
CDM
Turing Computability

Klaus Sutner
Carnegie Mellon University
Fall 2025



1 Turing Computability

2 The Busy Beaver Problem



This is Fraud 2

The pictures are stunningly beautiful, but we have not really explained
what they are a picture of.

More precisely, we have a definition of a Turing machine, but we appeal
to intuition when it comes to computations of these machines. As far as
intuition is concerned, this is fine, but to prove anything we also need
clear, formal definitions.



The Approach 3

Given any type of machine M, to define computations of M, it is a good
idea to think about interrupting a computation.

What information is minimally needed to resume the computation later?
This is called a configuration or instantaneous description (ID).

Then we explain how M moves from one configuration to the next, the
one-step relation. Chaining together single steps by induction, we get a
many-step relation that formalizes computations of arbitrary length.

We have to add input/output conventions, and then we’re done.



Formalizing TM Computation 4

Configurations here consist of:

the current state
the current head position
the current tape inscription

We can think of the head position as an integer, and the tape inscription
as a map Z → Γ . So the space of configurations is

Q × Z × (Z → Γ )

For us only finite tape inscriptions matter, only finitely many cells carry a
non-blank symbol.

As it turns out, the following, less obvious, representation for finite
inscriptions is often better in applications.



String Representation 5

We may safely assume that Q ∩ Γ = ∅. Use Q ∪ Γ as an alphabet and
strings of the form Γ ⋆ Q Γ + to encode configurations.

Definition
A configuration or instantaneous description (ID) is a word y p x where
x ∈ Γ +, y ∈ Γ ⋆ and p ∈ Q:

ymym−1 . . . y1 p x1x2 . . . xn

means that the read/write head is positioned at x1 and the tape
inscription is ym . . . y1x1 . . . xn.

In this representation one can use the theory of finite state machines to
explain what it means to perform one step in a computation (a finite
state transducer is enough).



Details 6

The last description really captures one particular type of Turing
machine: a

TM with a single, two-way-infinite tape

with finite inscriptions of the form

. . . ym . . . y1 a x2 . . . xn . . .

where the head is at a = x1 and the machine is in state p.

Alas, this is just the tip of the iceberg: it is also useful to consider
machines that have multiple tapes (each with a separate read/write
head) and/or one-way-infinite tapes. In addition, later we will use
separate read-only input tapes, and write-only output-tapes (these are
always one-way-infinite).



More Details 7

We may safely assume that n ≥ 1 since we can always let x1 be the
blank symbol.

It also makes sense to choose n and m to be minimal such that yx
captures all the non-blank symbols on the tape. We won’t bother to
make this part of the definition, though, it really does not matter much.

This is subtly different from the model where a tape inscription is a map
Z → Γ : our approach is coordinate free. Usually that is better, but
sometimes it is preferable to keep track of the absolute position on the
tape.

E.g., this is used in the proof of the Cook-Levin theorem (hardness of
Satisfiability).



One Step 8

Next we need to explain a single step in a computation:

ypx M
1

y′qx′

Recall that we assume x to be non-empty and let δ(p, x1) = (q, a, ∆).
Then the next configuration is defined by

ym . . .y1 p x1x2 . . . xn M
1

ym . . .y2 q y1ax2 . . . xn ∆ = −1

ym . . .y1 q a x2 . . . xn ∆ = 0

ym . . .y1a q x2 . . . xn ∆ = +1



Annoying Details 9

Strictly speaking, the last definition is wrong: on the one hand, we insist
that x is not empty.

On the other hand, the definition can break this condition: think about
∆ = +1 and n = 1. Similarly, for ∆ = −1, we need y1 to be defined. Of
course, there is an easy fix . . .

In polite company, this is a non-issue. Alas, any theorem prover would
strenuously disagree.



Multiple Steps 10

Now we extend the “one-step” relation† to multiple steps by induction:

one step

C M
1

C ′ ⇐⇒ as on the last slide

exactly t steps

C M
t

C ′ ⇐⇒ ∃ D
(
C M

t−1
D ∧ D M

1
C ′)

any finite number of steps

C M
∗

C ′ ⇐⇒ ∃ t
(
C M

t
C ′)

†For us, the relation is actually a function, but in complexity theory one often
consider nondeterministic TMs where there are several possible next configurations.



