
CDM

Presburger Arithmetic

K. Sutner
Carnegie Mellon University
Fall 2025

1 Numeration Systems

2 Deciding Presburger Arithmetic

Automaticity and Arithmetic 2

Our next project is to show how automaticity can be used to build a
decision algorithm for first-order logic of a fragment of arithmetic
(addition only, no multiplication).

Warning:
There is a major difference between this and our two previous examples:

invertible Mealy automata
elementary cellular automata

In both cases the objects we are working with are naturally binary strings.

For arithmetic we have to deal with integers.

Arithmetic 3

We will work over the structure

N+ = ⟨N; +, 0, 1, <⟩

Essentially arithmetic without multiplication.

To handle the carrier set N, we have to encode natural numbers as
strings.

In other words, we need to fix a suitable notation system for natural
numbers that that our machines can work on.

And we need to express operations and relations in terms of our
representation.

Numeration Systems 4

A numeration system is a method to denote all natural numbers by words
over a digit alphabet ∆.

The digits all directly correspond to particular numbers, typically 0, 1, 2,
−1 and so forth. In a positional notation system the numerical value of a
digit string d = d0d1 . . . dk−1 is determined by weights bi ∈ N+, i ≥ 0, as
follows. The value map val : ∆⋆ → N

val(d) =
∑
i<k

dibi

must be surjective: every number must have a name.

We only care about the standard weights bi = Bi for some base B ≥ 2.

More Precisely . . . 5

A numeration system N = ⟨∆, D, val⟩ consist of the following.

A digit alphabet ∆.

A recognizable language D ⊆ ∆⋆.

A surjective value map val : D → N .

D consists of all admissible representations of numbers.

The value map is not required to be injective; the system may have
redundant ways to express numbers.

The Mother of all Numeration Systems 6

Fix some integer B ≥ 2. Arguably the easiest choice is

∆ = {0, 1, . . . , B−1}
D = ∆⋆

val(x) =
∑
i<k

xiB
i

where x = x0x1 . . . xk−1. This is called reverse base B (or reverse radix
B), since the LSD comes first in this system.

There are infinitely many representations for any number: val(ε) = 0 and
val(x0) = val(x).

Addition is entirely straightforward in this system, a standard
ripple-carry-adder translates into a synchronous transducer.

Cleaning Up 7

As stated, reverse base B is rather too permissive. One often restricts
admissible representations.

NEW No empty word
ε is not allowed as a representation for 0 ∈ N.

NTZ No trailing zeros
x ∈ D implies x−1 ̸= 0 except when x = 0.

In a NEW numeration system with, say, base B = 2 we have

D = (0 + 1)+

and if we add NTZ we get

D = 0 + (0 + 1)∗1

Plain Base B 8

Alas, many misguided people prefer to start with the MSD, and use a
more complicated value map: for |x| = k, 0-indexed,

val(x) =
∑
i<k

xiB
k−i−1

This is called base B or radix B notation, we are essentially evaluating
xop in reverse base B.

This value map requires knowledge of the length of the string, a feature
that coexists uneasily with finite state machines. Since regular languages
and rational relations are closed under reversal, there is no catastrophic
difference, but things just tend to get more complicated.

Representing Sets of Numbers 9

Fix some numeration system N = ⟨∆, D, val⟩ once and for all.

Suppose A ⊆ N is some arithmetic set.
How do we represent A by some plain FSM A?

Let L = L(A) ⊆ ∆⋆. We want

L ⊆ D
A = { val(x) | x ∈ L }

So we have a notion of a recognizable set of numbers with respect to
numeration system N .

Redundancy 10

If N has exactly one string for each number it is called unambiguous or
non-redundant. In this case, the value map is a bijection.

In a redundant system it is natural to insist that every name work:

L = val−1(A) =
⋃

{ val−1(n) | n ∈ A }

In this case we will say that A strongly recognizes A.

Otherwise things could go sideways: think about A ∩ B.

Representing Operations 11

For simplicity, suppose we have a binary arithmetic function
f : N × N → N .

What does it mean that some transduction Tf represents f?

Clearly we need Tf ⊆ D × D × D. Moreover

Tf (x, y, z) ⇐⇒ f
(
val(x), val(y)

)
= val(z)

If N is non-redundant, then Tf is actually a function on D × D.

