
CDM
Primitive Recursion

Klaus Sutner
Carnegie Mellon University
Fall 2025

1 Computability

2 Primitive Recursive Functions

3 Basic Properties

History Angle 2

Classical Recursion theory (computability theory) started in the
1930s, well before the arrival of digital computers. It arose as a crit-
ical ingredient in any attempt to handle the Grundlagenkrise (foun-
dational crisis) in mathematics early in the 20th century. CRT is not
concerned with practical computation, implementation issues or al-
gorithms.

Complexity theory started in the 1950/60s, in response to the in-
creasing relevance of actual digital computation, and the need to
understand resource allocation issues (analysis of algorithms). This
area is in part concerned with practical, realizable computation, but
the theory part of complexity theory can also be far, far removed
from real computation.

Defining Computability 3

We need a rigorous definition of computability that is easy to understand
and apply, and that matches our intuitive, pre-theoretic notion of
computability.

Roughly speaking, there are two types of definitions that can be used:

Machine Models
Abstract, mathematical machines that capture the notion of a “com-
puter” in a more or less physical sense.

Programms
A sequence of primitive instructions that can be executed in a sim-
ple, mechanical manner.

Why Bother? 4

Why would we even need a rigorous definition of a concept that is so
utterly intuitive? Say, it’s computable if there is an algorithm for it.
Done.

Yes and No, but mostly: No.

A warning: in the 1930s there was tension between Church and Gödel
about the proper notion of computability, the issue was finally resolved
only with Turing’s seminal paper.

Anything that is not obvious to these super-stars, is indeed not obvious.

http://www.cs.cmu.edu/~cdm/resources/Turing1936-computable-numbers.pdf

Non-Computability 5

An informal approach is often good enough for positive results: everyone
agress that the Euclidean algorithm computes gcds.

Negative results absolutely depend on real foundations: in order to show
that a particular problem (say, solving Diophantine equations) fails to be
computable, we need to have an airtight definition of computability.

Things get much worse when we try to show that solving a particular
computable problem (say, satisfiability testing for Boolen formulae)
requires such and such resources, the key concern in complexity theory.

Models of Computation 6

K. Gödel: primitive recursive

A. Church: λ-calculus

J. Herbrand, K. Gödel: general recursiveness

A. Turing: Turing machines

S. C. Kleene: µ-recursive functions

E. Post: production systems

H. Wang: Wang machines

A. A. Markov: Markov algorithms

M. Minsky; J. C. Shepherdson, H. E. Sturgis: register machines

A. Meyer, D. Ritchie; U. Schöning: loop, while programs (1967,
1992)

Comments 7

The models are listed roughly in historical order. Except for primitive
recursive functions, they are all equivalent in a strict technical sense.

This does not mean that they are equally intuitive or compelling. For
example, unless you have the theory-gene, you will find the λ-calculus
pretty daunting.

Bad news: the second most daunting model is Turing machines. They
have a beautiful motivation and are very natural in a way, but when it
comes to technical details they are a nightmare.

Two Worlds 8

In classical computability, one works with arithmetic functions

f : Nk → N

In complexity theory, one has to deal with strings instead

f : (Σ⋆)k → Σ⋆

Why? 9

Clearly, strings can easily express natural numbers. E.g., we can us the
ordinary binary expansion over the alphabet 2 = {01, }.

We will see in a moment, it is not hard to encode strings as natural
numbers. E.g., we could think of them as base k numbers where
k = |Σ|.

In general, this is fine. But in low complexity classes the cost of decoding
can be too high, it overwhelms the rest of the computation.

Example: Petersen Graph 10

00110100000001101000100010010011000000100110000001
10000010010100010100001000101000010001010000110010

1 Computability

2 Primitive Recursive Functions

3 Basic Properties

Primitive Recursion 12

The main idea behind our first model will be very familiar to anyone
familiar with a modern programming language: we will define a function
f : N × Nn → N by

defining f(0, y) explicitly, and

defining f(x + 1, y) in terms of x, f(x, y) and y.

