CDM
Computability

KLAUS SUTNER

CARNEGIE MELLON UNIVERSITY
FaLr 2025

The Big Question

Do primitive recursive functions match our intuitive notion
of computability perfectly?

There is no doubt that all p.r. functions are computable, but it is not so
clear that every computable function is also p.r.

Functions that are computable in any practical sense are typically p.r.,
but we are trying to find a general definition, disregarding efficiency
considerations.

H

Coding

Evaluation

General Recursion

Turing Machines

Coding

Notation:
N* the set of all finite sequences of natural numbers
nil the empty sequence.

We want to express any sequence ag, a1,...,0,—1 € N* as a code

number (sequence number) (ag,as,...,a,—1). We need a map
():N* =N

that allows us to decode: from s = (ag,a1,...,a,—1) We can recover n

as well as all the a;.

The Pieces

Suppose

s = <a07a17a27"'7an71>

is some code number (0-indexing turns out to be easier to use).
We want a unary length function len : N — N:
len(s) =n
and a binary decoding function dec: N x N — N:
dec(s, i) = a;

foralli=0,...,n—1.

Traditionally, dec(b, 7) is written (b);.

Computable Coding

Again, we need three functions:
():N*=> N
dec: NxN—=N
len: N — N

From a set theory perspective, this is trivial: N* is countable.

But we live in the computational universe: we want these functions to be
easily computable, say, primitive recursive. More precisely, we want dec
and len to be p.r.; the coding function (.) has the wrong domain, but we
can still insist that the restriction (.) : N¥* — N is p.r. for all k.

Sequence Numbers

The set of sequence numbers is

Seq = { (ag,a1,as,...,an—1) | a; ENyn e N}

Note that a priori len and dec need not be defined outside of Seq (in
addition, for dec the index 4 needs to be in the right range).

One simply assumes that the functions return the default value 0 for
meaningless arguments.

Prime Coding

Perhaps the most straightforward way to code sequences as numbers is to
exploit the uniqueness of the prime decomposition.

ao+1, a;+1 an—1+1
0 1 <P

(ag,a1,a2,...,an-1) =p;°" p PRt

Here (p;) is the enumeration of the primes in increasing order.

For len and dec we can use the prime enumeration from last time.

Exercise
Figure out the details.

Godel

Prime coding is perfectly fine, but it uses relatively complicated
number-theoretic machinery.

In his work on the incompleteness theorem Goédel used a much more
elegant and less sledge-hammerish approach to handle coding. There are
also lots of coding functions based on iterated pairing.

See Coding for background.

http://www.cs.cmu.edu/~cdm/pdf/02-coding.pdf

H

Coding

Evaluation

General Recursion

Turing Machines

Evaluation 10

Recall our simple programming language, terms 7 that denote p.r.
functions [7] : N¥ — N,

7 = Prec[Prec[Prec[S o P3, P}] o (P3,P3),C{V] o (S0 P2,P2),C\7)
7 denotes the factorial function, [7](n) = n! for all n.
We saw in particular how to write an interpreter, a function eval that

takes as input a term 7 and a vector @ = aq,...,a, € N of the right
length and returns the result of evaluating [7] on a.

Exercises 11

Exercise

Write a compiler that given any string T checks whether it is a
well-formed expression denoting a primitive recursive function.

Exercise

Write an interpreter for primitive recursive functions (i.e., implement
eval) in your favorite programming language.

Arithmetization 12

The type of eval is

eval : pr-terms x N* — N

In his work on the incompleteness theorem Godel figured out how to
express strings as a natural numbers, the infamous Godel numbers.

For computable functions, the corresponding Godel number is usually
called an index, written e = 7. Similarly we can replace a by {(a).

So its safe to think of evaluation of unary p.r. functions as a map

eval :Nx N — N

If e is not an index, we may assume eval(e,) = 0.

Coding PR 13

Here is one natural way of coding primitive recursive terms as naturals:

term code

Gy (0.0)

S (1,1)

Py (2,m,1)

Prec[h, g] (3, n, h, q)

Complh, g1, .-, 9n] <4,m7ﬁ,q,...,§;>

Thus for any index e, the first component fst(e) indicates the type of
function, and snd(e) indicates the arity.

This type of coding makes it really easy to write an interpreter.

Hope Springs Eternally

Question: Maybe eval is primitive recursive?

Let's assume eval primitive recursive. Now define
f(z) :=eval(z,z) + 1
This may look weird, but certainly f is also p.r. and must have an index

e. But then
fle) =eval(e,e) +1 = f(e)+1

and we have a contradiction, 0 = 1.

