
CDM

Feedback Shift Registers

Klaus Sutner

Carnegie Mellon University
Spring 2024



1 The GPS Challenge

2 Feedback-Shift-Registers

3 Generating Functions



Getting Around 2

Athena told Odysseus to “keep the Great Bear on his left”.
Note that it took him 20 years to get back home.



Global Positioning System 3



Fancy/Cheap System 4

24 satellites, about 20,000 km above ground, moving at some 4.5 km/sec.
Each has 4 highly accurate atomic clocks, everything tightly controlled by one
master and four additional control stations.

The Problem:
At the other end, a GPS receiver must be cheap, small, reliable,
zero maintenance.

This is a bit different from standard resource constraints on computation (time,
space) but equally interesting.

Data centers now consume twice as much energy as New York City, with huge
growth rates.



Einstein’s Legacy 5

Einstein’s general theory of relativity is now over 100 years old.

A Question: Who wins?

By general relativity, satellite clocks move faster since they are high up in
Earth’s gravity field (about 45,850 nanosecs per day). BTW, nowadays
one can measure the effect of lifting a super-accurate clock by 2cm.

By special relativity, satellite clocks undergo relativistic slow-down since
they are moving relatively fast (about 7,214 nanosecs per day).

Final result: there is a speed-up of about 38 microsecs per day.
http://physicscentral.com/explore/writers/will.cfm
And the engineers did not believe it.

http://physicscentral.com/explore/writers/will.cfm


Triangulation 6

If we can measure the direction of the radio signals, we can triangulate (at
least 2, more for better precision).
No way! Our cheapo device cannot handle this.



Trilateration 7

But we can use trilateration: measure distance by measuring the delay of a
signal. Given timing and satellite location data, this suffices to determine
location of the receiver.



Measuring Delay 8

How do we measure a delay of some 0.007 seconds? Cheaply?

An utterly non-workable solution would be to have the satellite send very short
radio bursts.

Realistically, the only thing our cheapo receiver can do is to receive a nice,
steady stream of bits sent from the satellite. Hence we need to somehow
encode the timing information in a bit stream.

Aside: We need to synchronize the cheap local clock, this is done by a little
protocol involving at least 3 satellites.



Measuring Delay, on the Cheap 9

Main Idea:
Send a stream of bits such that k consecutive bits suffice to
determine the position in the stream.

0000000010000001100000101000001110000100100001011000011010000111
1000100010011000101010001011100011001000110110001110100011111001
0010100100111001010110010110100101111001100110101001101110011101
1001111010011111101010101110101101101011111011011110111011111111

Whole stream is periodic, the period may be quite long.



Old Specs 10

Standard Positioning System
C/A signal: period 1023, sent once every millisecond.
Accuracy: 100 m, 340 nanoseconds.

Precision Positioning System
P and Y signals: military use, period of 267 days.
Accuracy: 15 m, 200 nanoseconds.

Current systems are much better than this, under reasonable circumstances
accuracy is better than 1 m. Alas, the current design documents are basically
illegible.



The Perils of Education 11

Every CS major will have an immediate knee-jerk response: use a de Bruijn
sequence, essentially just a Hamiltonian cycle in a de Bruijn graph . . .

001 011

000 010 101 111

100 110

This is the de Bruijn graph B3 of order 3. De Bruijn sequence 00010111.
We want something of much higher order, say, k = 50, producing a de Bruijn
sequence of length 250.



What Could Go Wrong? 12

Finding a Hamiltonian cycle in general is NP-hard, but in this case we can get
away with murder.

An Eulerian cycle in a digraph can be constructed in linear time, and de Bruijn
graphs are all trivially Eulerian.

Recall: Bk is the line graph of Bk−1. Hence an Eulerian cycle in Bk−1 directly
translates into a Hamiltonian cycle in Bk.

Done!



Alas . . . 13

The Evans/Minieka algorithm for Eulerian cycles is linear time, but it is also
linear space.