You have all seen the standard examples: addition, multiplication,
exponentiation, factorials and so on. As we will see shortly, it is quite
difficult to come up with an arithmetic function that is intuitively
computable but not primitive recursive.

Later we will see more complicated forms of recursion.

Details 13

If one cares about actual implementations of primitive recursive
functions, there are two basic choices.

Top-Down Implement a recursion stack so that a call to f(n, y)
automatically produces calls to f(n−1, y), f(n−2, y)
. . . and handles the returns properly.

Bottom-Up Compute f(0, y), f(1, y), f(2, y) . . . by iteration, which
requires only a simple loop.

Again, in math this distinction does not matter much, in the early days of
CS it produced some acrimonious debates†.

†There were fierce fights about whether Algol 60 should include recursion. I stud-
ied with one of the people on the wrong side of the argument.

Background 14

Interestingly, Gödel encountered the problem of defining computable
functions working on his seminal incompleteness theorem. He introduced
a class of what he called “recursive functions,” that are now called
primitive recursive functions.

The notion of “recursive function” today refers to an arbitrary
computable function. The key difference is that primitive recursive
functions can only use recursion on one variable, whereas full
computability requires recursion on multiple variables as in the
Herbrand-Gödel model of computation.

For primitive recursive functions it will always be crystal clear that they
are intuitively computable.

Composition 15

Given functions gi : Nm → N for i = 1, . . . , n , h : Nn → N , we define a
new function f : Nm → N by composition as follows:

f(x) = h(g1(x), . . . , gn(x))

Notation: We write h ◦ (g1, . . . , gn) inspired by the the well-known
special case m = 1:

(h ◦ g)(x) = h(g(x)).

So this is just ordinary sequential composition of functions. Clearly,
computable functions are closed wrto composition: output can be re-used
as input.

Primitive Recursion 16

We need one more operation beyond composition to get interesting
functions, a form of recursion. Given h : Nn+2 → N and g : Nn → N we
define a new function f : Nn+1 → N by

f(0, y) = g(y)

f(x+1, y) = h(x, f(x, y), y)

The definition is agnostic about how to organize the computation, it just
pins down the values of f .

A simple proof by induction shows that the given equations have exactly
one solution, so our definition is sound.

Definition, Sort Of 17

Since we have now all the pieces in hand, we can concoct out first
definition.

Definition (Semi-formal)
A function is primitive recursive (p.r.) if it can be generated from the
basic functions zero and successor, using only composition and primitive
recursion.

There, that’s it.

We can now check that standard arithmetic functions like addition,
multiplication, exponentiation and so on are primitive recursive.

Arithmetic Functions 18

All the basic functions of arithmetic are primitive recursive.

add(0, y) = y

add(x+1, y) = S(add(x, y))

mult(0, y) = 0
mult(x+1, y) = add(mult(x, y), y)

exp(0, y) = 1
exp(x+1, y) = mult(exp(x, y), y)

Summation 19

Suppose ℓ is a primitive recursive function and we want to sum its values.
No problem:

f(0) = 0
f(x+1) = add(f(x), ℓ(x))

So f(x) =
∑

z<x ℓ(z).

Similarly, if ℓ has an additional parameter, we can adjust the definition as
follows:

f(0, y) = 0
f(x+1, y) = add(f(x, y), ℓ(x, y))

Summation is naturally a primitive recursive operation.

Recall: Thurston 20

The standard of correctness and completeness necessary to
get a computer program to work at all is a couple of orders
of magnitude higher than the mathematical community’s
standard of valid proofs.

Bill Thurston, 1994, Notices AMS

A Closer Look 21

For a human reader, this is indeed all perfectly clear.

But there are a few minor issues. First off, in the summation example:
there are two different zeros.

f(0) = 0

f(0, y) = 0

The first three have arity 0, but the last has arity 1. This is forced by our
definition of primitive recursion.

A little more precision is needed if we wanted to, say, check proofs
involving primitive recursive functions.