14

Partial Functions 15

How do we avoid the problem with eval?

The only plausible solution appears to be to admit partial functions,
functions that, like eval, are computable but may fail to be defined on
some points in their domain. In this case, eval(e, €) is undefined.

Anyone who has ever written a sufficiently sophisticated program will
have encountered divergence: on some inputs, the program simply fails to
terminate. What may first seem like a mere programming error, is
actually a fundamental feature of computable functions.

Incidentally, in the early days of recursion theory, partial functions were
universally avoided.

General Computability 16

We presented the last argument in the context of primitive recursive
functions, but note that the same reasoning also works for any clone of
computable functions—as long as

@ successor and eval both belong to the clone, and

@ each function in the clone is represented by an index.

But then eval must already be partial, no matter what the details of our
clone are.

A similar argument shows that an interpreter for, say, polynomial time
computable functions cannot itself by polynomial time.

Fiat Halting 17

Since any general model of computation must deal with partial functions,
it is entirely natural to ask whether a given function f is defined on some
particular input x.

Another natural question would be to ask whether f is total.

So we automatically run into the Halting Problem, the first example of a
perfectly well-defined question that turns out to be undecidable.

Notation Warning 18

We write
f:A-» B

for a partial function from A to B. Terminology:
domain dom f=A

codomain cod f =B
support sptf={acA|3b(f(a)=0)}

It is also convenient to write f(z) | for = € spt f, and f(z) 1 for
x ¢ spt f (converges/diverges).

Warning:
Some misguided authors call the support simply domain. Bad, bad idea.

Kleene’s Notation 19

Since we cannot avoid partial functions, we should adjust notation a bit.

Given expressions «, 3 involving partial functions, we use Kleene equality
rather than plain equality:

a~f
to indicate that either

@ both « and 3 are defined (the computations involved all terminate)
and have the same value, or

@ both « and 3 are undefined (some computation diverges).

More Kleene

Given a clone of computable functions, such as the primitive recursive
ones, and an index e for one of these functions, we write

{e}

for the eth function in the collection. Hence, ({e})e>0 is an enumeration
of all the functions in the clone.

Since these functions are partial in general we have to be a bit careful
and write

{e}(x) ~{e'}x)

to indicate that functions {e} and {e’} agree on input . We could add
an annotation for arity, but we won't bother.

20

3 General Recursion

Ackermann’s Function (1928) 22

Primitive recursion uses only a single variable. Maybe recursion over
multiple variables could produce more complicated functions!.

Here is a classical example: the Ackermann function A: N x N — N
defined by double recursion. We write " instead of z + 1.

On the surface, this looks more complicated than primitive recursion. We
need to make sure that there really is no trick to rewrite this as a single
recursion.

flt’s not obvious, maybe one could use coding tricks to get everything down to
just one variable. Try mutual recursion for example.

Family Perspective—Currying 23

It is useful to think of Ackermann’s function as a family of unary
functions (Ay)z>0 where A,(y) = A(z,y) (“level x of the Ackermann
hierarchy™).

The definition then looks like so:
Ay=S A+(0) = Az (1)

A+ (y+) = A:I:(A:r+ (y))

From this it follows easily by induction that

Lemma

Each of the functions A, is primitive recursive (and hence total).

The Bottom Hierarchy 24

A(0,y) =y*
A(ly) =y™F
A(2,y) =2y +3
A(3,y) =2vT3 — 3

The first 4 levels of the Ackermann hierarchy are easy to understand,
though A4 starts causing problems: the stack of 2's in the exponentiation
has height y + 3.

Tetration

The basic operation behind Ay is usually called super-exponentiation or
tetration and often written ™a or affn.

1 ifn=0,
affn = {a“TT("_l) otherwise.

For example,
265536

A(4,3) = 2116 — 3 =2 ~3

an uncomfortably large number (we'll see much worse soon).

25

The Mystery of A(6,6) 26

Alas, if we continue just a few more levels, darkness befalls.
A(5,y) =~ super-super-exponentiation
A(6,y) ~ an unspeakable horror

A(7,y) = speechlessness

For level 5, one can get some vague understanding of iterated
super-exponentiation, A(5,y) = (Az.z 11y + 3)YT3(1) — 3 but things
start to get quite murky at this point.

At level 6, we iterate over the already nebulous level 5 function, and
things really start to fall apart.

At level 7, Wittgenstein comes to mind: “Whereof one cannot speak,
thereof one must be silent.”*

**Wovon man nicht sprechen kann, dariiber muss man schweigen.” Tractatus
Logico-Philosophicus

Ackermann vs. PR 27

Theorem
The Ackermann function dominates every primitive recursive function f
in the sense that there is a k such that

f(x) < A(k,max x).

