CDM

Closure Properties

KLAUS SUTNER

CARNEGIE MELLON UNIVERSITY
SPRING 2025

D080

—

Closure Properties

Determinization

More Closure

Exponential Blowup

Where Are We?

We have a definition of recognizable languages in terms of finite state machines
(deterministic or nondeterministic).

There are two killer apps for recognizable languages:

@ pattern matching

@ logical decision procedures

For either application we need to develop the basic theory of finite state
machines and recognizable languages.

How should we go about this?

Weak Model of Computation

We can think about finite state machines as a particularly weak model of
computation. In this context it is natural to ask basic questions about the
model:

@ Is there closure under sequential composition?

@ Is there closure under parallel composition?

Alas, we only have acceptors so far giving maps X* — 2, so sequential
composition makes no sense (we need transducers for that, a future topic).

But parallel composition we can handle right now: we want to combine two
machines into a single one and run them in parallel. Intuitively, combining two
finite state machines should produce another finite state machine: we only need
to keep track of pairs of states.

Parallel Composition

For simplicity, suppose we have two DFAs over X: A; = (Qi, X, :; qos, Fi). To
run the machines in parallel we define a new DFA as follows:

Definition (Cartesian Product Automaton)

A1 X Az = (Q1 X Q2, X, 01 X 025 (qo1, o2), F1 X Fb)
where 0 = §1 X 02 is defined by

6((]), q)7 CL) = (61 (pv a)v 62((17 a’))

So the computation of A; X Az on input © combines the two computations of
both machines on the same input.

Note | A1 X Az| = | A1]|A2|, a potential problem if the construction is used
repeatedly.

The Languages

By our choice of acceptance condition we have

LA x A2) = L(A1) N L(A2)

By adjusting the final states, we can also get union and complement:

union F:FlXQQUleFQ
intersection F=FXxF

difference F=F x(Q2— F2)

Nondeterministic Cartesian Products

Products generalize easily to nondeterministic machines. Say, we have two
NFAs over X: .Az = <Ql, E,Ti;li,Fi>.

Definition (Cartesian Product Automaton)

./41 ><.A2:<Q1 XQQ,E,T;]l XIQ,Fl ><F2>

where 7 = 71 X T2 is defined by

((0.@),a,(0,q)) €7 & (p,a,p) €T Alg,a,q) €72

So the computation of A; X A2 on input £ combines two computations of
both machines on the same input x.

Dire Warning

We still get intersections in an NFA product:

L(A1 x A2) = L(A1) N L(A2)

BUT:

In general, products of NFAs cannot be used to handle union and complement.
Make sure to construct some small counterexamples.

Hence we do not yet have closure under Boolean operations for recognizable
languages: these are defined in terms of NFAs, not DFAs.

Union

One can actually handle unions for NFAs very easily: We can form the disjoint
union or sum. Assume that the state sets are disjoint and define

Definition (Sum)

A1+ A = {(Q1UQ2, X, 11 Uto; [1 U Iz, Fi U Fy)

In other words, we declare the two machines to be one machine.
Basta.

Sum

This construction is trivially linear time.

Alas, even if the given machines are DFAs the result is always an NFA.

Sources of Nondeterminism

There are two disctinct source of nondeterminism:

@ Transition nondeterminism:
there are different transitions p — ¢ and p — ¢'.

@ Initial state nondeterminism:
there are multiple initial states.

Transition-deterministic automata with multiple initial states are called
multi-entry automata (a milder form on nondeterminism).

10

Closure 11

We will show that the following operations do not affect recognizability:

@ Boolean (union, intersection, complement)
@ concatenation, Kleene star

@ reversal

homomorphisms, inverse homomorphisms

So far we can handle union and intersection.
For complement we will need to lean heavily on deterministic machines.

For the rest, nondeterminism is extremely useful.

Effective Closure 12

All our arguments concerning closure properties are of the form:

Given FAs A; for recognizable languages L;.
One can effectively construct a new FA A for L, op Ls.

In other words, we have effective closure: there are algorithms that compute
the appropriate machines.
In many interesting cases, these algorithms are in fact highly efficient.

Alas, not always, in particular complementation causes major problems.

