
CDM
Closure Properties

Klaus Sutner

Carnegie Mellon University
Spring 2025

1 Closure Properties

2 Determinization

3 More Closure

4 Exponential Blowup

Where Are We? 2

We have a definition of recognizable languages in terms of finite state machines
(deterministic or nondeterministic).

There are two killer apps for recognizable languages:

pattern matching

logical decision procedures

For either application we need to develop the basic theory of finite state
machines and recognizable languages.

How should we go about this?

Weak Model of Computation 3

We can think about finite state machines as a particularly weak model of
computation. In this context it is natural to ask basic questions about the
model:

Is there closure under sequential composition?
Is there closure under parallel composition?

Alas, we only have acceptors so far giving maps Σ⋆ → 2, so sequential
composition makes no sense (we need transducers for that, a future topic).

But parallel composition we can handle right now: we want to combine two
machines into a single one and run them in parallel. Intuitively, combining two
finite state machines should produce another finite state machine: we only need
to keep track of pairs of states.

Parallel Composition 4

For simplicity, suppose we have two DFAs over Σ: Ai = ⟨Qi, Σ, δi; q0i, Fi⟩. To
run the machines in parallel we define a new DFA as follows:

Definition (Cartesian Product Automaton)

A1 × A2 = ⟨Q1 × Q2, Σ, δ1 × δ2; (q01, q02), F1 × F2⟩

where δ = δ1 × δ2 is defined by

δ((p, q), a) =
(
δ1(p, a), δ2(q, a)

)

So the computation of A1 × A2 on input x combines the two computations of
both machines on the same input.

Note |A1 × A2| = |A1||A2|, a potential problem if the construction is used
repeatedly.

The Languages 5

By our choice of acceptance condition we have

L(A1 × A2) = L(A1) ∩ L(A2)

By adjusting the final states, we can also get union and complement:

union F = F1 × Q2 ∪ Q1 × F2

intersection F = F1 × F2

difference F = F1 × (Q2 − F2)

Nondeterministic Cartesian Products 6

Products generalize easily to nondeterministic machines. Say, we have two
NFAs over Σ: Ai = ⟨Qi, Σ, τi; Ii, Fi⟩.

Definition (Cartesian Product Automaton)

A1 × A2 = ⟨Q1 × Q2, Σ, τ ; I1 × I2, F1 × F2⟩

where τ = τ1 × τ2 is defined by(
(p, q), a, (p′, q′)

)
∈ τ ⇔ (p, a, p′) ∈ τ1 ∧ (q, a, q′) ∈ τ2

So the computation of A1 × A2 on input x combines two computations of
both machines on the same input x.

Dire Warning 7

We still get intersections in an NFA product:

L(A1 × A2) = L(A1) ∩ L(A2)

BUT:
In general, products of NFAs cannot be used to handle union and complement.
Make sure to construct some small counterexamples.

Hence we do not yet have closure under Boolean operations for recognizable
languages: these are defined in terms of NFAs, not DFAs.

Union 8

One can actually handle unions for NFAs very easily: We can form the disjoint
union or sum. Assume that the state sets are disjoint and define

Definition (Sum)

A1 + A2 = ⟨Q1 ∪ Q2, Σ, τ1 ∪ τ2; I1 ∪ I2, F1 ∪ F2⟩

In other words, we declare the two machines to be one machine.
Basta.

Sum 9

I1 F1 I2 F2

This construction is trivially linear time.
Alas, even if the given machines are DFAs the result is always an NFA.

Sources of Nondeterminism 10

There are two disctinct source of nondeterminism:

Transition nondeterminism:
there are different transitions p

a−→ q and p
a−→ q′.

Initial state nondeterminism:
there are multiple initial states.

Transition-deterministic automata with multiple initial states are called
multi-entry automata (a milder form on nondeterminism).

Closure 11

We will show that the following operations do not affect recognizability:

Boolean (union, intersection, complement)

concatenation, Kleene star

reversal

homomorphisms, inverse homomorphisms

So far we can handle union and intersection.
For complement we will need to lean heavily on deterministic machines.
For the rest, nondeterminism is extremely useful.