Hence A is not primitive recursive.

Sketch of proof.

Since we are dealing with a rectype, we can argue by induction on the
buildup of f.

The atomic functions are easy to deal with.

The interesting part is to show that the property is preserved during an
application of composition and of primitive recursion. Alas, the details
are rather tedious.

Ackermann and Union/Find 28

One might think that the only purpose of the Ackermann function is to
refute the claim that computable is the same as p.r. Surprisingly, the
function pops up in the analysis of the Union/Find algorithm (with
ranking and path compression).

The running time of Union/Find differs from linear only by a minuscule
amount, which is something like the inverse of the Ackermann function.

But in general anything beyond level 3.5 of the Ackermann hierarchy is
irrelevant for practical computation.

Exercise

Read an algorithms text that analyzes the run time of the Union/Find
method.

Video with Tarjan.

https://www.youtube.com/watch?v=Hhk8ANKWGJA

But Is It Computable? 29

Here is an entirely heuristic argument: we can write a tiny bit of C code
that implements the Ackermann function (assuming that we have infinite
precision integers).

int acker(int x, int y)
{

return(x ? (acker(x-1l, y ? acker(x, y-1) : 1)) : y+l1);
}

All the work of organizing the nested recursion is easily handled by the
compiler and the execution stack. So this provides overwhelming
evidence that the Ackermann function is intuitively computable.

Dynamic Programming 30

Suppose we want to compute A(a, b) bottom-up, dynamic programming
style.

We need a 2-dim table T" such that T'[i, j] = A(i,5). The table will be
filled row by row, and each row from left to right.

Problem: How large should the table be?

To fill position 4,5 > 0, we look up k = T/[i,j — 1] and then T[i — 1, k].

But k is huge, every time we go up one row we have to go much further
to the right.

A(3,4) = 125

The effect becomes much more pronounced for larger arguments.
For A(4,1) = 216 — 3 we get rows of lengths

216 _ 5 216 _ g 215 _3 13 2

31

Good News 32

We can code the table T' as a sequence number (the sequence number of
the sequence numbers of the rows), say, ¢t = (T').

Claim: There is a primitive recursive relation table(¢, a,b) that checks
that T is a correctly formed table for the computation of A(a,b).

We have to check that all the entries are formed according to the

Ackermann equations. This requires some helper functions, but is not
hard.

E.g., there is a p.r. function lookup(t,1, j) that returns T'[7, j].

PR versus Computable 33

Obvious Question: how much do we have to add to prim-
itive recursion to capture the Ackermann function?

As it turns out, we need just one modification: we have to allow
unbounded search: a type of search where the property we are looking for

is still primitive recursive, but we don’'t know ahead of time how far we
have to go.

Unbounded Search vs. Ackermann

Proposition

There is a primitive recursive relation table such that

A(a,b) = lookup(min(z | table(z, a,b) = 1),a, b)

Sketch of proof.

We are searching for the sequence number that codes the right table for
A(a, b)—which must exist, we just don't know how to bound the search.

Once we have the table, we just do a simple lookup.

34

Recursion Stack 35

In some cases, a recursion based computation unfolds in a very simple,
predictable manner. One should try to figure how exactly things work.

With luck, this will make it possible to implement the operations directly
on a list.

Alternatively, one can try to find a systematic approach to solving the
system of equations, essentially by repeated instantiations and
substitutions.

Again, with luck, a simple pattern will emerge that provides a
computational shortcut.

Unfolding Ackermann 36

The computation of, say, A(2,1) can be handled in a very systematic
fashion: always unfold the rightmost subexpression.

A(2,1) = A(1, A(2,0)) = A(1, A(1,1)) = A(1, A0, A(1,0))) = ...

Note that the A's and parens are just syntactic sugar, a better
description would be

2,1~1,2,0~ 1,1,1~1,0,1,0 ~ 1,0,0,1 ~ 1,0,2 ~ 1,3~ 0, 1,2
~0,0,1,1~0,0,0,1,0 ~ 0,0,0,0,1 ~+ 0,0,0,2 ~ 0,0,3 ~ 0,4 ~~ 5

We can model these steps by a list function A defined on sequences of
naturals (or, we could use a stack).

List Operation 37

Here is an algorithm that works on integer lists: initially, the list is (a, b).
The algorithm terminates when the list has length 1. A single step looks
like so:

If we encode integer lists as integers, the single-step operation A is
primitive recursive. Using actual data structures, A is just about trivial.