Avoiding Phantoms 12

When we manipulate our transducers we need to maintain the condition
that each track must be a word in D.

This is easy for all operations except for complement: say, we have a
machine A recognizing some set A ⊆ N.

To get a machine A′ for N − A we need to

determinize the machine
flip final/non-final states
intersect with D.

Without the last step, A′ may accept “phantom strings” x /∈ D so it
looks like N − A ̸= ∅ when in fact A = N.

Automatic Structures 13

Suppose we have some mathematical structure X = ⟨X; R⟩ where R is a
k-ary relation on X.

Definition
X is automatic if there is a regular language Nm ⊆ Σ⋆ of names and a
surjective value function ν : Nm → X such that

1. the binary relation on Nm, ν(u) = ν(v), is synchronous,
2. the k-ary relation on Nm, R

(
ν(u1), . . . , ν(uk)

)
, is synchronous.

Nm is the set of names for the actual elements in X .

Comments 14

A plain finite state machine can check whether a string denotes some
object in X .

The naming system may be redundant, but we can synchronously check
whether two names denote the same object.

The actual relations in X translate into synchronous relations on Nm.

Ominous Comment 15

There is no condition on the value map ν being computable, it just has
to be defined on a regular set of words and be compatible with = and R
as in the definition.

To be sure, in many concrete cases there is a canonical choice for ν and
Nm. This is true in particular in arithmetic where we simply resort to
standard numeration systems.

But: neither computability nor canonicity is part of the definition of
automaticity.

Recall: Wordprocessing in Groups 16

The book published in 1992 by D. B. A. Epstein, J. W. Cannon, D. F.
Holt, S. V. F. Levy, M. S. Patterson, and W. P. Thurston.

The authors essentially handle groups whose Cayley graphs are automatic.
This is different from the automaton groups we looked at earlier.

They develop a quadratic time algorithm that solves the word problem for
certain groups that are important in low-dimensional topology.

1 Numeration Systems

2 Deciding Presburger Arithmetic

Fragments of Arithmetic 18

Full arithmetic is notoriously undecidable, but how about a fragment like

N+ = ⟨N; +⟩

which has no multiplication. In practice one often uses ⟨N; +, 0, 1, <⟩,
the constants and order are definable in terms of just addition.

Since there is no multiplication there are no polynomials and all the
standard undecidability results fall by the wayside.

Maybe we could decide first-order arithmetic over N+?

Warning 19

Full multiplication is absent, but multiplication by a constant is available;
for example

y = 3 ∗ x ⇐⇒ y = x + x + x

We can also do modular arithmetic with fixed modulus:

y = x mod 2 ⇐⇒ ∃ z (x = 2 ∗ z + y ∧ y < 2)
y = x div 2 ⇐⇒ ∃ z (x = 2 ∗ y + z ∧ z < 2)

A slightly non-trivial example of a Presburger formula:

∃ x ∀ y ∃ u, v (x < y ⇒ y = 5 ∗ u + 7 ∗ v)

Is it valid?

Presburger Arithmetic is Decidable 20

Without multiplication, arithmetic is much less complicated.

Theorem (M. Presburger 1929)
First-order logic over N+ is decidable.

This result seemed like a major boost to Hilbert’s program: first-order
logic is sound and complete, and it can handle an interesting fragment of
arithmetic.
Of course, what was really needed is a similar result for all of arithmetic.
Alas . . .

Full Story 21

In 1929, Presburger showed that arithmetic without multiplication
(Presburger arithmetic) is decidable.

In 1930, Skolem proved that arithmetic without addition (Skolem
arithmetic) is decidable.

In 1931, Gödel showed that full Peano arithmetic is incomplete.
Followed by Church and Turing who showed in 1936 that arithmetic is
undecidable.
Lastly, in 1970, Matiyasevich showed that even checking for integer roots
of integer polynomials is undecidable.

Deciding Presburger Arithmetic 22

There are at least three ways to tackle this problem.

Quantifier elimination
Monadic second-order logic and ω-automata
Automaticity and ordinary finite state machines

Presburger’s original algorithm is based on quantifier elimination and
purely syntactic in nature.

