CDM
Wild Computation

KLAUS SUTNER

CARNEGIE MELLON UNIVERSITY
FaLr 2025

1 Hunting Busy Beavers

2 Towards a Proof

3 Goodstein Sequences

BB State of the Art

n BBu(n) BBw(n)
1 1 1

2 6 4

3 21 6

4 107 13

5 47176870 4098

6 >1011t15 7

Tight results are available only for n <'5.

Beyond that, we only have ridiculously large bounds.

The Obstructions

There are several fundamental difficulties in computing busy beaver
numbers, even for annoyingly small numbers of states.

@ Brute-force search quickly becomes infeasible (try k = 10).

@ The Halting Conundrum:
Even if we could somehow deal with combinatorial explosion, we
don't know if a machine will ever halt—it might just run forever.

@ Reasoning about the behavior of Turing machines in a formal sys-
tem like Dedekind-Peano arithmetic or even Zermelo-Fraenkel set
theory is necessarily of limited use.

BB-5 Project

The 5-state champion was discovered in 1989 by Marxen-Buntrock but it
took till 2024 to prove optimality.

The final proof was a team effort and required a lot of work. Arguably,
without the Math Toolchain this project would be inconceivable.

See Quanta for an informal description of the project, and bbchallenge
for all the details, including a proof formalized in Coq. Xu handles a
particularly difficult case.

BB-5 seems rock-solid, but, in general, busy beaver results may not be
quite as robust as one would like them to be, see Harland 2016.

http://www.cs.cmu.edu/~cdm/papers/MarxenBuntrock1990-busy-beaver-5.pdf
https://www.quantamagazine.org/amateur-mathematicians-find-fifth-busy-beaver-turing-machine-20240702
https://bbchallenge.org/6475996
http://www.cs.cmu.edu/~cdm/papers/Xu2024-busy-beaver-skelet-17.pdf
http://www.cs.cmu.edu/~cdm/papers/Harland2016.pdf

But How?

First, use symmetries to cut down on the number of machines that need
to be considered.

Run these machines in a clever way to weed out all those that clearly are
not candidates: they halt too soon, or they obviously diverge. This part
can be fully automated.

For the remaining ones, painstakingly establish divergence or run them to
completion. These machines require direct human intervention.

Visualization to the Rescue

If a machine passes all the simple tests, the next step is to visually
inspect the orbit.

Dire Warning: Recall the Marxen-Buntrock machine. The first, say,
1,000,000 steps of the orbit definitely look like a divergent
computation—and yet it halts.

@ To establish divergence we need a strict proof.

@ To run to completion it helps to be able to speed up the computa-
tion.

333333333

f

!

I

i

|

m36909813 Compressed

i
i

|
hi
i

!

'_ul/iéj;:!
il

i

I
‘m

| ‘m(ﬂ“"\:‘u}\)“}l‘%{}l}{]‘”\
i il

]
i
{
ﬂ

o
i

i

10

m14263231 Compressed

Skelet 1 Compressed 12

f H\,”“’ HHHH)
i ,'w
{/ “““ “” “ H
w..’”

:’1“} “ l”ll:\“ '\H\‘mu
”WHIH\)H WH '

Jff

6-State Busy Beaver

For n = 6 all hell breaks loose.

The raw search space here has size 59 604 644 775 390 625, though this
can be improved a bit exploiting symmetries and reachability.

Halting gets very messy here: the orbits get much more complicated and
there is no good heuristic to come to the conclusion that a machine will
never halt and can thus be dismissed from the competition.

15

May 2022

A new machine by Pavel Kropitz, takes about 10 1 15 steps to halt. A
more precise bound is

10104.023873729
10

You're welcome.

16

2 Towards a Proof

Enumerating Turing Machines

Ignoring symmetries, there are (4n + 1)?" n-state machines (actually, n
plus one halting state which carries no outgoing transitions).

The transition function has the form

T:[n]x2—1[0,n] x2x2

For n = 5 there are 16,679, 880,978,201 machines, so the first order of
business is to exploit isomorphs to cut down on that number.

18

Easy Stuff 19

We may safely assume the following:

@ 1 is the initial state
@ 0 is the halting state

@ new states are encountered in strictly increasing order

By symmetry, we may assume that the first transition is

1,0— 2,1, R

Partial Turing Machines

In the search one has to deal with partially specified machines. By a
k-machine we mean a partial function

Tkl x2»[k] x2x2

In particular we start with the 2-machine

70 =1{1,0— 2,1, R}

We are only interested in computations on the empty tape 0, so 7y will
take one step and then get stuck.