For order k = 50 we need Ω(250) bits of storage. Totally out of the question
for our little receiver.

Are there other ways to generate a Hamiltonian cycle in Bk?

Or at least a very long cycle, something of length nearly 2k?

We would like to generate the ith bit in time and space O(1).



Succinct Representations 14

To hammer this home: the problem we are trying to solve is trivial in a sense:
there is a simple, linear time and linear space algorithm.
Unfortunately, it’s linear in 250, so any explicit data structure is out.

But de Bruijn graphs are highly regular and have a nice succinct representation
(virtual graphs). It seems plausible that there might be an algorithm that
exploits this succinct representation to find Hamiltonian cycles, or at least very
long cycles.
With constant memory.

This is the end of the age of innocence for graph algorithms, huge graphs are
much harder to deal with (the web, model checking).



1 The GPS Challenge

2 Feedback-Shift-Registers

3 Generating Functions



Iteration to the Rescue 16

Perhaps we could find some easily computable function of the form

F : 2k → 2k

that can be iterated to trace a (hopefully very long) cycle in the de Bruijn
graph:

We want x → F (x) to be an edge.

Also, F should be injective, so all orbits are periodic.

Pick an initial vertex x0 and iterate away.

In principle, we could simply have F follow a Hamiltonian cycle.
Computationally, this is completely useless.



A Circuit 17

Think of this a circuit design problem: we have k one-bit registers and want to
update their contents by some simple circuitry.
In the most general scenario, we could make every new bit depend on every old
bit:

x4

x3

x2

x1

x′
4

x′
3

x′
2

x′
1



Choice Functions 18

But note that we need x 7→ F (x) to be an edge in Bk. That means for
x′ = F (x):

x′
i = xi+1 i < k

x′
k = f(x)

where f : 2k → 2 . We are just computing f plus a shift operation.

Now the only question is: what is the right choice for f?

We still have 22k

= ∞ possibilities: recall that k = 50. There are no
symmetries to exploit, either. We need some clever theory to help find a good
function f .



Shifty Choice 19

x4

x3

x2

x1

x′
4

x′
3

x′
2

x′
1



More Choice 20

Without the memory constraint we could try something like this. Find a clever,
easily computable function

C : 2k → 2

Use C as a choice function that tells us which way to go when we first
encounter a node: when we hit node u, go into direction C(u).
Of course, we also must remember that we have already seen u, and then take
direction 1 − C(u) when we return.

There are some interesting results concerning choice functions in the literature,
but for us this won’t work: we cannot afford to remember already touched
vertices.
Hence we can only preserve a little bit of state, say, k bits worth of state. We
need a “device” that can update the state and an “output” operation that
reads off the next bit.
The output operation will be simple, say, g(b1, b2, . . . , bk) = b1 or
g(b1, b2, . . . , bk) = b1 ∧ b5 or some such.



Xor Functions 21

We can take an experimental plunge and restrict our attention to

f(x) = xp1 + xp2 + . . . + xpr mod 2

The positions pi are the so-called taps.

x4

x3

x2

x1

⊕ x′
4

x′
3

x′
2

x′
1



Feedback Shift-Registers 22

The last step is to redraw the picture slightly, and to renumber the registers,
here ri = xk−i for 0 ≤ i < k. k is the span of the FSR. †

r3 r2 r1 r0

⊕

We can think of generating one output bit at register r0 during each clock
cycle.

†This renumbering may seem like a plain nuisance, but it actually makes the analysis easier
later on.



Rephrase 23

A better way to think about FSRs: assume there is a tap at every register, but
they have weights ci ∈ 2 which determine whether the tap is on or off.

r3 r2 r1 r0

⊕

c1 c2 c3 c4

So the feedback value placed into the last register is the convolution

c1rk−1 + c2rk−2 + . . . + ckr0

Note that we may safely assume that there is a tap at r0: otherwise we are just
inflating the span k and shifting the output bit a number of times before
releasing it into the light.