Deciding Equivalence

By effective closure, we can deal e.g. with the Equivalence problem for DFAs.

Problem: Equivalence
Instance: Two DFAs A; and As.
Question: Are the two machines equivalent?

Lemma
Ai and Az are equivalent iff L(A1) — L(A2) = 0 and L(A2) — L(A1) = 0.

From the product construction, we get a quadratic time algorithm.

We will see a better method later.

13

Deciding Inclusion

In fact, we are solving two instances of a closely related problem here:

Problem: Inclusion
Instance: Two DFAs A; and As.
Question: Is L(A1) C L(A2)?

which problem can be handled by

Lemma
L(A1) C L(A2) iff L(A1) — L(A2) = 0.

14

Deterministic CFLs

The opposite direction is false: there are classes of languages where equality is
decidable, but inclusion is not.

There is a famous and difficult theorem by Sénizergues from 1997 that shows
decidability of equality.

But inclusion is hard: DCLFs are effectively closed under complements and

L(A) CL(A2) < L(A)NL(A2) =D

Alas, intersection emptiness is not decidable for DCLFs (one can reduce Post's
Correspondence Problem).

15

And Nondeterministic Machines?

Lemma

Equivalence of finite state machines is primitive recursive.

Sketch of proof.

The most ham-fisted approach would be to pick a “sufficently large bound” 8

and then check
Vo e 257 (Ai(z) = Az (x))

What should 8 be? Suppose x is minimal such that the machines disagree on
x, m = |z|. For k <4, let

Pi(k) = Ti(Ii,xl . -Tk) C Qi

If m is large, there must be 1 < k < ¢ < m such that P;(k) = P;(¢) for
i = 1,2. Hence we can shorten = by removing the factor xx+1,...,x¢,
contradiction.

From this we can extract the bound.

16

Useless 17

So the bound is § = 2"* 2"2. Even worse, we have to check exponential in 3
many strings. Clearly not feasible, though easily primitive recursive.

The real challenge is to find an efficient algorithm for equivalence testing in
general, or to show that none can exist for NFAs.

In practice, this is done by establishing a computational hardness result.

Battle Plan

Again, here are some language-related operations, listed roughly in increasing
order of algorithmic difficulty.

@ reversal
@ concatenation, Kleene star

@ homomorphisms, inverse homomorphisms

We will establish effective closure for all of these.

18

Reversal Closure 19

The reversal of a language is defined by

P

(o]
(z122 .. Tn—12n)°® = TnTp—1...T221

L* ={z®|zeL}

Then L is recognizable iff L°P is recognizable.

This result is actually quite important: the direction in which we read a string
should be of supreme irrelevance. We really want a language to be recognizable
no matter whether we read left-to-right or right-to-left.

Example: Third Symbol 20

Define position languages by
Posa e ={z € X" |z =a}

A negative index means: from the end.

Hence Pos.", = Posa, .

It is staightfoward to build a PDFA for Pos,, 3.

But for Pos,,—3 the natural machine is obtained by reversing all the arrows
flipping initial and final states, hence nondeterministic.

a,b

It is not immediately clear how to build a PDFA for this language.

Concatenation and Kleene Star 22

Definition
Given two languages L1, Lo C X* their concatenation (or product) is defined by

Li-Ly={zy|xz € Li,y€ L}

Let L be a language. The powers of L are the languages obtained by repeated
concatenation:

L’ = {e}
LF k.
The Kleene star of L is the language

L*=1°urLtuL®. . .UL"U...

Kleene star corresponds roughly to a while-loop or iteration.

Towards Closure 23

Given two NFAs A; for recognizable languages L;, we want to construct a new
machine A for L - Lo.

So we need to split the string x = uv and then send u to A; and v to As.

r=2122... T Tk+1.-.Tn
S—_—— ——

u€Ly vEL2

The problem is that we don’t know where to split.

The natural answer would be to use nondeterminism to guess the right split.

But there is another problem: how do we jump to the second machine?

Nondeterministic Approach 24

Here is a clever trick: we allow our machines to jump from one state to another
without consuming any input. Technically, this is handled by so-called
e-transitions or e-moves.