Arity 22

Sometimes it is convenient to have arity as part of the notation.

We will use a superscript (n) for this purpose:

f (n) a function of arity n

In particular write C(n)
a for the n-ary constant map x 7→ a.

We will call C(0)
a a hard constant: a function that takes no arguments.

Bureaucracy: Projections 23

Another problem is that composition as we defined it is not quite enough.
Suppose we have a binary version add of addition, and want to define a
ternary version. No problem:

add(3)(x, y, z) = add(2)(x, add(2)(y, z))

But, this is not allowed according to our definition of composition: try to
find the right binding for h and the gi.

We need a simple auxiliary tool, so-called projections:

Pn
i : Nn → N Pn

i (x1, . . . , xn) = xi

where 1 ≤ i ≤ n.

Killing Variables 24

Now we can write

add(3) = add(2) ◦ (P3
1, add(2) ◦ (P3

2, P3
3))

Note that no variables are needed in this notation system.

Needless to say, most humans prefer the informal notation by a long shot.
But then again, the last term is very easier to parse and evaluate.

Clones 25

A clone or function algebra is a collection of functions that contains all
projections and is closed under composition, over some carrier set.

More generally, define the collection of all finitary functions over N as

FN =
⋃

n≥0
(Nn → N)

Definition
A clone (over N) is a subset C ⊆ FN that contains all projections and is
closed under composition.

For example, all projections form a clone, as do all arithmetic functions.

Quoi? 26

Informally and intuitively, a primitive recursive function is obtained from
zero, successor, composition and primitive recursion. Basta.

Projections and composition have nothing to do with the natural
numbers, these concepts are perfectly general and apply to any domain.

On the other hand, 0, successor and primitive recursion are directly
dependent on the naturals.

So it makes sense to separate out these two components of the definition
of a primitive recursive function.

Nullary Functions 27

Note that we allow hard constants, nullary functions in N0 → N where
we think of N0 as a one-point set {∗}.

We will write f() or f(∗) when we evaluate such functions.

In the literature, you will also find clones without nullary functions

C ⊆ F
(+)
N =

⋃
n>0

(Nn → N)

This is mostly a technical detail, but one should be aware of the issue.

Actually, this is exactly the kind of pesky detail that makes programming
quite so difficult.

Nullary??? 28

Algebraists usually prefer the non-nullary approach. Most operations
there are binary and unary: e.g., (x, y) 7→ x · y and x 7→ x−1 in a group.
Constants are just elements of the algebraic structure and are not
considered to have anything to do with an operation.

But for those working in logic, type theory or category theory, nullary
operations are not an issue at all. And, truth be told, any really solid
implementation of primitive recursive functions also needs to keep track
of all these gory details, otherwise things won’t typecheck.

After all, a computer will not apply any algebraic common sense
whatsoever, it will just follow the rules precisely as stated.

Nullary Composition 29

Recall composition: h(n), g
(m)
i , i ∈ [n], produces

f = h ◦ (g1, . . . , gn) ∈ F
(m)
N .

It is worthwhile to consider the special case where the gi are nullary.

Case: m = 0
We get the nullary constant

C(0)
a ∈ C

where

a = h(g1(∗), . . . , gn(∗))

Another Angle 30

We could introduce constants C(k)
a for all a and k. Alas, that contradicts

the basic principle of parsimony in axiomatization: use as few basic
assumptions as possible. For example, if we have the successor function
S, we can define C(k)

a+1 = S ◦ C(k)
a , so we only need C(k)

0 .

We can use primitive recursion to deal with arity:

f(0, y) = C(k)
0 (y)

f(x+1, y) = f(x, y)

This defines C(k+1)
0 in terms of C(k)

0 .

So all we really need is C(0)
0 .

Generating Clones 31

To get something more interesting, we need to consider clones that are
generated by

certain basic functions F , and/or

closed under additional operations Op.

We write

clone(F ; Op)

for the least clone containing F and closed under Op.

For example, clone(;) consists just of all projections.