Generating Bit-Sequences 24

To generate a bit-sequence, we choose k initial values for the registers, say
a = (ak−1, ak−2, . . . , a1, a0). We then use the kth order linear recurrence

an =
n∑

i=1

cian−i = c1an−1 + c2an−2 + . . . + ckan−k

to generate a sequence (ai) ∈ (2k)ω.

Clearly, this kind of gadget is very easy to realize in circuitry. Requires only k
one-bit registers, some xor circuits, and a clock (the whole shift-register must
be synchronized).

Truth in advertising: xor gates usually have two inputs, so we may need to
build a little tree to get the desired feedback bit.



Engineering Angle 25

Engineers love these devices: they are easy to implement and lightning fast.

Exercise
The diagram above is stolen from the interwebs, is it the right one?



Dèjá Vu All Over Again 26

We can think of xor as addition over the two-element field F2.

Upcoming attractions: feedback-shift registers are very closely related to
multiplication in extension fields F2k .



Where are We? 27

By choosing taps we obtain a local function f : 2k → 2 , which gives rise to the
global function F : 2k → 2k ,

F (x) =
(
x2, . . . , xk, f(x)

)
We need to make sure the following holds:

The global map is injective, so we get periodic orbits.

There are good initial conditions a that produce long orbits.

Of course, this all could go completely wrong–but as we will see, things work
out nicely.



Wishful Thinking 28

The good news is that a FSR produces the next bit computed in constant time
and space (essentially the span).

Not so good news: 0 ∈ 2k is always a fixed point of F , so it’s useless for long
orbits.

But, we can hope for a one long orbit of size 2k − 1. In this case, the starting
point a ̸= 0 would not matter.

In general we will see that unit vector e1 is always a good place to start.

Time for some experimentation.



Reversibility 29

Recall that we always assume a tap at register r0 so that ck = 1.

Proposition
The global map F based on linear feedback function f is injective.

Proof.
Recall an = c1an−1 + c2an−2 + . . . + ckan−k. Hence we can run the
recurrence backwards:

an−k = an − (c1an−1 + c2an−2 + . . . + ck−1an−k+1).

2

Note that we could have written + instead of − since we have characteristic 2.
The minus is simply keeping track of the underlying arithmetic.



Additivity 30

Proposition
The global map F is linear (aka additive):

F (x + y) = F (x) + F (y)

where all addition is mod 2.

Here we think of 2k as an F2-vector space.
It follows that we can determine the value of F (x) by forming the appropriate
linear combination of images of the canonical basis vectors ei ∈ 2k under F :

F (ei) = F (0, . . . , 0, 1, 0, . . . , 0)

since F (
∑

ciei) =
∑

ciF (ei).

Exercise
Prove that the global map is indeed additive.



An Orbit 31

Here is the orbit of e1 under the FSR with taps c1 = ck = 1, and span k = 6.
We will abbreviate this situaion as FSR (1, k).

Each column corresponds to the 6 registers, the exit register r0 is at the
bottom; time flows left to right.

This orbit has optimal length 63. Of course, this is too good to be true in
general . . .



Small Spans 32

k p p/2k k p p/2k

3 7 0.875 12 3255 0.794678
4 15 0.9375 13 7905 0.964966
5 21 0.65625 14 11811 0.720886
6 63 0.984375 15 32767 0.999969
7 127 0.992188 16 255 0.003891
8 63 0.246094 17 273 0.002083
9 73 0.142578 18 253921 0.968632
10 889 0.868164 19 413385 0.788469
11 1533 0.748535 20 761763 0.726474

Taps (1, k) work on occasion, but also fail badly. Brief table-staring
immediately suggests some conjectures:

Conjecture
The period is 2k − 1 for span k = 2ℓ − 1.



A Surprise 33

If we compute the same table for taps (k−1, k), we get exactly the same orbit
lengths.
Just to be clear: the orbits themselves are different! Here is span k = 6; (5, 6)
on top, (1, 6) below.