Definition
A nondeterministic finite automaton with e-moves (NFAE) is defined like an
NFA, except that the transition relation has the format 7 C Q x (XU {e}) x Q.

Note that an NFAE may have runs that are longer than the input.

We will see shortly how to convert an NFAE into an equivalent NFA and even
in polynomial time, so this is perfectly fine.

Nondeterministic Concatenation 25

Once we have e-transitions, the construction for concatenation is fairly simple.

| (57 |

Place an e-transition between all states in F} and I».
Note that there are potentially quadratically many.

Kleene Star 26

e-transitions also dispatch Kleene star. For example, we could add a new initial
state, a new final state and transitions as indicated.

Generalized Finite Automata 27

While we're at, we can generalize further by allowing transitions to be labled by
arbitrary words over Y. These devices are called generalized finite automata
(GFA):

aba

p—>4q

GFA are very expressive.

E.g., it is trivial to write down a two-state GFA for any finite language:
p is initial, ¢ is final and there is a transition p — ¢ for each word w.

A Hierarchy

So we have the following hierarchy of finite state machines:
DFA C PDFA C MEPDFA C NFA C NFAE C GFA

This is a feature, not a bug: one often uses different types of machines for
different purposes, whichever kind works best under the circumstances.

Warning:

Many algorithms require NFAs or even (P)DFAs.
GFAs are concise, but often need to be converted back to NFA.

28

State and Transition Complexity

We will discuss a number of conversion algorithms, so we need to have a way
to express the size of a finite state machine.

Definition
The state complexity of a FSM is its number of states.
The transition complexity of a FSM is its number of its transitions.

In symbols: scp(A) and tcp(A)

The transition complexity corresponds nicely to the actual size of a FSM as a
data structure, but most results in the literature are phrased in terms of the
state complexity.

29

The Easy Conversion

The next project is to show the following:

Theorem

For every GFA, we can effectively construct an equivalent NFA.

First off, we can easily convert a GFA into an NFA by transition-splitting:

aba

b
p=5q o~ PSP, pL—ope, P2 g

This increases the states/transition complexity only linearly.

30

NFAE to NFA 31

Next we have to eliminate e-moves. Epsilon elimination is quite straightforward
and can easily be handled in polynomial time:

@ introduce new letter transitions that have the same effect as chains of ¢
transitions, and

@ remove all e-transitions.

Since there may be chains of e-transitions this is in essence a transitive closure
problem and can be handled with the usual graph techniques.

e-Closure 32

A transitive closure problem: we have to replace chains of transitions

£

O—0

O——0O0—0

by new transitions

a

Epsilon Elimination

Theorem
For every NFAE there is an equivalent NFA.

Proof. This requires no new states, only a change in transitions.

Suppose A = (Q, X, 7; I, F) is an NFAE for L. Let
A =(Q,%,7;I',F)

where 7’ is obtained from 7 as on the last slide.

I' is the e-closure of I: all states reachable from I using only e-transitions. O

This time there is potentially a quadratic blow-up in the number of transitions.

33

Homomorphisms

Definition
A homomorphism is a map f: X* — I'* such that

@iz ...zn) = f(z1)f(z2) ... f(z0)

where z; € X. In particular f(e) = e.
Note that a homomorphism can be represented by a finite table: we only need
fla) e I'* for all a € 2.

Given a homomorphism f : X* — I'* and languages L C X* and K C I'* we
are interested in the languages

image fL)y={f(@)|zeL}

inverse image f 1K) ={z| f(z) e K}

34

Closure under Homomorphisms 35

Lemma

Regular languages are closed under homomorphisms and inverse
homomorphisms.

Proof.
Let f: X* — I'" be a homomorphism and let L C X* be recognized by A.

Relabel the transitions in A as follows

a f(a
p—q ~ P q

This produces a GFA over X' that accepts f(L).

Backwards 36

For the opposite direction, suppose A = (Q, I, 7;1, F) is an NFA for K C I'*.

Construct a new machine A’ over Q and X by
p—qin A = p&;qinA

This produces an NFA over X that accepts f~!(K).