Complexity 11

Lemma
The relation M

t is primitive recursive, uniformly in t.

Meaning that there is a primitive recursive relation R ⊆ N3 such that

R(t, ⟨C⟩, ⟨C ′⟩) ⇐⇒ C M
t

C ′

Here ⟨C⟩ is supposed to be a code number representing the configuration
C. Say, let Γ = [n] and Q = [n+1, m] and set

⟨C⟩ = ⟨yk, . . . , y1, q, x1, . . . , xℓ⟩



Warning 12

From the perspective of abstract computation, the relation M
t is easy.

But the relation M
∗ most emphatically is not.

If there is a p.r. bound on the length of the computations of a TM, then
the machine computes a p.r. function: we just iterate the one-step
operation an appropriate number of steps. Otherwise we just have to run
the machine without any idea if and when it might stop.

So the difference between primitive recursive and Turing computable is
just one unbounded search, one existential quantifier. This is the critical
difference.



Input and Output 13

Given any input x = x1x2 . . . xn ∈ Γ ⋆, the initial configuration for x is

C init
x = qinit x1x2 . . . xn

A halting configuration is any configuration where the state is qhalt and
the current symbol is a blank. In this case, we are only interested in the
non-blank symbols immediately to the right of the head.

Chalt
y = . . . qhalt y1y2 . . . ym . . .

This makes sequential composition of TMs very easy.



Conventions 14

Our conventions are fairly natural, but there are lots of alternatives:

Initial configurations could look like qinitx1 . . . xn.

In a halting configuration, we could require the machines to erase
the tape except for the output block.

We are using the blank symbol to terminate input and output; we
could use a special endmarker like # instead.

It is tedious but straightforward to check that none of this makes any
difference: we get the same clone of computable functions.



Exercises 15

Exercise
Explain in detail how to deal with blanks in the input.

Exercise
Come up with a way to associate output with arbitrary halting
configurations.

Exercise
Can your machines be simulated by machines conforming to our
definitions?



Halting and Output 16

A configuration C is mortal if C M
∗

C ′ where C ′ is halting.

Machine M halts on input x if C init
x is mortal.

We say that y ∈ Γ ⋆ is the output of the computation of machine M on
input x ∈ Σ⋆ if

C init
x M

∗
Chalt

y

So if we wind up in configuration abbb qhalt abc accc we consider abc to
be the output.



Computing a Function 17

We want to use Turing machines to define computable functions.

Recall from our discussion of primitive recursive functions that we will
have to deal with partial functions if we want evaluation to be
computable.

Turing machine M computes the partial function f : Σ⋆ ↛ Σ⋆ if, for all
x ∈ Σ⋆, we have:

If f is defined on x, then C init
x M

∗
Chalt

y and f(x) = y.

If f is undefined on x, the computation of M on x does not halt.



Computability Defined 18

Definition
A partial function f : Σ⋆ ↛ Σ⋆ is (Turing) computable if there is a
Turing machine M that computes f .

There is a mountain of evidence that, for any reasonable model of
computation M, it turns out that M-computable is equivalent to Turing
computable, so it makes sense to simply say computable, without
reference to any particular model.



Arities 19

By our definition, Turing computable functions are all unary, they take
exactly one string as input.

That’s not a problem if we want to compute, say, binary arithmetic
functions like addition or multiplication.

qinit #1001#11000#

We use # as a separator and write the numbers in binary.

So we will write things like M(x, y) to indicate TM M is running on
inputs x and y.



 



inp outp



Turing Decidability 21

We use characteristic functions to lift Turing computability to relations
(or sets).

charA(x) =
{

1 if x ∈ A
0 otherwise.

Definition
A relation A ⊆ Σ⋆ is (Turing) decidable if its characteristic function is
Turing computable.

We use the same terminology for A ⊆ Nk via encoding.