Effective Closure 12

All our arguments concerning closure properties are of the form:

Given FAs Ai for recognizable languages Li.
One can effectively construct a new FA A for L1 op L2.

In other words, we have effective closure: there are algorithms that compute
the appropriate machines.
In many interesting cases, these algorithms are in fact highly efficient.
Alas, not always, in particular complementation causes major problems.

Deciding Equivalence 13

By effective closure, we can deal e.g. with the Equivalence problem for DFAs.

Problem: Equivalence
Instance: Two DFAs A1 and A2.
Question: Are the two machines equivalent?

Lemma
A1 and A2 are equivalent iff L(A1) − L(A2) = ∅ and L(A2) − L(A1) = ∅.

From the product construction, we get a quadratic time algorithm.
We will see a better method later.

Deciding Inclusion 14

In fact, we are solving two instances of a closely related problem here:

Problem: Inclusion
Instance: Two DFAs A1 and A2.
Question: Is L(A1) ⊆ L(A2)?

which problem can be handled by

Lemma
L(A1) ⊆ L(A2) iff L(A1) − L(A2) = ∅.

Deterministic CFLs 15

The opposite direction is false: there are classes of languages where equality is
decidable, but inclusion is not.

There is a famous and difficult theorem by Sénizergues from 1997 that shows
decidability of equality.

But inclusion is hard: DCLFs are effectively closed under complements and

L(A1) ⊆ L(A2) ⇐⇒ L(A1) ∩ L(A2) = ∅

Alas, intersection emptiness is not decidable for DCLFs (one can reduce Post’s
Correspondence Problem).

And Nondeterministic Machines? 16

Lemma
Equivalence of finite state machines is primitive recursive.

Sketch of proof.
The most ham-fisted approach would be to pick a “sufficently large bound” β
and then check

∀ x ∈ Σ≤β
(
A1(x) = A2(x)

)
What should β be? Suppose x is minimal such that the machines disagree on
x, m = |x|. For k ≤ 4, let

Pi(k) = τi

(
Ii, x1 . . . xk

)
⊆ Qi

If m is large, there must be 1 ≤ k < ℓ ≤ m such that Pi(k) = Pi(ℓ) for
i = 1, 2. Hence we can shorten x by removing the factor xk+1, . . . , xℓ,
contradiction.
From this we can extract the bound.

2

Useless 17

So the bound is β = 2n1 2n2 . Even worse, we have to check exponential in β
many strings. Clearly not feasible, though easily primitive recursive.

The real challenge is to find an efficient algorithm for equivalence testing in
general, or to show that none can exist for NFAs.

In practice, this is done by establishing a computational hardness result.

Battle Plan 18

Again, here are some language-related operations, listed roughly in increasing
order of algorithmic difficulty.

reversal
concatenation, Kleene star
homomorphisms, inverse homomorphisms

We will establish effective closure for all of these.

Reversal Closure 19

The reversal of a language is defined by

(x1x2 . . . xn−1xn)op = xnxn−1 . . . x2x1

Lop = { xop | x ∈ L }

Then L is recognizable iff Lop is recognizable.

This result is actually quite important: the direction in which we read a string
should be of supreme irrelevance. We really want a language to be recognizable
no matter whether we read left-to-right or right-to-left.

Example: Third Symbol 20

Define position languages by

Posa,k = { x ∈ Σ⋆ | xk = a }

A negative index means: from the end.
Hence Posop

a,k = Posa,−k.

It is staightfoward to build a PDFA for Posa,3.

0 1 2 3
a, b a, b a

a, b

But for Posa,−3 the natural machine is obtained by reversing all the arrows
flipping initial and final states, hence nondeterministic.

3 2 1 0
a

a, b

a, b a, b

It is not immediately clear how to build a PDFA for this language.

Concatenation and Kleene Star 22

Definition
Given two languages L1, L2 ⊆ Σ⋆ their concatenation (or product) is defined by

L1 · L2 = { xy | x ∈ L1, y ∈ L2 }.