Example

Y ={a,b,c} Ir={0,1}
fla)=00 f(b)=01 f(e)=10
L = even number of as, no ¢

K = even number of 0Os

37

Substitutions

We can push the last result a little further: we could consider regular
substitutions, maps obtained from a lookup table

fla)=K,C I

where K, is a whole regular language, rather than just a single word. As
before, f(x1z2...2n) = f(z1)f(x2)... f(zn) C I and we set

F() = f@)

xeLl

Lemma

Regular languages are closed under regular substitutions and inverse regular
substitutions.

38

2 Determinization

Determinization

The next and critical step is to eliminate nondeterminism?.

Theorem (Rabin, Scott 1959)
For every NFA there is an equivalent DFA.

The idea is to keep track of the set of possible states the NFA could be in.

This produces a DFA whose states are superstates: sets of states of the original
machine.

fThis also works for Turing machines, but not for pushdown automata.

40

General Abstract Nonsense

TCRXxEXQ
TIQXIXQ —2
TIQXY — (Q — 2)
T:Qx X — P(Q)
T R(@Q) x X — P(Q)

The latter function can be interpreted as the transition function of a DFA on

PB(Q). Done.

37D

41

Proof of Rabin-Scott

Suppose A = (Q, X, 7;I,F) is an NFA. Let
A= (BQ), 2,51 F)
where

§(P,a)={qeQ|3peP(paq)}
F'={PCQ|PNF#0}

It is straightforward to show by induction that A and A’ are equivalent.

The machine from the proof is the full power automaton of A, written
pow;(.A), a machine of size 2°P(Y).

However, for equivalence only the accessible part pow(.A), the power
automaton of A, is required. With a little luck, it will be much smaller.

42

Smart Power Automata 43

The right way to determize A = (Q, X, 7;1, F) is to take a closure in the
ambient set P(Q), starting with the initial superstate I:

cIos(I; (Ta)aeE) CP(Q)

Here 7, is the function P(Q) x X — P(Q) defined by

Ta(P)={q€Q|IpeP(p—q)}

This produces the accessible part only, and, with luck, is much smaller than the
full power automaton.

Power Automaton Algorithm

Here is a more algorithmic version of this construction.

act =5 ={I}
while(act # ()
P = pop(act)
foreach a € X' do
compute P’ = 7,(P)
store P % P’
if(P’ ¢ S) then
add P’ to S and act
return S

Upon completion, S C B(Q) is the state set of the accessible part of the full
power automaton.

44

Digression 1: Acceptance Testing 45

The determinization algorithm is very similar to nondeterministic acceptance
testing: instead of following the superstates for one particular input word, it
constructs all possible superstates.

If we are only interested in acceptance testing for a few words, there is no need
to determize. But if we need to, say, compute complements, then we may have
to build the whole DFA.

Digression 2: Succinct Representations

We can think of an NFA A= (Q, X, 7;I, F) as a very compact description of
the DFA pow(A).

The DFA lives in the huge ambient space B(Q) that we cannot even write
down (except when the size of A is tiny).

But for equivalence we don't need the whole space, just a potentially much
smaller fragment. Moreover, we can generate this fragment by using graph
algorithms: essentially, we run DFS/BFS on a virtual graph.

For this to work, we do not need adjacency lists or matrices, it is enough to be
able to generate a list of out-edges on the fly.

46

Example: Even/Even

A simple 4-state DFA for the language all strings over {a, b} with an even
number of as and bs.

The cyan state is initial and final.

47

NFA for Even/Even 48

This is an NFA for the even/even language generated by an algorithm that
converts a regular expression to a machine.

1 is an initial state, and 12 is both initial and final.

Other than 12, all states are nondeterministic.

Power Automaton

The power automaton for the last NFA has only 6 states!

{{1,12},{2,4}, {3,5},{6,9}, {7, 10}, {8, 11}}

There is hope, after all.

49

Example: Pos, _3

a,b

4 a m a,b
/

©

What happens if we determinize this machine?

a,b @

50

Rabin-Scott

Applying the Rabin-Scott construction we obtain a machine with 8 states

{0}, {0, 1}, {0,1,2},{0,2},{0,1,2,3},{0,2,3},{0,1, 3}, {0, 3}

where 1 is initial and 5, 6, 7, and 8 are final. The transitions are given by

SN
— | =
INGEIIEN)
o ol w
00 ~3f >
o o
o ~1| o
B w|
— | oo

The full power set has size 16, our construction builds the accessible part of
size 8.