Why?



Phasespace 34

Here is why things go wrong for k = 9:

There is one fixed point, plus 7 cycles of length 73.



And Another 35

k = 8 with taps 01101011.

Again, too many cycles to get a long orbit.



Impulse-Response Sequences 36

Additivity has an important side-effect when it comes to periods: we can obtain
maximal period by selecting as the starting configuration the unit vector e1.

Definition
An impulse-response sequence for F is an orbit obtained from a basis vector e1.

Lemma (Period Lemma)
The period of any configuration a divides the period of e1.

We need a little more machinery (which is also independently useful) for the
proof of the lemma.



The Companion Matrix 37

Definition
Let an = c1an−1 + c2an−2 + . . . + ckan−k be linear recurrence of order k over
some ring R. The (Frobenius) companion matrix C of the recurrence is a k × k
matrix over R defined by

C(i, j) =


cj if i = 1,
1 if i = j + 1,
0 otherwise.

For example, for k = 5 the companion matrix looks like so:

C =


c1 c2 c3 c4 c5
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


Note that there are several versions of the companion matrix in the literature.



Matrix Multiplication and Iteration 38

By multiplying the companion matrix with a vector representing the current
bit-pattern in the registers we can compute the next bit-pattern.

Proposition
Cta is the content of the registers at time t where a = (ak−1, . . . , a0) is the
initial configuration.

Computationally this produces the following speed-up: using a standard matrix
multiplication algorithm and fast exponentiation it would take us O(k3 lg t)
steps to compute the state of the system at time t.

This is an example of predictability or computational compressibility: it does
not take Ω(t) steps to find the configuration at time t.



Proof of Period Lemma 39

Let q be the period of the impulse-response sequence generated by e1, C the
companion matrix.
Then Cqe1 = e1 and hence for any i ≥ 0 we have

Cq+ie1 = Cie1

and therefore

(Cq − I) · (Cie1) = 0.

Since ck ̸= 0, the vectors Cie1 must span the whole space; hence we must
have Cq = I.
It follows that q is a period of any configuration, and the least period must
divide q.

2



1 The GPS Challenge

2 Feedback-Shift-Registers

3 Generating Functions



Predicting Periods 41

Key Question: Where should the taps go?

Note that we have a new practical problem if we really succeed: If the periods
are very long, we cannot verify this fact by running a simulation with real
hardware.

Hence, we need a solid proof; in a way, a computational shortcut that
establishes claims about period lengths without brute-force simulation.

Exercise
For a reasonably small value of k, say, k = 10, determine the complete cycle
structure of 2k for all possible feedback shift-registers of order k.



Words of Wisdom 42

There is nothing more practical than a good theory.
Kurt Lewin



Generating Functions 43

Consider the sequence (an) produced from the initial configuration
a = (a0, a1, . . . , ak−1) via the recurrence

an = c1an−1 + c2an−2 + . . . + ckan−k

Is there any chance that generating functions might be useful?

G(x) =
∑

anxn?



Example: Lagged Fibonacci 44

Consider initial conditions a = (1, 0, 0, 0) and taps (1, 4), so we are dealing
with a Fibonacci-type recurrence an = an−1 + an−4 for n ≥ 4.

Then for G(x) =
∑

anxn

G(x) = 1 +
∑
n≥4

anxn

= 1 + x
∑
n≥3

anxn + x4
∑

anxn

= 1 − x + x
∑

anxn + x4
∑

anxn

= 1 − x + (x + x4) G(x)

so that

G(x) = 1 − x

1 − x − x4



Comments 45

We have used minus signs to emphasize the arithmetic, in characteristic 2 we
could just as well have written plus (but then you have to make changes for the
characteristic p > 2 case).

From the example, one can see that the denominator of the rational generating
function will be

1 − c1x − c2x2 − . . . − ckxk.