Decidability 22

x 

No

Yes

Note that these machines A always halts.



Acceptors versus Transducers 23

Informally, a problem is decidable if there is a decision algorithm A that
returns Yes or No depending on whether the input has the property in
question.

Again, these Turing machines must always halt, and return a one-bit
output. They are often called acceptors.

By contrast, a Turing machine that computes some arbitrary (and
possibly partial function) is called a transducer‡.

‡The same terminology is also used for finite state machines.



Closure Properties 24

Lemma
The decidable sets are closed under intersection, union and complement.
In other words, the decidable sets form a Boolean algebra.

Proof.
Consider two decidable sets A, B ⊆ Σ⋆. We have two TMs MA and
MB that decide membership.

We can simply run both MA and MB on input x sequentially, producing
a 2-bit result.

It is straightforward to process the output of the two runs and return the
correct yes/no answer.

2



Evaluation 25

Again there is an evaluation operation or a simulator that takes as input
a Turing machine and a string and runs the machine on the string. The
type of eval is

eval : TMs × Σ⋆ −→ Σ⋆

Encoding a TM as a string is trivial. But note, some care is needed to
handle the tape alphabet of the machine, we need a little coding to
express the arbitrary alphabet in the simulated machine in terms of the
fixed alphabet Σ.

At any rate, we can think of a map eval : Σ⋆ × Σ⋆ → Σ⋆.

So the next question is whether evaluation can be handled by a Turing
machine, a so-called universal Turing machine.



UTM 26

x

e

 Me(x)

e is the index for the machine and x the input string.



They Exist 27

Theorem (Turing 1936)
There is a universal Turing machine.

It immediately follows that the clone of Turing computable functions
must contain partial functions.

Finding small universal TMs is still an active research area.



Small Universal 28

A universal machine (4 states, 6 tape symbols) due to Yurii Roghozin.



Halting Problem(s) 29

Problem: Halting
Instance: Index e ∈ Σ⋆, an argument x ∈ Σ⋆.
Question: Does Turing machine Me halt on input x?

Problem: Pure Halting
Instance: Index e ∈ Σ⋆.
Question: Does Turing machine Me halt on empty tape?



Undecidability 30

Theorem
The Halting Problem is undecidable.

Proof. Assume a TM H can decide Halting. Construct the following
machine:

// machine M
// on input x

if halts(x, x) // use H here
then halt with output 0 ⌢ Mx(x)
else halt with output 0

Then M has some index e and running M on e produces a contradiction.
2



A Reduction 31

Claim: It follows that Pure Halting is also undecidable.

To see why, note that there is a primitive recursive function f such that,
given index e and a string x, e′ = f(e, x) is the index of a machine that,
starting on empty tape,

first writes x on the tape, and
simulates machine Me on that tape.

It is important there that f is computable, existence of e′ alone would
not help.



Turing Computability and Robustness 32

So, we have a notion of a function being computable by a Turing machine
that seems to conform very well to our intuition about computability..

This notion does not change if we modify our definitions slightly:

one-way infinite tapes
multiple tapes
different head movements
multiple heads
different input/output conventions
different coding conventions

Note that without this kind of robustness our model would be of rather
dubious value: each variant would produce a different notion of
computability.



Dire Warning 33

We have a perfectly good way to code a Turing machine M as, say, a
sequence number ⟨M⟩.

But the following “encoding” is strictly verboten.

code(M) =
{

2⟨M⟩ if M(0) ↓
2⟨M⟩ + 1 otherwise.



Exercises 34

Exercise
Show how to modify our definitions so that Turing machines have total
transition functions, but produce the same class of computable functions.

Exercise
Prove that some of the modifications on the last slide similarly yield a
type of machine that produces the same class of computable functions as
our original Turing machines.

“Prove” here means: think about it for long enough so that you become
convinced that an actual proof could be constructed if one really needed
a detailed argument.



1 Turing Computability

2 The Busy Beaver Problem



Rado’s Problem 36

Tibor Radó
On Non-computable Functions
Bell System Technical Journal,
41(3):877-884, 1962.