Rectypes 32

This is a perfect example of a recursive datatype (rectype), one of the
fundamental concepts in TCS. We have

a collection of atoms (indecomposable items), and

a collection of constructors that can be applied to build more com-
plicated, decomposable objects.

Because of this inductive structure we can perform inductive arguments,
both to establish properties and to define operations.

Basic Arithmetic Functions 33

When dealing with natural numbers, it is natural (duh) to have

Constant zero 0 : N

Successor function S : N → N , S(x) = x + 1

Here constant 0 is meant to be the hard constant C(0)
0 (but recall the

comment on nullary composition from above).

This is a rather spartan set of built-in functions, but as we will see it’s all
we need. Needless to say, these functions are trivially computable.

In fact, it is hard to give a reasonable description of the natural numbers
without them (unless you are a set theorist).

Closure Operations: Primitive Recursion 34

We write Prec[h, g] for primitive recursion: recall h : Nn+2 → N and
g : Nn → N can be used to define f : Nn+1 → N by

f(0, y) = g(y)
f(x + 1, y) = h(x, f(x, y), y)

Definition
A function is primitive recursive (p.r.) if it lies in the clone generated by
zero, successor; and closed under primitive recursion: clone(0, S; Prec).

Two Views 35

bureaucracy basic operator

atom projections zero, successor -

constructors composition - prim. rec.

Example: Factorials 36

The standard definition of the factorial function uses recursion like so:

f(0) = 1
f(x + 1) = (x + 1) · f(x)

To write the factorial function in the form f = Prec[h, g] we need

g : N0 → N, g() = 1
h : N2 → N, h(u, v) = (u + 1) · v

More precisely, g is C(0)
1 and h is multiplication combined with the

successor function:

f = Prec[mult ◦ (S ◦ P2
1, P2

2), C(0)
1]

Unfolding 37

By unfolding the definition of mult we can write a single term in our
language that defines the factorial function.

Prec[Prec[Prec[S ◦ P3
2, P1

1] ◦ (P3
2, P3

3), C(1)
0] ◦ (S ◦ P2

1, P2
2), C(0)

1]

The innermost Prec yields addition, the next multiplication and the last,
factorial.

Again, hard to read for a human, but perfectly suited for a parser. Given
the right environment, it is not hard to build an interpreter for these
terms.

Arithmetic 38

It is a good idea to go through the definitions of all the standard basic
arithmetic functions from the p.r. point of view.

add = Prec[S ◦ P3
2, P1

1]

mult = Prec[add ◦ (P3
2, P3

3), C(1)
0]

pred = Prec[P2
1, C(0)

0]
sub′ = Prec[pred ◦ P3

2, P1
1]

sub = sub′ ◦ (P2
2, P2

1)

Since we are dealing with N rather than Z, sub here is proper
subtraction: x •− y = x − y whenever x ≥ y, and 0 otherwise.

Exercise
Show that all these functions behave as expected.

R. Dedekind 39

These equational, inductive definitions of basic arithmetic functions date
back to Dedekind’s 1888 booklet “What are numbers and what is their
purpose?” It is remarkable that he produced this description about 30
years before anyone started to think carefully about computability.

1 Computability

2 Primitive Recursive Functions

3 Basic Properties

Admissibility 41

Here is an example of a closure property that is not obvious from the
definitions. Apparently, we lack a mechanism for definition-by-cases:

f(x) =
{

3 if x < 5,
x2 otherwise.

We know that x 7→ 3 and x 7→ x2 are p.r., but is f also p.r.?

We want to show that definition by cases is admissible in the sense that
when applied to primitive recursive functions/relations we obtain another
primitive recursive function. Having a solid collection of admissible
operations around makes it much easier to show that some particular
functions are primitive recursive.

Definition by Cases 42

Definition
Let g, h : Nn → N and R ⊆ Nn. Define f = DC[g, h, R] by

f(x) =
{

g(x) if x ∈ R,
h(x) otherwise.