The numerator is slightly more complicated to write down.



The General Case 46

Theorem
The generating function for our feedback shift-registers is

G(x) =
−
∑k−1

i=0

(∑i

j=0 cjai−j

)
xi

1 −
∑

i
cixi

where c0 = −1.

Sketch of proof.

G(x) =
∑

n

(∑
i

cian−i

)
xn

=
∑

i

cix
i
∑

n

an−ix
n−i

=
∑

i

cix
i

(
a−ix

−i + . . . + a−1x1 +
∑

n

anxn

)
2



Feedback Polynomial 47

Definition
The denominator of this rational function is called the feedback polynomial or
the connection polynomial of the sequence (an).

Note that one can solve the following equation for the numerator:

−
k−1∑
i=0

(
i∑

j=0

cjai−j

)
xi = 1

for ai. The solution yields the initial conditions for a sequence whose
generating function simplifies to the reciprocal of the feedback polynomial:

G(x) = 1
1 −

∑
i
cixi

In general, however, the numerator is some polynomial of degree less than k.



Example: (1, 5) 48

For taps (1, 5) and the impulse-response sequence we get

G(x) = 1 − x

1 − x − x5

By Taylor expansion, we can compute a few terms of this series:

1+x5+x6+x7+x8+x9+2 x10+3 x11+4 x12+5 x13+6 x14+8 x15+11 x16+. . .

As written, this is just wrong: we need coefficients in F2, not integers.



Wrong Field 49

We are computing the Taylor series in characteristic 0 (actually, we don’t have
a choice), but we can simply drop down to characteristic 2 in the end:

1 + x5 + x6 + x7 + x8 + x9 + x11 + x13 + x16 + x17 + . . .

and this is indeed the right answer.

Computing matching Taylor expansions is most reassuring, but we really need
to get a grip on the period of these sequences.

As a warmup, how do the initial conditions come into play?



Changing Initial Conditions 50

Suppose we change the initial conditions to (1, 1, 0, 0, 1). Then

G(x) = 1 − x2 + x4

1 − x − x5

= 1 + x + x4 + x6 + x7 + x8 + x11 + x13 + x14 + . . .

and the orbit looks like so:

Buring Question: How does the sequence relate to the beautiful picture?



Period and Polynomial Divisors 51

Theorem
Let (an) be a sequence with generating function G(x) = 1/g(x).
Then the period of (an) is the least p > 0 such that g(x) divides 1 − xp.

Proof.
If the period is p then

1/g(x) =
(
a0 + a1x + . . . + ap−1xp−1) (1 + xp + x2p + . . .

)
=
(
a0 + a1x + . . . + ap−1xp−1) / (1 − xp)

So 1 − xp = g(x) ·
(
a0 + a1x + . . . + ap−1xp−1) and g(x) divides 1 − xp, as

required.



And Back 52

On the other hand, if 1 − xp = g(x)(b0 + b1x + . . . + bp−1xp−1) then

1/g(x) =
(
b0 + b1x + . . . + bp−1xp−1) / (1 − xp)

=
(
b0 + b1x + . . . + bp−1xp−1) (1 + xp + x2p + . . .

)
Comparing coefficients we get an = bn mod p, so the period of the sequence
must divide p.
Since p is minimal, they must agree.

2



Numerators 53

What happens if the generating function is a general rational function

G(x) = h(x)/g(x)?

We may assume that h and g are coprime, otherwise we can simply factor out.

Accordingly, the sequence will be eventually periodic in the general case, but
strictly periodic as long as the degree of h is less than the degree of g – exactly
the situation that we are in.

The denominator controls period length, the numerator expresses the initial
conditions given by the first k bits in the registers.



Long Cycles and Primality 54

Definition
Let g ∈ F[x].
The exponent of g is the least p > 0 such that g(x) divides 1 − xp.

It is not clear how to compute exponents efficiently, but one can show the
following.