Büchi developed the MSO approach in the 1960s.

Automaticity essentially dates back to Nerode in the 1990s.

A Gap 23

Actually, the idea of automaticity is half a century old.

Bernard R. Hodgson
Théories décidables par automate fini
Ph.D. thesis, 1976, Université de Montréal

Sadly, no one paid attention until Nerode reinvented it 20 years later.

A broad study of automaticity really started taking off around 2000.

It Works 24

Hodgson already had a number of interesting examples: dense and
discrete linear orders, Presburger arithmetic, p-adic numbers.

He showed that automatic structures have certain closure properties wrto
product constructions.

And, he realized that one can use the same approach based on automata
operating on infinite words (ω-automata).

Efficiency? 25

Unfortunately, it turns out that the computational complexity of
Presburger arithmetic is pretty bad:

Ω(22cn

) and O(222cn

)

Meaning: every algorithm for Presburger is at least doubly exponential on
some inputs, and there is a triple exponential algorithm.

In general, all the algorithms need tender care and feeding. And, they
can handle only limited instances.

Naming Numbers 26

We want to think of
N+ = ⟨N; +, 0, 1, <⟩

as an automatic structure.

So, we need a naming map ν : Nm → N where Nm ⊆ Σ⋆ is some regular
language.

No problem, we can use our standard numeration system N :

reverse binary, no empty word, no trailing zeros.

Hence Nm = D = 0 + (0 + 1)∗1 and our system is unambiguous.

Atomic Formulae 27

In our case, there are three atomic formulae:

x = y

x + y = z

x < y

So we have 3 synchronous transducers A(2)
= , A(2)

< and A(3)
+ (2, 2, and 3

tracks, respectively) that test these predicates, given arbitrary names for
the natural numbers in question.

In practice we would also implement the constants 0 and 1 (or other
small constants).

Efficiency 28

The order relation s < t is first-order definable in terms of addition:

∃ d
(
s + d = t ∧ d ̸= 0

)
but it is better for efficiency reasons to add it as a primitive.

The decision algorithm would build a FSM that handles this condition,
but it is better to lovingly handcraft an optimized machine once and for
all.

More generally, in practice one would construct a little library of
optimized machines for phrases that appear often.

Vanilla Successor 29

This is our old Mealy machine (insanely called “adding machine” by the
group theory people):

t c
0/1

1/0 a/a

Input is supposed to be in reverse base 2.
Two problems: this allows for trailing zeros and it implements a cyclic
counter: 1k 7→ 0k.

Compliant Successor 30

t c c′

0/1

1/0

1/0

0/1

#/1

0/0
1/1

0/0

1/1

This version is obtained by a bit of surgery on the vanilla machine:
handle 1:01, and split state c to eliminate trailing zeros.

Vanilla Addition 31

n c

110

001

000
011
101

010
100
111

This is the logical core of any synchronous transducer for addition, a
standard ripple carry adder.

Synchronous Addition 32

Alas, this transducer ignores our numeration system and requires
substantial refinement.

Specifically, we need a synchronous ternary relation α ⊆ D × D × D so
that

α(x, y, z) ⇐⇒ val(x) + val(y) = val(z)

E.g., we need to handle

α(0, a, a) α
(
01##, 111#, 1001

)

Compliant Addition 33

Vanilla Less-Than 34

≥ <

01

10

00
10
11

00
01
11

The basic comparison transducer: 0:1 leads to acceptance, 1:0 leads to
rejection.

Compliant Less-Than 35

0a 11 #1

00 1a #0

#1

10

#0

01

#1

#0

11

0a
10

01
1a

00

#1 #0

01
00
1a

Frobenius Sentence 36

Here is how the algorithm would handle the sentence

Φ ≡ ∃ x ∀ y
(
x < y ⇒ ∃ u, v (3 ∗ u + 5 ∗ v = y)

)
Thanks to our brilliant choice of coefficients, Φ is actually true.

For the FSM-based proof, let

S = span(3, 5) = 3N + 5N = 0, 3, 5, 6, 8, 9, 10, 11, . . .

We need to show that

{ x ∈ N | ∃ y
(
x < y ∧ y /∈ S

)
}

is finite.