Busy Beaver Problem 37

Radó described a deceptively simple problem in computability. Consider
Turing machines on tape alphabet Γ = {0, 1} and n states.

Question: What is the largest number of 1’s any such
machine can write on an initially blank tape, and then halt?

Incidentally, it is standard practice to ignore the halting state in the
count, so n means “n ordinary states plus one halting state.” Also, one
insists that that the tape head always moves.



Other Variants 38

Rado’s original question is somewhat arbitrary, here are two versions
more firmly rooted in computability theory.

Time Complexity What is the largest number of moves a halting n-
state machine can make?

Space Complexity What is the largest number of tape cells a halting
n-state machine can use?

The “number-of-1s” question is below the space complexity, which is
below the time complexity.



Notation 39

BBH(n) is the largest time complexity of any halting n-state ma-
chine and refer to BBH as the Busy Beaver function.

BBW(n) is the largest number of 1’s written on the tape when an
n-state machine halts.

Clearly, BBH(n) ≥ BBW(n), but the former has the advantage of relating
more directly to the Halting Problem, which one would suspect to be the
central issue with busy beaver functions.



Busy Beaver n = 1 40

BBH(1) = 1 BBW(1) = 1

Make sure to give a precise proof.



Busy Beaver n = 2 41

BBH(2) = 6 BBW(2) = 4

Amazingly, the answer is no longer obvious.
The champion for both measures is

0 1
p q,1,R q,1,L
q p,1,L halt

p0 1q0 p11 q011 p0111 1q111



Orbit 42



Busy Beaver n = 3 43

BBH(3) = 21 BBW(3) = 6

Here things start to get messy: there are 4 826 809 Turing machines to
consider. Exploiting isomorphisms, filtering out machines where all 3 + 1
states are reachable we get down to 405 072.

Now we just check those for halting and pick out the champion.

Minor Problem: Halting is undecidable and we have to handle each case
by hand—somehow concoct an argument that shows that the machine
must halt, or that it will not halt forever.



Write-Champion 44



Halt-Champion 45



How bad can it be? 46

The number of n-state machines grows exponentially:

(4n + 1)2n

This spins out of control very quickly:

n #machines
1 25
2 6561
3 4, 826, 809
4 6, 975, 757, 441
5 16, 679, 880, 978, 201
6 59, 604, 644, 775, 390, 625



Isomorphs 47

These are the raw counts that ignore symmetries between the machines:
permuting the states does not produce a “new” machine, nor does
switching left and right moves.

Unfortunately, the real problem here is not isomorph-rejection (which
requires constructing all machines first), but we need to find a way to
only build non-isomorphic ones to begin with.

And, given these numbers, it won’t make much of dent no matter what.

Exercise
Try to count only non-isomorphic machines.
How would you go about generating non-isomorphic machines for k = 5?



The Marxen-Buntrock Machine 48

The 5-state champion was found by Marxen and Buntrock in 1989, and
its discovery is a small miracle. Here is the table of the machine. Clearly
all 5 states plus the halt state are reachable in the diagram.

0 1
1 2,1,R 3,1,L
2 3,1,R 2,1,R
3 4,1,R 5,0,L
4 1,1,L 4,1,L
5 halt 1,0,L

Of course, that’s nowhere near enough: they need to appear in the
computation on empty tape.



Diagram 49

1 2

34 5 H

01R

11L
01R

11R

01R 10L

01L

11L

10L

0



50 Steps 50



400 Steps 51



15000 Steps, Decimated by 10 52



State 1 Configurations, 18000 Steps 53



Misleading Pictures 54

Looking at a run of the Marxen-Buntrock machine for a few thousand
steps one invariably becomes convinced that the machine never halts: the
machine zig-zags back and forth, sometimes building solid blocks of 1’s,
sometimes a striped pattern.

Whatever the details, the machine seems to be in a “loop” (not a an easy
concept to clarify for Turing machines). Bear in mind: there are only 5
states, there is no obvious method to code the instruction “do some
zig-zag move 1 million times, then stop”.