We need to explain what it means for the relation R to be primitive
recursive, we’ll do that in a minute.

Sign and Inverted Sign 43

The first step towards implementing definition-by-cases is a bit strange,
but we will see that the next function is actually quite useful.
The sign function is defined by

sign(x) = min(1, x)

so that sign(0) = 0 and sign(x) = 1 for all x ≥ 1. Sign is primitive
recursive: Prec[S ◦ 0, 0] in sloppy notation.

Similarly the inverted sign function is primitive recursive:

sign(x) = 1 •− sign(x)

Relations 44

As usual, define the characteristic function of a relation R

charR(x) =
{

1 x ∈ R
0 otherwise.

to translate relations into functions.

Definition
A relation is primitive recursive if its characteristic function is primitive
recursive.

We will use analogous definitions later for all kinds of other types of
computable functions: Turing, polynomial time, polynomial space,
whatever.

Equality and Order 45

Define E : N2 → N by

E = sign ◦ add ◦ (sub ◦ (P2
1, P2

2), sub ◦ (P2
2, P2

1))

Or, less formally, but more intelligible:

E(x, y) = sign((x •− y) + (y •− x))

Then E(x, y) = 1 iff x = y, and 0 otherwise. Hence equality is primitive
recursive. Even better, all standard order relations such as

̸=, ≤, <, ≥, . . .

are primitive recursive (so we can use them e.g. in definitions by cases).

Closure Properties 46

Proposition
The primitive recursive relations are closed under intersection, union and
complement.

Proof.

charR∩S = mult ◦ (charR, charS)
charR∪S = sign ◦ add ◦ (charR, charS)
charN−R = sub ◦ (1, charR)

2

In other words, primitive recursive relations form a Boolean algebra, and
even an effective one: we can compute the Boolean operations.

Arithmetic and Logic 47

Note what is really going on here: we are using arithmetic to express
logical concepts such as disjunction.

The fact that this translation is possible, and requires very little on the
side of arithmetic, is a central reason for the algorithmic difficulty of
many arithmetic problems: logic is hard, by implication arithmetic is also
difficult.

For example, finding solutions of Diophantine equations is hard.

Exercise
Show that every finite set is primitive recursive.
Show that the even numbers are primitive recursive.

DC is Admissible 48

Proposition
If g, h, R are primitive recursive, then f = DC[g, h, R] is also primitive
recursive.

Proof.
f = add ◦ (mult ◦ (charR, g), mult ◦ (charR, h))

Less cryptically

f(x) = charR(x) · g(x) + charR(x) · h(x)

Since either charR(x) = 0 and charR(x) = 1, or the other way around,
we get the desired behavior. 2

Bounded Sum 49

Proposition
Let g : Nn+1 → N be primitive recursive, and define

f(x, y) = Σz<xg(z, y)

Then f : Nn+1 → N is again primitive recursive. The same holds for
products.

Proof.

f = Prec[add ◦ (g ◦ (P n+2
1 , P n+2

3 , . . . , P n+2
n+2), P n+2

2), 0n]

Less formally,

f(0, y) = 0
f(x+1, y) = f(x, y) + g(x, y)

The argument for product is similar. 2

Exercises 50

Exercise
Repeat the proof for products.

Exercise
Show that f(x, y) =

∑(
g(z, y) | z < x ∧ R(z)

)
is primitive recursive

when g and R are primitive recursive.

Exercise
Show that f(x, y) =

∑
z<h(x) g(z, y) is primitive recursive when h is

primitive recursive.

Bounded Search 51

A particularly important algorithmic technique is search over some finite
domain.
For example, in brute-force factoring n we are searching over an interval
[2, n − 1] for a number that divides n. Or in a chess program we search
for the optimal next move over a space of possible next moves.
We can model search in the realm of p.r. functions as follows.

Definition (Bounded Search)
Let g : Nn+1 → N . Then f = BS[g] : Nn+1 → N is the function defined
by

f(x, y) =
{

min
(

z < x | g(z, y) = 0
)

if z exists,
x otherwise.