20

Coreof a TM 21

Given a total TM 7, define its core to be the partial sub-machine that is
actually used during the run on O.

Observation: The core of 7 has at most one halting transition.

Note that the n-state BB has to be an n-machine: if it were a k-machine
for k < n we could add more steps.

This suggests to start at 7y and systematically add transisions to
generate all relevant machines.

Define a frame as a triple (7,¢,C) where C'"t l% C.

Sparse Enumeration

Start with the initial frame (79,0, 0).

Given a frame (7,t,C) do the following:

o If 7 is defined on C, update the frame to (7,t+1,7(C)).

o Otherwise let 7(p,a) 1 and extend 7 to 7’ by:
o A halting transition, record 7' and t+1 as halting.

o If 7 is a k-machine, use all possible transitions p,a +— ¢, b, D where
¢ < min(k + 1,n) for 7’.

Explore all the frames (7', ¢, C).

22

Comments 23

This is very sketchy.

It is critical to add some mechanism to handle divergence, as written the
enumeration algorithm nevers stops.

We could stop if a machine reaches the same configuration twice, and
declare it non-halting. Alas, checking for such loops requires memory, we
have to keep track of the history of a computation.

Also, if we have constructed a full table without any halting instructions,
the machine is non-halting.

The Last Transition

Suppose we have a frame (7,¢,C) with 2n — 1 transitions.

If 7(C) 1, we can

@ Add a halting transition and and get a potential BB.

@ Add a non-halting transition and declare the machine to be non-
halting.

So the real interesting cases will be the ones where a machine with
2n — 1 transitions keeps running for a long time.

At some point we have to decide whether to either try to prove that the
machine halts (and compute their halting time), or we could attempt to
find a proof that it diverges.

24

Dirty Tricks 25

If we just wish to verify a Busy Beaver champion (rather than to discover
it in the first place), we can run plausible machines for the current
maximum number of steps. The ones the have not yet been declared
non-halting need to be proven to diverge.

If we have a n—1-machine that runs for more than BBy (n—1) steps we
can declare it non-halting.

Speedup 26

There is a basic result in computability that a Turing machine can always
be made faster by a constant.

The argument goes like this: suppose 7 uses alphabet 3.

Define a new machine 7/ on alphabet I" = ¢* for some suitably large k.

The new machine then can simulate at least k steps of the old one in just
a single step.

Note that this is entirely useless in practice, we cannot use an alphabet
21000 - Also, it is quite tricky to really determine the transitions in 7'

Scaling Down 27

We can get some mileage out of a different approach, though: write the
configurations in run-length encoding:

161021, 162011

It may be the case that, if the machine enters a block 1¢ in state p it will
later leave the block at the other end in state q.

Or it might change the block to 1¢t1
A smart simulator could handle this in (essentially) one step. Strictly

speaking we need log e steps, but for at least for n <5 all relevant values
of e are small.

3 Goodstein Sequences

Iteration 29

A special form of primitive recursion is iteration: applying a function over
and over again.

Suppose f: A — A is some endofunction. Define

F(n,z) is usually written f™(z).

Iteration is essentially the bottom-up version of primitive recursion and
has the same computational power.

A Wild lteration 30

Here is an example where iteration of a (slightly bizarre) arithmetic
operation produces a totally perplexing result.

Suppose we write a number in base 2, say
266 = 2% 4 2° 4 2

We can turn this into the hereditary binary expansion by writing the
exponents also in base 2, and so on.

966 = 22°7 4 922" | 90 4 90

In the interest of sanity, we'll write 1 for 20 and 2 for 1 + 1.

Note that there are no multiplicative coefficients, we only use addition,
exponentiation and digit 0.

Base Bump 31

Now suppose we replace 2 in the representation everywhere by 3:
333+1 +33+1 +3
Evaluating we get a much larger number:

443426488243037769948249630619149892887 ~ 4 x 10°®

Next, we bump the base to 4 and get something like 3 x 10616,

Clearly, this process leads to a very rapidly increasing sequence of
numbers.

Less Informally 32

Let b <2 and n € N. We write
E(b,n) = hereditary base b expansion of n

The expression is constructed from the base b, using only addition,
exponentiation, and digit 0.

For example

E(3,7625597485042) = 33" 4 33 4 3% 4 3°

Numerical Base Bump 33

We write bb(b,n) for the numerical version of base bump:

bb(b, n) = eval (E(b,n)[b — b+1])

For example, bb(3, 7625597485042) comes out to be

1340780792994259709957402499820584612747936582059239
3377723561443721764030073546976801874298166903427690
031858186486050853753882811946569946433649006084609

About 1.34078 x 1054,

Goodstein Sequences 34

Given a natural number n, define its Goodstein sequence g(n, k) for
k > 1 as follows.

g(n,1)=n

ol 1) = { 0 otherwise.