And yet, this machine

stops after 47,176,870 steps
writes 10(100)4097 on the tape



Why on Earth? 55

With a bit of work, one can construe the computation of the MB
machine as iterating an arithmetic function

f(x) =

 (5x + 18)/3 if x mod 3 = 0
(5x + 22)/3 if x mod 3 = 1
↑ otherwise.

Starting at 0, the orbit looks like so:

0, 6, 16, 34, 64, 114, 196, 334, 564, 946, 1584, 2646, 4416, 7366, 12284, ↑

Big Surprise:
The machine computes these values and then halts.



Quoi? 56

More precisely, we can filter out configurations of the form

Cn = . . . 0 1 0 11 . . . 11︸ ︷︷ ︸
n

0 . . .

n steps n steps
0 15 564 180,307
6 73 946 504,027
16 277 1,584 1,403,967
34 907 2,646 3,906,393
64 2,757 4,416 10,861,903
114 7,957 7,366 30,196,527
196 22,777 12,284 24,576
334 64,407 halt

For n = 3k, the step number is 5k2 + 19k + 15,
for n = 3k + 1 it is 5k2 + 25k + 27.



Why is this Hard? 57

BBH is not computable.

BBH has no computable upper bound.

BBH dominates all computable functions.

f dominates g if ∃ m ∀ n ≥ m (f(n) > g(n)).

So busy beaver is all about insanely



The Obstructions 58

There are several fundamental difficulties in computing busy beaver
numbers, even for annoyingly small numbers of states.

Brute-force search quickly becomes infeasible, even for small k.

The Halting Conundrum:
Even if we could somehow deal with combinatorial explosion, we
don’t know if a machine will ever halt—it might just run forever.

Reasoning about the behavior of Turing machines in a formal sys-
tem like Dedekind-Peano arithmetic or even Zermelo-Fraenkel set
theory is necessarily of limited use.



ForAll Statements 59

A Π1 statement of arithmetic ϕ is a formula that can be written in the
form

ϕ ≡ ∀ x R(x)

where R(x) is primitive recursive †. The hard part in checking whether ϕ
is true is that there are infinitely many x ∈ N to check.

There are quite few open problems in math that are Π1.

The Goldbach Conjecture is Π1.

The Riemann Hypothesis is also Π1.
This is much more surprising; unlike with Goldbach, it requires quite
a bit of work to establish this claim.

†Written as a formula, it requires only bounded quantifiers and basic arithmetic.



Translation to Halting 60

Suppose we have some Π1 statement ϕ ≡ ∀ x R(x).

Given a specific natural number n, a Turing machine can easily verify
that R(n) holds.

Hence we can build a TM that loops through all values of n and checks
R(n). If it ever finds a counterexample, it halts; otherwise it runs forever.

So if we could check Halting, we could handle these Π1 conjectures.



Worse 61

Allegedly, there is a Turing machine G on 27 states, binary alphabet, that
checks the Goldbach conjecture in this way.

If we could figure out BBH(27) we could crack the Goldbach conjecture.
In fact, even an upper bound would suffice.

This is a bit of a white lie, BBH(27) is a ridiculously large number. In
this particular universe we could never even begin to run G for that many
steps—but you get my drift.



And Reasoning? 62

Maybe there is a way to avoid all these pesky computational problems?

Instead of computing, we could try to find some clever proof in a
sufficiently powerful formal system like Dedekind-Peano arithmetic or
Zermelo-Fraenkel set theory†.

This is most likely wishful thinking. It is currently known (more or less)
that BBH(n) would provide answers to

n = 27: Goldbach
n = 744: Riemann
n = 748: statements independent of ZFC

†Of course, a proof is just another computation.



State of the Art 63

n BBH(n) BBW(n)
1 1 1
2 6 4
3 21 6
4 107 13
5 47 176 870 4098
6 > 10 ↑↑ 15 ?

Concrete values are only available for n ≤ 5, beyond that, we only have
bounds. And these bounds are ridiculously large, we have to use special
notation to write down the bound even for n = 6 in a civilized manner.


	Turing Computability
	The Busy Beaver Problem