Let L be a language. The powers of L are the languages obtained by repeated
concatenation:

L0 = {ε}

Lk+1 = Lk · L

The Kleene star of L is the language

L⋆ = L0 ∪ L1 ∪ L2 . . . ∪ Ln ∪ . . .

Kleene star corresponds roughly to a while-loop or iteration.

Towards Closure 23

Given two NFAs Ai for recognizable languages Li, we want to construct a new
machine A for L1 · L2.

So we need to split the string x = u v and then send u to A1 and v to A2.

x = x1x2 . . . xk︸ ︷︷ ︸
u∈L1

xk+1 . . . xn︸ ︷︷ ︸
v∈L2

The problem is that we don’t know where to split.

The natural answer would be to use nondeterminism to guess the right split.

But there is another problem: how do we jump to the second machine?

Nondeterministic Approach 24

Here is a clever trick: we allow our machines to jump from one state to another
without consuming any input. Technically, this is handled by so-called
ε-transitions or ε-moves.

Definition
A nondeterministic finite automaton with ε-moves (NFAE) is defined like an
NFA, except that the transition relation has the format τ ⊆ Q × (Σ ∪ {ε}) × Q.

Note that an NFAE may have runs that are longer than the input.

We will see shortly how to convert an NFAE into an equivalent NFA and even
in polynomial time, so this is perfectly fine.

Nondeterministic Concatenation 25

Once we have ε-transitions, the construction for concatenation is fairly simple.

I1 F1 I2 F2

ϵ

Place an ε-transition between all states in F1 and I2.
Note that there are potentially quadratically many.

Kleene Star 26

I F

ε-transitions also dispatch Kleene star. For example, we could add a new initial
state, a new final state and transitions as indicated.

Generalized Finite Automata 27

While we’re at, we can generalize further by allowing transitions to be labled by
arbitrary words over Σ. These devices are called generalized finite automata
(GFA):

p
aba−−→ q

GFA are very expressive.

E.g., it is trivial to write down a two-state GFA for any finite language:
p is initial, q is final and there is a transition p

w−→ q for each word w.

A Hierarchy 28

So we have the following hierarchy of finite state machines:

DFA ⊆ PDFA ⊆ MEPDFA ⊆ NFA ⊆ NFAE ⊆ GFA

This is a feature, not a bug: one often uses different types of machines for
different purposes, whichever kind works best under the circumstances.

Warning:
Many algorithms require NFAs or even (P)DFAs.
GFAs are concise, but often need to be converted back to NFA.

State and Transition Complexity 29

We will discuss a number of conversion algorithms, so we need to have a way
to express the size of a finite state machine.

Definition
The state complexity of a FSM is its number of states.
The transition complexity of a FSM is its number of its transitions.
In symbols: scp(A) and tcp(A)

The transition complexity corresponds nicely to the actual size of a FSM as a
data structure, but most results in the literature are phrased in terms of the
state complexity.

The Easy Conversion 30

The next project is to show the following:

Theorem
For every GFA, we can effectively construct an equivalent NFA.

First off, we can easily convert a GFA into an NFA by transition-splitting:

p
aba−−→ q ⇝ p

a−→ p1, p1
b−→ p2, p2

a−→ q

This increases the states/transition complexity only linearly.

NFAE to NFA 31

Next we have to eliminate ε-moves. Epsilon elimination is quite straightforward
and can easily be handled in polynomial time:

introduce new letter transitions that have the same effect as chains of ε
transitions, and

remove all ε-transitions.

Since there may be chains of ε-transitions this is in essence a transitive closure
problem and can be handled with the usual graph techniques.

ε-Closure 32

A transitive closure problem: we have to replace chains of transitions

a ε ε ε

by new transitions

a

a a

a

Epsilon Elimination 33

Theorem
For every NFAE there is an equivalent NFA.