Keeping Things Simple 52

Note that f(x, y) = x simply means that the search failed. In a more
luxurious environment we might set a flag, throw an exception or some
such.

Here we want everything to be a simple as possible, and in particular
constrained to pure arithmetic. So we code failure as a numerical value,
basta.

BS is Admissible 53

One can show that bounded search is also admissible, it adds nothing to
the class of p.r. functions.

Proposition
If g is primitive recursive, then so is BS[g].

Exercise
Show that bounded search is indeed admissible (“primitive recursive
functions are closed under bounded search”).

Bounded Search II 54

This can be pushed a little further: the search does not have to end at x.
Instead, we can search up to a primitive recursive function of x and y.

f(x, y) =
{

min
(

z < h(x, y) | g(z, y) = 0
)

if z exists,
h(x, y) otherwise.

Dire Warning:
But we have to have a p.r. bound, unbounded search as in

f(y) := min
(

z | g(z, y) = 0
)

is not an admissible operation; not even when there is a suitable witness
z for each y. See Kleene’s µ-recursive functions.

Example: Primality 55

Claim (1)
The divisibility relation div(x, y) is primitive recursive.

Note that
div(x, y) ⇐⇒ ∃ z ≤ y (x ∗ z = y)

so that bounded search intuitively should suffice to obtain divisibility.
Formally, we have already seen that the characteristic function M(x, z, y)
of x ∗ z = y is p.r. But then

sign
(∑

z≤y
M(x, z, y)

)
is the p.r. characteristic function of div.

Primality 56

Claim (2)
The primality relation is primitive recursive.

To see why, note that x is prime iff

1 < x ∧ ∀ z < x (div(z, x) ⇒ z = 1).

The building blocks 1 < x, div and z = 1 are all p.r., and we can
combine things by ∧ and ⇒ . The only potential problem is the
(bounded) universal quantifier.

But this is quite similar to the situation with div from the last slide.
Time for a general solution.

Yet More Logic 57

Definition (Bounded Quantifiers)
P∀(x, y) ⇔ ∀ z < x P (z, x, y)
P∃(x, y) ⇔ ∃ z < x P (z, x, y).

Note that P∀(0, y) = true and P∃(0, y) = false.

Informally, and using the dreaded ellipsis,

P∀(x, y) ⇐⇒ P (0, x, y) ∧ P (1, x, y) ∧ . . . ∧ P (x − 1, x, y)

and likewise for P∃.

Bounded Quantification 58

Bounded quantification is really just a special case of bounded search: for
P∃(x, y) we search for a witness z < x such that P (z, x, y) holds.
Generalizes to ∃ z < h(x, y) P (z, x, y) and ∀ z < h(x, y) P (z, x, y).

Proposition
Primitive recursive relations are closed under bounded quantification.

Proof.

charP∀(x, y) =
∏
z<x

charP (z, x, y)

charP∃(x, y) = sign
(∑

z<x

charP (z, x, y)
)

2

Next Prime 59

Claim (3)
The next prime function f(x) = min

(
z > x | z prime

)
is p.r.

This follows from the fact that we can bound the search for the next
prime by a p.r. function:

f(x) ≤ 2x for x ≥ 1.

This bounding argument requires a little number theory. In general, the
theory of gaps between consecutive primes is quite difficult (consider
prime twins), but this result is not too bad.

Enumerating Primes 60

Claim (4)
The function n 7→ pn, where pn is the nth prime, is primitive recursive.

To see this we can iterate the “next prime” function from the last claim:

p(0) = 2
p(n + 1) = f(p(n))

Exercises 61

Exercise
Show in detail that the function n 7→ pn where pn is the nth prime is
primitive recursive. How large is the p.r. expression defining the function?

Exercise
Show that the prime counting function is primitive recursive.
Exploit it to give another p.r. construction for the nth prime function.

Exercise
Find some other closure properties of primitive recursive functions.

	Computability
	Primitive Recursive Functions
	Basic Properties