51

The Diagram, Explained

™
AN
34
of >

N
/

OO

Here is the corresponding diagram, rendered in a particularly brilliant way.

This is a so-called de Bruijn graph (binary, rank 3).

52

Keeping Accessible 53

While we are at it, constructing only accessible parts is important, always.

E.g., consider the product automaton for DFAs A,, and A, accepting aa and
bb, respectively.

Aaa:

Full Product Automaton

54

55

The Accessible Part

A Better Mousetrap?

So are nondeterministic machines better than deterministic ones?

o Advantages:

Easier to construct and manipulate.
Sometimes exponentially smaller.
Sometimes algorithms much easier.

o Drawbacks:

Acceptance testing somewhat slower.
Sometimes algorithms more complicated.

Which type of machine to choose in a particular application can be a hard
question, there is no easy general answer.

56

3 More Closure

Fixes

For a word z = uvw, u is a prefix of x, v is a factor or infix of z and w is a
suffix of x.

We can lift these concepts to languages:
pref(L) ={u e X" |Jv(uww e L)}

and similarly for fact(L) and suff(L).

Lemma
pref(L), fact(L) and suff(L) are regular whenever L is.

Proof. We may assume that A is a trim automaton for L.
Set F=Q, 1 =F =Q and I = @, respectively.

58

Alternative Argument

For any alphabet X define ¥ to be a copy of X with elements @ for a € X.

Set '=XUX.

Define homomorphisms f,g: I'* — X* by
f@=a fla)=

g@=a gla)=c¢

Then o
pref(L) = g(f ' (L)NZ"X*)

Done by closure properties.

59

Fancy Acceptance

Recall that our vanilla acceptance only depends on the target state of a run,
not the full run itself.

We could try different kinds of acceptance conditions.
For simplicity, assume that A is PDFA.

A accepts z iff
it has a vanilla accepting run that uses every state at least once.

Or we could insist that some state appears 42 times.
Or if state p appears, then state ¢ must not appear.

Claim: This sort of condition still produces only recognizable languages.

60

Proof Sketch 61

Construct a new PDFA A’

Q' =Q xP(Q)
o = (g0, {qo})
F'=F x{Q}

&' ((p,R),a)) = (6(p,a), RU{5(p,a)})

In other words, A’ runs A and keeps track of all encountered states.

Yet another example where the state complexity may blow up exponentially.

State Complexity of Operations 62

DFA NFA
intersection mn mn
union mn m-+n

concatenation (m—1)2" -1 m+n

Kleene star 3.2772 n+1
reversal 2m n
complement n 2"

Worst case blow-up starting from machine(s) of size m, n and applying the
corresponding operation (accessible part only).

Note that we are only dealing with state complexity, not transition complexity
(which is arguably a better measure for NFAs).

Example: Intersection

The “mod-counter” language
Kom={2€2" | #sx=0 (modm)}

clearly has state complexity m. Similarly, the intersection of Ko, and K,
has state complexity mn.

63

Again: Decision Problems

Problem:
Instance:
Question:

Problem:
Instance:
Question:

Problem:
Instance:
Question:

Emptiness Problem
A regular language L.
Is L empty?

Finiteness Problem
A regular language L.
Is L finite?

Universality Problem
A regular language L.
Is L =X"7

64

Machine Types

For DFAs these problems are all easily handled in linear time using
depth-first-search.

As far as decidability is concerned there is no difference between DFAs and
NFAs: we can simply convert the NFA.

But the determinization may be exponential, so efficiency becomes a problem.

@ Emptiness and Finiteness are easily polynomial time for NFAs.

o Universality is PSPACE-complete for NFAs.

65

More Problems

Problem: Equality Problem
Instance: Two regular languages L1 and Lo.
Question: Is Ly equal to Ly?

Problem: Inclusion Problem
Instance: Two regular languages Li and Lo.
Question: Is L1 a subset of L5?