Proof. This requires no new states, only a change in transitions.
Suppose A = ⟨Q, Σ, τ ; I, F ⟩ is an NFAE for L. Let

A′ = ⟨Q, Σ, τ ′; I ′, F ⟩

where τ ′ is obtained from τ as on the last slide.
I ′ is the ε-closure of I: all states reachable from I using only ε-transitions. 2

This time there is potentially a quadratic blow-up in the number of transitions.

Homomorphisms 34

Definition
A homomorphism is a map f : Σ⋆ → Γ ⋆ such that

f(x1x2 . . . xn) = f(x1)f(x2) . . . f(xn)

where xi ∈ Σ. In particular f(ε) = ε.

Note that a homomorphism can be represented by a finite table: we only need
f(a) ∈ Γ ⋆ for all a ∈ Σ.

Given a homomorphism f : Σ⋆ → Γ ⋆ and languages L ⊆ Σ⋆ and K ⊆ Γ ⋆ we
are interested in the languages

image f(L) = { f(x) | x ∈ L }

inverse image f−1(K) = { x | f(x) ∈ K }

Closure under Homomorphisms 35

Lemma
Regular languages are closed under homomorphisms and inverse
homomorphisms.

Proof.
Let f : Σ⋆ → Γ ⋆ be a homomorphism and let L ⊆ Σ⋆ be recognized by A.

Relabel the transitions in A as follows

p
a−→ q ⇝ p

f(a)−→ q

This produces a GFA over Σ that accepts f(L).

Backwards 36

For the opposite direction, suppose A = ⟨Q, Γ, τ ; I, F ⟩ is an NFA for K ⊆ Γ ⋆.

Construct a new machine A′ over Q and Σ by

p
a−→ q in A′ ⇐⇒ p

f(a)−→ q in A

This produces an NFA over Σ that accepts f−1(K).
2

Example 37

Σ = {a, b, c} Γ = {0, 1}

f(a) = 00 f(b) = 01 f(c) = 10

L = even number of as, no c

K = even number of 0s

Substitutions 38

We can push the last result a little further: we could consider regular
substitutions, maps obtained from a lookup table

f(a) = Ka ⊆ Γ ⋆

where Ka is a whole regular language, rather than just a single word. As
before, f(x1x2 . . . xn) = f(x1)f(x2) . . . f(xn) ⊆ Γ ⋆ and we set

f(L) =
⋃
x∈L

f(x)

Lemma
Regular languages are closed under regular substitutions and inverse regular
substitutions.

1 Closure Properties

2 Determinization

3 More Closure

4 Exponential Blowup

Determinization 40

The next and critical step is to eliminate nondeterminism†.

Theorem (Rabin, Scott 1959)
For every NFA there is an equivalent DFA.

The idea is to keep track of the set of possible states the NFA could be in.

This produces a DFA whose states are superstates: sets of states of the original
machine.

†This also works for Turing machines, but not for pushdown automata.

General Abstract Nonsense 41

τ ⊆ Q × Σ × Q

τ : Q × Σ × Q −→ 2

τ : Q × Σ −→ (Q −→ 2)

τ : Q × Σ −→ P(Q)

τ : P(Q) × Σ −→ P(Q)

The latter function can be interpreted as the transition function of a DFA on
P(Q). Done.

;-)

Proof of Rabin-Scott 42

Suppose A = ⟨Q, Σ, τ ; I, F ⟩ is an NFA. Let

A′ = ⟨P(Q), Σ, δ; I, F ′⟩

where
δ(P, a) = { q ∈ Q | ∃ p ∈ P τ(p, a, q) }
F ′ = { P ⊆ Q | P ∩ F ̸= ∅ }
It is straightforward to show by induction that A and A′ are equivalent. 2

The machine from the proof is the full power automaton of A, written
powf(A), a machine of size 2scp(A).

However, for equivalence only the accessible part pow(A), the power
automaton of A, is required. With a little luck, it will be much smaller.