One can check that g is a primitive recursive function.
It is a character building exercise to do this in some detail.

Examples 35

Sadly, it is very hard to come up with good examples.
Starting at 2 and 3 we get the short sequences

n=2 221,0
=3 3,3,3,21,0

But starting at n = 4, things already spin out of control:
4,26,41,60,83,109,139, 173,211, 253,299, . .., 4026531832, . ..

121,210,695

Huge surprise: after 1 steps we get to 0.

20

15

10

T T o sbealo,t

Goodstein 4 (log plot)

Weirdness 37

The base bump operation is a strange mix of manipulating formal terms
and actual arithmetic:

To replace base b by b+ 1 we need to first come up with an expression
E(b,n) that is based on

addition, exponentiation, 0

such that eval(E(b,n)) = n.

Then the next element is by a simple predecessor calculation:

eval(E(b,n)[b+ b+1]) — 1

Insane Conjecture 38

Conjecture: All Goodstein sequences end in 0.

Of course, your intuition tells you that this is total nonsense.

To wit, the base bump increases the number by a huge amount, and then
we just subtract 1, so the final result will be a tiny little bit smaller than
with a pure base bump.

Obviously, the base bumps win, the sequence will diverge.

But Why? 39

How could this possibly work? Because once the base is sufficiently large,
we keep chipping away at the constant term until we ultimately have to
borrow from one of the previous terms.

Consider the sequence for n = 4. When we get to base b = 402653183,
the sequence locally looks like

np_1 = b2
np=0b+1)+b

1 =bb+2)+b—1

Npyo =b(b+3) +b—2

nop = b(20+ 1)

The red part is the base at that point. Ponder deeply.

Digression: More Ordinals 40

Here is a rather important ordinal:

w"

Eo — w®
This is the first fixed point of the map o — w®.
Note that ¢ is closed with respect to the operations addition,
multiplication and exponentiation.

It is somewhat difficult to get an intuitive sense of ¢(, but Cantor proved
a nice theorem about it.

Cantor Normal Form M

For ordinals o < €p, Cantor has established the following normal form:

a=w* +w* L+ .. W

where aa > a1 > ag > ... > ap > 0.

Given this constraint on exponents, the normal form is indeed unique.

Without the condition o > «a; the normal form holds in general, but is
typically less useful.

For example, ¢g = w®°.

Goodstein’s Theorem 42

Theorem (Goodstein 1944)

All Goodstein sequences converge to 0.

Sketch of proof.

For any number n, we will associate each element g(n, k) in the
Goodstein sequence for n with an ordinal, its shadow (we'll dump
ny =n).

2(n, k) = eval(E(k, g(n, k—1))[k > w])

The evaluation here proceeds over the ordinals, otherwise it's exactly the
same as for natural numbers.

In fact, we are just dealing with the Cantor normal form for some ordinal
a < €.

43

Claim: The ordinal shadows of a Goodstein sequence are strictly
decreasing.

If 2(n,k) =a+1, then 2(n, k+1) = a: the world of shadows does not
distinguish between different bases.

Otherwise we have 2(n, k) = a + w” where 3 > 0. We cannot subtract
1 from a limit ordinal, but there is no problem: the hereditary base k+1
expansion of n also loses the (k+1)¥ term after subtracting 1.

As an example, consider E(k,n) = k?. Then
bb(k,n) = (k+1)2 — 1 = (k+1) - k +k — 1 and the corresponding
ordinals in Cantor normal form decrease from w? to

wtw+...+tw+l1+1+...+1
k k—1

Stopping Time 44

Define the stopping time G : N — N as the number of steps it takes to
reach 0 in a Goodstein sequence:

G(n) =min(k >1|g(n,k) =0)

Note that G is computable; in fact, the algorithm is not particularly
complicated, the only messy part is to implement the transformation to
hereditary expansions. Goodstein’s theorem says that G is a total
function.

Claim: G(n) grows much, much faster than A(n,n).

Unprovability 45

The proof requires induction up to

o

60=ww

Alas, eg-induction is already enough to prove that (PA) is consistent.
By Godel's theorem, it cannot be proven in (PA).

Theorem (Kirby, Paris 1982)

Goodstein's theorem is not provable in Peano arithmetic.

	Hunting Busy Beavers
	Towards a Proof
	Goodstein Sequences