Cheating 37

To keep the machines on the next few slides simple, we do not use
endmarkers #. Instead we cheat by padding with the right number of 0s.

We do maintain the no-empty-word convention. Still, our machines
violate the definition of automaticity.

Exercise
Figure out how to fix this and produce compliant machines.

Sloppy Addition 38

000 011 101110

000 011 101

110

001

010 100 111

Sloppy Less-Than 39

01 10 11

01

10

00 01 11

Sloppy Multiply by 3 40

00

11

00

1101

10

11

00

01

10

Sloppy Multiply by 5 41

00

11

00

11

00

11

01
10

01

10

00

11

Span Machine 42

To handle the span, we use a 5-track machine S ′ with the intended
variable meaning:

1 u existential quantifier
2 v existential quantifier
3 u′ u′ = 3u
4 v′ v′ = 5v
5 z z = u′ + v′

S ′ is built from from the multiply-by-3 and a multiply-by-5 machines and
and adder.

Building Machines 43

S ′ = emb(5)
1,3

(
mult3

)
× emb(5)

2,4
(
mult5

)
× emb(5)

3,4,5
(
A+

)

Projecting away all but the z-track produces a machine that recognizes
the span of 3 and 5:

S = prj(5)
1,2,3,4(S ′)

S ′ 44

00000

01011

10101

11110

00000

01011

10101

11110

00000

01011

10101

11110

00101

01110

10000

11011

00100

01111

10001

11010

00011

01000

10110

11101

00011

01000

10110

11101

01101

10011

00110

11000

00111

01100

10010

11001

00001 11111

01010

10100

00000

10101

01011

11110

00000

10101

11110

01011

01001

11100

10111

00010

00010

01001

10111

11100

00011

01000

11101

10110

00010

01001

10111

11100

01111

10001

00100

11010

00110

10011

01101

11000

00000

01011

10101

11110

01100

00111
11001

10010

00101

10000

01110

11011

00001
11111

01010

10100

00011

01000

10110

11101

00001

10100

01010

11111

11100

00010

01001

10111

10101

01011

00000 11110
00101

01110

10000

11011

00001

01010

11111

10100

00100 10001

01111

11010

00001

01010

11111

10100

00001

10100

01010

11111

S ′ 45

Minimized S 46

0

1

0

11

0

1

0

0

1

0 1

Onward 47

It now suffices to check that

Φ ≡ ∃ x ∀ y
(
x < y ⇒ y ∈ S

)
The universal quantifier needs to be rewritten:

Φ ≡ ∃ x ¬ ∃ y
(
x < y ∧ y /∈ S

)
The ∃ y

(
x < y ∧ y /∈ S

)
part is handled by more embeddings:

C = emb(2)
1,2

(
A<

)
× emb(2)

2
(
S¬

)
Recall that the complement machine S¬ is obtained by intersectiing the
full complement machine with D.

Span Complement 48

0 1

0 11 0

1

0

S¬ recognizes
1, 2, 4, 7.

C 49

00 10 0111

00 10

01

00

01 1111 01

01

00

01 11

Projecting C 50

0 1

01 0 1

0 10 1 0

0

least number not accepted: 7
hence witness x = 7 works

Isomorphism Problem 51

Since automatic presentations depend on a names and a value function
ν : Nm → X it is far from clear whether two automatic presentations
describe the same underlying first-order structure. This is known as the
isomorphism problem for automatic structures.

Theorem
The isomorphism problem for automatic structures is undecidable.

In fact, the problem is outside of the arithmetical hierarchy and belongs
to the analytical hierarchy, at level Σ1

1 .

Non-Automaticity 52

By the same token, it is fairly difficult to make sure that a given
structure X fails to be automatic. Here are some examples of
non-automatic structures:

Additive rational numbers ⟨Q; +⟩

Divisibility of naturals ⟨N; |⟩

Skolem arithmetic ⟨N; ·⟩ with radix representation

Free semigroup F2

Structures with a pairing function

Warning: Skolem arithmetic is automatic wrto an exotic numeration
system based on prime factorizations (in fact, one interprets Skolem
arithmetic in Presburger arithmetic).

	Numeration Systems
	Deciding Presburger Arithmetic