List Algorithm 38

int acker_list (int a, int b)
{
L = (a,b);
while(len(L) > 1)
L = Delta(L);
return fst (L) ;

Everything is perfectly harmless, except that the loop runs for a long,
long time (and the lists get horribly long).

BTW, this is another example of iterating a simple function until a fixed
point occurs (just define A(L) = L when |L| =1).

2000 4000 6000 8000 10000

The computation takes 10307 steps, the plot shows the lengths of the list.

39

Ackermann vs PR 40

The Ackermann function function A(z,y) fails to be primitive recursive.
But

Claim

The predicate “A(x,y) = z" is primitive recursive.

Proof.
Exploit the monotonicity properties of A to bound the a suitable table.
O

4 Turing Machines

Alan Turing (1912-1954)

42

The Source 43

A. Turing

On Computable Numbers, with an Application to the
Entscheidungsproblem

Proc. London Math.Soc., 2-42 (1936-7), pp. 230-265.

Turing called his now eponymous devices a-machines, a for automatic.
These do not halt: their purpose is to write the infinite binary expansion
of a real number on (part of) the tape.

Our description of a TM is the modern one due to Post, Kleene and
Davis. The main justification for TMs as the standard model of
computation is that they work very well for complexity theory.

http://www.cs.cmu.edu/~cdm/resources/Turing1936-computable-numbers.pdf

Before Turing

There were two models of computation in existence before Turing's
seminal 1936 paper, both developed by logicians, and based on
elementary ideas in math: equations and functional composition.

@ Herbrand-Godel equations.

Those describe recursive functions in the most general sense (recur-
sion on multiple variables; by contrast primitive recursive functions
allow recursion only on one variable).

@ Church’'s A-computable functions.

The A-calculus is the abstract theory of functional composition.
Very elegant, very hard to use for any concrete purpose (there are
no data structures).

44

Turing’s Machines 45

Brilliant Idea:
Observe a human computor, then abstract away all the
merely biological stuff and formalize what is left.

Everyone agrees that mathematicians compute (among other things such
as drinking coffee or proving theorems). So we could try to define an
abstract machine that can perform any calculation whatsoever that could
be performed in principle by a mathematician, and only those.

Note the hedge “in principle”: we will ignore “merely physical”
constraints such as the computor dying of old age and decrepitude, or
running out of scratch paper after using up the whole universe.

A Concrete Turing Machine

video

46

https://beta.ideas.lego.com/product-ideas/10a3239f-4562-4d23-ba8e-f4fc94eef5c7

No Joke 47

Obviously, whoever built the LEGO Turing machine has a lot of extra
time on their hands.

But, the construction brings out a very important issue: Turing machines
are clearly physically realizable. Our standard notion of computation is
perfectly compatible with our physical universe.

This is not so clear for other mathematical tools: for example, do the
reals’ actually describe physical reality?

TIf you think the answer is obviously Yes, note that a logician can easily come
up with several versions of the reals. Which is the one that corresponds to actual
physics?

An Abstract Turing Machine

work tape

| [blafclalblglalal |

finite state control

read /write head

48

The Pieces 49

@ A tape: a bi-infinite strip of “paper,” subdivided into cells. Each
cell contains a single letter; all but finitely many are just blanks. We
refer to this assignment of letters as a tape inscription.

o A read/write head that is positioned at a particular cell. That head
can move left and right.

@ A finite state control that directs the head: symbols are read and
written, the head moves and the internal state of the FSC changes.

Formalization

alphabet I': finite set of symbols, special blank symbol . in I"

state set @: finite set of possible mind configurations

0:QxI'—QxTI x{-1,0,+1}: transition function

a special initial state ¢™* € Q

a special halting state ¢"!* € Q.

Definition
A Turing machinel is a structure M = (Q, I', §; g™, ghalt).

TThis is not Turing's original definition; he was interested in machines that do
not halt and instead produce the infinite binary expansion of a real number. For us,
halting is key.

50

Warning

The core of a Turing machine is the transition system (Q, I, d), it
determines how the machine computes.

Some additional information like designated initial and halting states are
convenient to organize the exact details regarding in particular input and
output.

Specifying ¢™* and ¢"*!* is one useful scenario, but there are others.
E.g., it may be preferable to have to halting states ¢¥*® and ¢"° that
express acceptance or rejection. Or there may be no halting state at all

(to generate recursively enumerable sets).

51

Turing Machines are Brilliant 52

Of all the standard models of computation, Turing machines are the most
compelling when it comes to capturing the intuitive notion of
computability: arguably they correspond to the abilities of a human
computor’.