Smart Power Automata 43

The right way to determize A = ⟨Q, Σ, τ ; I, F ⟩ is to take a closure in the
ambient set P(Q), starting with the initial superstate I:

clos
(

I; (τa)a∈Σ

)
⊆ P(Q)

Here τa is the function P(Q) × Σ → P(Q) defined by

τa(P) = { q ∈ Q | ∃ p ∈ P (p a−→ q) }

This produces the accessible part only, and, with luck, is much smaller than the
full power automaton.

Power Automaton Algorithm 44

Here is a more algorithmic version of this construction.

act = S = {I}
while(act ̸= ∅)

P = pop(act)
foreach a ∈ Σ do

compute P ′ = τa(P)
store P

a→ P ′

if(P ′ /∈ S) then
add P ′ to S and act

return S

Upon completion, S ⊆ P(Q) is the state set of the accessible part of the full
power automaton.

Digression 1: Acceptance Testing 45

The determinization algorithm is very similar to nondeterministic acceptance
testing: instead of following the superstates for one particular input word, it
constructs all possible superstates.

If we are only interested in acceptance testing for a few words, there is no need
to determize. But if we need to, say, compute complements, then we may have
to build the whole DFA.

Digression 2: Succinct Representations 46

We can think of an NFA A = ⟨Q, Σ, τ ; I, F ⟩ as a very compact description of
the DFA pow(A).

The DFA lives in the huge ambient space P(Q) that we cannot even write
down (except when the size of A is tiny).

But for equivalence we don’t need the whole space, just a potentially much
smaller fragment. Moreover, we can generate this fragment by using graph
algorithms: essentially, we run DFS/BFS on a virtual graph.

For this to work, we do not need adjacency lists or matrices, it is enough to be
able to generate a list of out-edges on the fly.

Example: Even/Even 47

A simple 4-state DFA for the language all strings over {a, b} with an even
number of as and bs.

The cyan state is initial and final.

NFA for Even/Even 48

1

2
4

3
5

12 69

7

8

10

11

This is an NFA for the even/even language generated by an algorithm that
converts a regular expression to a machine.

1 is an initial state, and 12 is both initial and final.

Other than 12, all states are nondeterministic.

Power Automaton 49

The power automaton for the last NFA has only 6 states!

{{1, 12}, {2, 4}, {3, 5}, {6, 9}, {7, 10}, {8, 11}}

There is hope, after all.

Example: Posa,−3 50

0 1 2 3
a a, b a, b

a, b

What happens if we determinize this machine?

Rabin-Scott 51

Applying the Rabin-Scott construction we obtain a machine with 8 states

{0}, {0, 1}, {0, 1, 2}, {0, 2}, {0, 1, 2, 3}, {0, 2, 3}, {0, 1, 3}, {0, 3}

where 1 is initial and 5, 6, 7, and 8 are final. The transitions are given by

1 2 3 4 5 6 7 8
a 2 3 5 7 5 7 3 2
b 1 4 6 8 6 8 4 1

The full power set has size 16, our construction builds the accessible part of
size 8.

The Diagram, Explained 52

aab abb

aaa aba bab bbb

baa bba

Here is the corresponding diagram, rendered in a particularly brilliant way.
This is a so-called de Bruijn graph (binary, rank 3).

Keeping Accessible 53

While we are at it, constructing only accessible parts is important, always.

E.g., consider the product automaton for DFAs Aaa and Abb, accepting aa and
bb, respectively.

Aaa:

0 1 2

⊥

a a

a, bb
b

a, b

Full Product Automaton 54

00 01 02 0⊥

10 11 12 1⊥

20 21 22 2⊥

⊥0 ⊥1 ⊥2 ⊥⊥

a a a a

a a a a

a a a, b
a, b

a
a

a, b

b b b

b

b b b b

b b

b b

a, b

The Accessible Part 55

00

1⊥

2⊥

⊥1 ⊥2 ⊥⊥

01 02 0⊥

10 11 12

20 21 22

⊥0

a

a
b

b

a, b

a, b

b

a

a, b

a a a

a a a

a a a, b

a

b b

b

b b b

b b

b

A Better Mousetrap? 56

So are nondeterministic machines better than deterministic ones?