@ Inclusion is PSPACE-complete for NFAs.

o Equality is PSPACE-complete for NFAs.

66

Large Product Machines 67

Suppose we have a list of m DFAs A; of size n;, respectively.

Then the full product machine
A=A1 X A2 X ... X Am—1 X Anm
has n = ninso...ns states.
@ The full product machine grows exponentially, but its accessible part may
be much smaller.

@ Alas, there are cases where exponential blow-up cannot be avoided.

Bad News: DFA Intersection

Here is the Emptiness Problem for a list of DFAs:

Problem: DFA Intersection
Instance: A list Ay, ..., A, of DFAs
Question: Is [£(A;) empty?

This is easily decidable: we can check Emptiness on the product machine
A =[] Ai. The Emptiness algorithm is linear, but it is linear in the size of A,
which is itself exponential. And, there is no universal fix for this:

Theorem
The DFA Intersection Problem is PSPACE-hard.

68

4 Exponential Blowup

Blowup

The example for the even/even language shows that a power automaton may
well be smaller than the original NFA.

Just to be clear: this phenomenon is a bit rare. It is still true that for
RealWorld™ machines the blowup is often small, something like polynomial in
the size of the NFA.

Unfortunately, full or nearly full blowup during determinization does occur, and
there is simply no way around it.

70

Blowup Example 1 71

Recall the kth symbol languages

Poser = {z €a,b" |z =a}

Proposition

Pos,,i can be recognized by an NFA on k + 1 states.
Any DFA has size at least 2"

Applying determinization to the NFA produces a DFA of size 2".
The hard part is to show that there is no smaller DFA (later).

Blowup Example 2 72

a
Q

Here is a 6-state NFA based on a circu- “ b b a
lant graph. Assume [= Q.
If X = b than the power automaton X\\O
has size 1. b
However, for X = a the power automa- ;
ton has maximal size 2°. a) b '

A Pebble Game

Think of placing a pebble on each state of the automaton.

Then push a button s € X' and move all the pebbles accordingly.

Lather, rinse and repeat, until the target configuration P of pebbles is reached.

To demonstrate full blowup, we have to explain how to accomplish this for all
P CQ.

Slightly more complicated is a situation when we can only handle “almost all”
P, a few special pebble configurations fail to be reachable.

73

Easy Case 74

Consider C'(n;0,1), label all loops a and all stride 1 edges b.
Then switch the label of the loop at 0.

T

Blowup Example 3 75

Start with a binary de Bruijn automaton where both §, and d, are
permutations. An example for rank 3:

There are 2 loops and 2 3-cycles labeled a (red), a 2-cycle and a 6-cycle
labeled b (green).

Flipping a Loop

Now flip the label of one of the two loops.

We get an NFA that it almost deterministic. What happens if we perform
determinization?

76

Full Blowup

Flipping the label at a loop produces full blowup for any) # I C Q.

7

A Little Challenge 78

The last claim | can prove. But this is just the tip of the iceberg.

One can show that the number of permutation labelings in the binary de Bruijn
k—
graph of rank k is 22 "

Conjecture:
Flipping the label of an arbitrary edge in a permutation labeling
will produce full blowup in exactly half of the cases.

So the total number of cases with full blowup should be

ok—1

full blowup: 2% 9

This has been verified experimentally up to kK = 5 (on Blacklight at PSC, rest
in peace). There are 4,194,304 machines to check, ignoring symmetries. Half
of them blow up to size 2%? = 4,294, 967, 296.

Predicting Blowup 79

Since exponential blowup does occur, it would be very nice if we could run a
quick precomputation that checks for a given NFA whether determinization on
that machine would indeed blow up (so that we don't have to bother trying).

More precisely, we would like a fast algorithm for the following problem.

Problem: Power Automaton Size
Instance: A nondeterministic machine A, a bound B.
Question: s the size of the power automaton of A bounded by B?

No Luck

Theorem (KS 2003)
Power Automaton Size is PSPACE-complete.

Thus, essentially the only way to determine the size of the power automaton is
to actually construct it, there are no computational shortcuts.

80

	Closure Properties
	Determinization
	More Closure
	Exponential Blowup