In addition, TMs are fairly simple, certainly much more palatable than
Herbrand-Godel equations or Church's A-calculus. Alas, they are not
quite as nice as models that are closer to actual hardware such as register
machines or random access machines, let alone programming languages.

One key advantage: they naturally work on strings and are ideally suited
for complexity theory, unlike some of the other models.

TGoédel was completely convinced by Turing, not by his own model, nor by Church.

Wittgenstein

Turing's “Machines”.

These machines are humans who calculate.

53

Turing Machines Suck 54

One substantial drawback of TMs is that it is hugely cumbersome to
construct interesting examples. For example, try to actually write out the
transition table for a machine that does the following:

multiplication of numbers in binary

depth-first search on a graph

@ evaluation of primitive recursive functions

universal Turing machine

The point here is not to wax poetically about whether this could be
done, just do it. And verify that your machine is correct.

Lame Example: Successor Function 55

Tape alphabet I = {., |}

States Q = {¢™*, q1, g2, ¢"¥'}

Initial state ¢™*, halting state ¢"*!*.

The transition function 9 is given be the following table:

P o d(p,0)
qmlt - q1 = +1
q1 - q2 || -1
7 | q1 || +1
0 3 qhalt . 0
Q2 | 42 | | -1

As written, the behavior in state ¢™'* and symbol | is undefined; this does
not matter since the situation never arises during an actual computation.

Input/Output Convention 56

The coding convention used is unary

Non~ || el

The machine starts in state ¢'™* and the read head is immediately before
in the inpute.

In the end, the machine is in state ¢"** and the head has returned to its

initial position. The output follows immediately.

And Diagrams?

Finite state machines can be nicely represented by diagrams that have
labeled edges of the form

a

p—4q

to indicate that (p,a,q) € 4.

It is still possible to draw diagrams for Turing machines, the transitions
now take the form
a:b:d
p——q

to indicate that §(p,a) = (q,b,d). Alas, this produces a lot of visual
clutter and is not as useful as for finite state machines.

57

Last Example

IR 1L

_IL

For clarity, we have written R, —, L for the displacements.

58

Visualization 59

One extremely pleasant feature of Turing machines is that one can easily
visualize computations.

Suprisingly, these pictures can help a lot to understand the nature of a
given Turing machine. More on this in our discussion of Busy Beavers.

Sample Run

60

Addition

Just to make the point about coding conventions, this time we are using

fat unary notation, n is represented by

ne|... |l
——

n+1

Hence we have to erase two 1s at the end:

LU W NN~ = O
U TN W N
I —[—— I

-
-
-

0 is the initial state, 6 is the final state.

+1
+1
+1
-1
+1

-1

61

Sample Run

62

Copy

Here is a Turing machine’ that copies its input: z — zx.

‘rules = {
{0, 0} » {1, @, 1}, (« start «
{1, aa} » {1, aa, 1}, {1, bb} » {1, bb, 1}, (+ look for unmarked letter =
{1, a} -» {2, aa, 1}, {1, b} » {3, bb, 2}, x« change s to ss, remember =
{1, 8} » {6, 0, -1},
{2, s_?Positive} » {2, s, 1}, » seek right blank =«
{2, 0} > {4, aa, 1}, (» change to ss
{3, s_?Positive} » {3, s, 1}, (» seek right blank)
{3, 0} » {4, bb, 1}, (+ change to ss =«

{4, 0} » {5, 0, -1},
{5, s_?Positive} » {5, s, -1},
{5, 0} » {1, 0, 1},

{6, s_?Positive} » {6, s, 1}, (« seek right blank «)

{6, 8} » {7, 0, -1},

{7, 3}~ {7, 1, -1}, « seek left blank, unmark =)
{7, 4} » (7, 2, -1} + halt

}y /. {a->1,b->2, aa->3, bb->4}

TWritten in Mathematica, so it can actually be executed.

A Run

64

Palindromes

65

Correctness 66

Exercise

What would a complete correctness proof for the Turing machine that
performs unary addition look like? What is difficult about the proof?

Exercise

Construct a Turing machine that performs addition when the input is
given in binary. What would the execution pictures look like in this case?
How hard is a correctness proof?

Exercise

Figure out how the palindrome TM works and prove that it is correct
(you need a convention for accepting versus rejecting computations).

Exercise (Hard)

Show that any one-tape Turing machine requires quadratic time to
recognize palindromes.

	Coding
	Evaluation
	General Recursion
	Turing Machines