Advantages:
Easier to construct and manipulate.
Sometimes exponentially smaller.
Sometimes algorithms much easier.

Drawbacks:
Acceptance testing somewhat slower.
Sometimes algorithms more complicated.

Which type of machine to choose in a particular application can be a hard
question, there is no easy general answer.

1 Closure Properties

2 Determinization

3 More Closure

4 Exponential Blowup

Fixes 58

For a word x = uvw, u is a prefix of x, v is a factor or infix of x and w is a
suffix of x.

We can lift these concepts to languages:

pref(L) = { u ∈ Σ⋆ | ∃ v (uv ∈ L) }

and similarly for fact(L) and suff(L).

Lemma
pref(L), fact(L) and suff(L) are regular whenever L is.

Proof. We may assume that A is a trim automaton for L.
Set F = Q, I = F = Q and I = Q, respectively.

2

Alternative Argument 59

For any alphabet Σ define Σ to be a copy of Σ with elements a for a ∈ Σ.
Set Γ = Σ ∪ Σ.

Define homomorphisms f, g : Γ ⋆ → Σ⋆ by

f(a) = a f(a) = a

g(a) = a g(a) = ε

Then
pref(L) = g

(
f−1(L) ∩ Σ

⋆
Σ⋆

)
Done by closure properties.

Fancy Acceptance 60

Recall that our vanilla acceptance only depends on the target state of a run,
not the full run itself.

We could try different kinds of acceptance conditions.
For simplicity, assume that A is PDFA.

A accepts x iff
it has a vanilla accepting run that uses every state at least once.

Or we could insist that some state appears 42 times.
Or if state p appears, then state q must not appear.

Claim: This sort of condition still produces only recognizable languages.

Proof Sketch 61

Construct a new PDFA A′

Q′ = Q × P(Q)

q′
0 = (q0, {q0})

F ′ = F × {Q}

δ′((p, R), a)
)

=
(
δ(p, a), R ∪ {δ(p, a)}

)

In other words, A′ runs A and keeps track of all encountered states.

Yet another example where the state complexity may blow up exponentially.

State Complexity of Operations 62

DFA NFA

intersection mn mn

union mn m + n

concatenation (m − 1)2n − 1 m + n

Kleene star 3 · 2n−2 n + 1

reversal 2n n

complement n 2n

Worst case blow-up starting from machine(s) of size m, n and applying the
corresponding operation (accessible part only).

Note that we are only dealing with state complexity, not transition complexity
(which is arguably a better measure for NFAs).

Example: Intersection 63

The “mod-counter” language

Ka,m = { x ∈ 2⋆ | #ax = 0 (mod m) }

clearly has state complexity m. Similarly, the intersection of K0,m and K1,n

has state complexity mn.

Again: Decision Problems 64

Problem: Emptiness Problem
Instance: A regular language L.
Question: Is L empty?

Problem: Finiteness Problem
Instance: A regular language L.
Question: Is L finite?

Problem: Universality Problem
Instance: A regular language L.
Question: Is L = Σ⋆?

Machine Types 65

For DFAs these problems are all easily handled in linear time using
depth-first-search.

As far as decidability is concerned there is no difference between DFAs and
NFAs: we can simply convert the NFA.

But the determinization may be exponential, so efficiency becomes a problem.

Emptiness and Finiteness are easily polynomial time for NFAs.

Universality is PSPACE-complete for NFAs.

More Problems 66

Problem: Equality Problem
Instance: Two regular languages L1 and L2.
Question: Is L1 equal to L2?

Problem: Inclusion Problem
Instance: Two regular languages L1 and L2.
Question: Is L1 a subset of L2?

Inclusion is PSPACE-complete for NFAs.

Equality is PSPACE-complete for NFAs.

Large Product Machines 67

Suppose we have a list of m DFAs Ai of size ni, respectively.

Then the full product machine

A = A1 × A2 × . . . × Am−1 × Am

has n = n1n2 . . . ns states.

