tokens, white on one side, blue on the other.

Starting at the left, flip the current token. If it is now white, skip the next
token. Otherwise, skip the next two tokens. Repeat till you fall off the end.



And Repeat . . . 29



Another Run 30



And Another 31



Getting Serious 32

We are dealing with an operation ϕ : 2⋆ → 2⋆ .

Easy Observations:

ϕ is trivially length-preserving.

ϕ is injective.

ϕ is a permutation of 2n for each n.

Hence the orbits of ϕ are all plain cycles;
it seems like a reasonable project to determine the lengths of these cycles.



Length 5 33

There are 4 cycles of length 8.



Cycle Count/Length Table 34

1 2 4 8 16 32
0 1
1 1
2 2
3 2
4 4
5 4
6 8
7 8
8 16
9 16

10 32

→: cycle length
↓: word length
missing entries are 0



Splitting/Doubling Cycles 35

Consider a cycle

C = u0, u1, . . . , un−1

Then either there are two cycles

u00, u1b1, . . . , un−1bn−1 u01, u1b1, . . . , un−1bn−1

or there is a single cycle

u00, u1b1, . . . , un−1bn−1, u01, u1b1, . . . , un−1bn−1.



Cycle Tree 36

Conjecture
There are 2⌊k/2⌋ cycles on words of length k.
The length of each cycle is 2⌈k/2⌉.



Action Angle 37

Wild Idea:
Can we think of pebble flipping as some semigroup action?

We don’t mean the obvious action on N, k 7→ ϕk(x), that works for all maps
on Σ⋆ and is too general.

Instead, we would like some framework that is custom designed for ϕ and helps
to understand its internal structure.



Pebble Flipping 38

0

1 2

0:1

1:0

a:a

a:a

An invertible Mealy machine A that implements the pebble flipping operation.



Recursive Definition 39

0 (0x) = 1 2 (x)
0 (1x) = 0 1 (x)
1 (ax) = a 0 (x)
2 (ax) = a 1 (x)

So 0 is our flipping operation ϕ, but 1 and 2 explain how it works.

We might as well try to understand how the semigroup Sgrp(A) acts on 2⋆.



Seriously? 40

Is it really easier to S = Sgrp(A) than just a narrow focus on iterated flipping?

Pierre Deligne commented on Alexandre Grothendieck’s work:

He would aim at finding and creating the home which was the
problem’s natural habitat.

The natural habitat for the flipping operation is the semigroup, basta.



Some Hard Questions 41

How hard is it to

test membership in a cycle?

compute ϕt(x)?

compute t such that ϕt(x) = y?

compute the least element of a cycle?

These are trivially primitive recursive, but we are looking for fast methods.
In particular, for words of length k, the algorithms should be polynomial in k.
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Successor 43

We already talked about the “adding machine.”

p q
0/1

1/0 a/a

The semigroup generated by this machine is N.

The group generated by this machine is Z.

To get a group, we have to add the inverse of p , the predecessor function.



The Tree 44

Ε

0 1

00 01 10 11

000 001 010 011 100 101 110 111

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



After the Transduction 45

ϵ

1 0

10 11 01 00

100 101 110 111 010 011 001 000

1000 1001 1010 1011 1100 1101 1110 1111 0100 0101 0110 0111 0010 0011 0001 0000



How About . . . 46

a b

1:0
0:1

a:a

In recursive form:

a (0x) = 1 b (x)
a (1x) = 0 a (x)
b (sx) = s a (x)

This is a broken successor machine, instead of copying the rest, it copies only
one bit and then goes back into increment mode.

What will the orbits look like?



Example 47

The full orbit of 00000. Length is 32.
This is yet another counter, albeit in weird number system.

Exercise
Show that all orbits of length k strings have length 2k.



Sausage Automaton 48

1

5

4

3

2

0

1:0

0:1

This is the so-called sausage automaton S5.
Gray edges are copy.

Question: What semigroup/group is associated with this machine?



Semigroup/Group 49

For simplicity, consider a word x = z1z2 . . . zk where zi ∈ 25.

Then 1 affects only the first bits of each block: z11, z21, . . . , zk1. On these
bits, it acts like the successor.

Similarly, 2 affects only the second bits of each block: z12, z22, . . . , zk2, again
acting like the successor.

And so on for the others.

Claim:
The sausage automaton generates the semigroup N5 and the group Z5.



Old Homework 50

Implement the Collatz function as efficiently as possible.

E.g., for x = 2k − 1, k = 10000, . . . , 10010 my code takes 4.25 seconds to
produce

k stop up down width
10000 86278 48126 38152 15850
10001 86279 48126 38153 15853
10002 86280 48126 38154 15853
10003 86281 48126 38155 15856
10004 86282 48126 38156 15856
10005 86283 48126 38157 15858
10006 86284 48126 38158 15860
10007 86285 48126 38159 15864
10008 86286 48126 38160 15864
10009 86287 48126 38161 15864
10010 86288 48126 38162 15866



Speed 51

It is a bad idea to use some arbitrary precision integer arithmetic library to do
this: the computation requires some specialized bit manipulations but not
really arithmetic.

Write numbers in reverse binary, work from left to right.
Ponder deeply:

x 1 x1 x2 x3 x4 x5 x6 0 0 0 0 . . .
2x+1 1 1 x1 x2 x3 x4 x5 x6 0 0 0 . . .

3x+1 0 x1 y2 y3 y4 y5 y6 y7 y8 0 0 . . .

The bits yi involve the input bits as well as carries.



Collatz Algorithm 52

To compute with n-bit numbers:

Allocate a bit array of length 5n, write input on the left.

Update by one sweep, left to right.

Bits slowly migrate to the right; move back to the left if necessary.

5 is a magic number that works for 10000 bits: no left shifts are needed at all.



Collatz Transducer 53

q p r1:1 0:0

0:0 0:1

1:0 1:1

a:a

0:ε

1:0

The upper part is not a Mealy machine.
But the 3 nodes at the bottom form an invertible Mealy automaton.



Mystery Solved 54

This transducer computes the value of the infamous Collatz function, assuming
inputs x and are written in reverse binary and are padded to x00†

The upper part clearly divides by 2.

The lower part computes the maps

q : n 7→ 3n + 2
p : n 7→ 3n + 1
r : n 7→ 3n

Another indication that iteration of Mealy machines can produce very
complicated results, even though the machines are basically trivial.

†Again, infinite strings are cleaner.
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