The full product machine grows exponentially, but its accessible part may
be much smaller.

Alas, there are cases where exponential blow-up cannot be avoided.

Bad News: DFA Intersection 68

Here is the Emptiness Problem for a list of DFAs:

Problem: DFA Intersection
Instance: A list A1, . . . , An of DFAs
Question: Is

⋂
L(Ai) empty?

This is easily decidable: we can check Emptiness on the product machine
A =

∏
Ai. The Emptiness algorithm is linear, but it is linear in the size of A,

which is itself exponential. And, there is no universal fix for this:

Theorem
The DFA Intersection Problem is PSPACE-hard.

1 Closure Properties

2 Determinization

3 More Closure

4 Exponential Blowup

Blowup 70

The example for the even/even language shows that a power automaton may
well be smaller than the original NFA.

Just to be clear: this phenomenon is a bit rare. It is still true that for
RealWorldTM machines the blowup is often small, something like polynomial in
the size of the NFA.

Unfortunately, full or nearly full blowup during determinization does occur, and
there is simply no way around it.

Blowup Example 1 71

Recall the kth symbol languages

Posa,k = { x ∈ a, b⋆ | xk = a }

Proposition
Posa,k can be recognized by an NFA on k + 1 states.
Any DFA has size at least 2k.

Applying determinization to the NFA produces a DFA of size 2k.
The hard part is to show that there is no smaller DFA (later).

Blowup Example 2 72

Here is a 6-state NFA based on a circu-
lant graph. Assume I = Q.

If X = b than the power automaton
has size 1.

However, for X = a the power automa-
ton has maximal size 26.

a

a

a

a

a

a

X

b
b

b

b
b

A Pebble Game 73

Think of placing a pebble on each state of the automaton.

Then push a button s ∈ Σ and move all the pebbles accordingly.

Lather, rinse and repeat, until the target configuration P of pebbles is reached.

To demonstrate full blowup, we have to explain how to accomplish this for all
P ⊆ Q.

Slightly more complicated is a situation when we can only handle “almost all”
P , a few special pebble configurations fail to be reachable.

Easy Case 74

Consider C(n; 0, 1), label all loops a and all stride 1 edges b.
Then switch the label of the loop at 0.

0

1

2

3

4

5

6

7

Blowup Example 3 75

Start with a binary de Bruijn automaton where both δa and δa are
permutations. An example for rank 3:

There are 2 loops and 2 3-cycles labeled a (red), a 2-cycle and a 6-cycle
labeled b (green).

Flipping a Loop 76

Now flip the label of one of the two loops.

We get an NFA that it almost deterministic. What happens if we perform
determinization?

Full Blowup 77

Flipping the label at a loop produces full blowup for any ∅ ̸= I ⊆ Q.

A Little Challenge 78

The last claim I can prove. But this is just the tip of the iceberg.

One can show that the number of permutation labelings in the binary de Bruijn
graph of rank k is 22k−1

.

Conjecture:
Flipping the label of an arbitrary edge in a permutation labeling
will produce full blowup in exactly half of the cases.

So the total number of cases with full blowup should be

full blowup: 2k 22k−1

This has been verified experimentally up to k = 5 (on Blacklight at PSC, rest
in peace). There are 4, 194, 304 machines to check, ignoring symmetries. Half
of them blow up to size 232 = 4, 294, 967, 296.

Predicting Blowup 79

Since exponential blowup does occur, it would be very nice if we could run a
quick precomputation that checks for a given NFA whether determinization on
that machine would indeed blow up (so that we don’t have to bother trying).

More precisely, we would like a fast algorithm for the following problem.

Problem: Power Automaton Size
Instance: A nondeterministic machine A, a bound B.
Question: Is the size of the power automaton of A bounded by B?

No Luck 80

Theorem (KS 2003)
Power Automaton Size is PSPACE-complete.

Thus, essentially the only way to determine the size of the power automaton is
to actually construct it, there are no computational shortcuts.

	Closure Properties
	Determinization
	More Closure
	Exponential Blowup