Theorem
If a shift-register sequence of span k has maximum length 2k − 1, then the
corresponding polynomial g(x) must be irreducible.

Unfortunately, this condition is not sufficient: we need a primitive polynomial,
not just an irreducible one.

This is analogous to having x be a generator of F× in our finite field
construction.



Exploiting Mersenne 55

We can throw more algebra at the problem. Recall that any irreducible
polynomial g(x) of degree k divides x2k−1 − 1. Hence the exponent of g(x)
must divide 2k − 1.

So if 2k − 1 happens to be a Mersenne prime the exponent must be equal to
2k − 1.

It is an open problem whether infinitely many Mersenne primes exist, but for
the following values of k we do get a Mersenne prime 2k − 1:

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127

These are all appropriate k’s less than 256.
BTW, the largest known prime is a Mersenne prime, currently (October 2024):

2136,279,841 − 1



Example Mersenne Prime 56

31 is a Mersenne prime, k = 5.

There are exactly 6 irreducible polynomials of degree 5 in F2[x], the orbit for
the last is plotted below, and duly has length 31.

1 + x2 + x5, 1 + x3 + x5, 1 + x + x2 + x3 + x5,

1 + x + x2 + x4 + x5, 1 + x + x3 + x4 + x5, 1 + x2 + x3 + x4 + x5



Primitive Field Elements 57

Here is a closer look. We know that the multiplicative subgroup of every finite
field is cyclic.

More precisely, if we have K = F[x]/(f) where f is irreducible and primitive,
then we can choose α = x mod f as a generator.

Key Insight:
A single step in an FSR corresponds to division by α.

But for primitive f the order of α and thus of α−1 is 2k − 1. Hence if we
choose the taps of our FSR according to the coefficients of f we obtain
maximal period.

I don’t know how to prove this without introducing more machinery (dual
bases), so we’ll skip. See the comment at the end of this section, though.



The Field Angle 58

As an indication why finite fields are critical to any real understanding of FSRs,
here is one more result.

Wild Guess: Perhaps shift register sequences can be explained
completely in terms of finite fields, something along the lines of

an = blah di blah αn di blah blah

The “blah di blah” should be expressed solely in terms of field operations,
preferably in a nice formula.

The good news: it really works.
The bad news: it involves one more idea.



Traces 59

Suppose f(x) ∈ F2[x] is irreducible of degree k. and α be a root of f over the
splitting field F2k .

Definition
The trace function of F2k over F2 is defined by

Tr : F2k → F2 Tr(z) =
∑
i<k

z2i

This is less random than it may seem, we are summing over the orbit of z
under the Frobenius homomorphism z 7→ z2.

Proposition
Tr is linear and its range is indeed F2.



Trace Representation 60

Theorem
Let β be any element F2k and initialize the registers of a FSR with

Tr(β), Tr(α−1β), . . . , Tr(α2−kβ), Tr(α1−kβ).

Then the sequence generated by the FSR is an = Tr(α−nβ).

Proof.
To see this first note that α−k =

∑
ciα

i−k.
But then

c1Tr(α1−kβ) + c2Tr(α2−kβ) + . . . + ckTr(β) =

Tr(β(c1α1−k + c2α2−k + . . . + ck)) =

Tr(α−kβ)

Done by induction. 2



Initial Conditions 61

One might worry that the special form of the initial conditions

Tr(β), Tr(α−1β), . . . , Tr(α2−kβ), Tr(α1−kβ).

makes the last result a bit wobbly, it might just cover a few cases.

Not so, we claim that different choices for β all produce distinct vectors.

For suppose two vectors agree; then by linearity there is a β such that
Tr(αiβ) = 0 for all i < k. We can think of the condition Tr(αiβ) = 0 for all
i < k, as a system of linear equations.



Vandermonde Matrices 62

The matrix of this system has a special form: it’s (the transpose of) a
Vandermonde matrix.

V (γ1, . . . , γm) =


1 γ1 γ2

1 . . . γn−1
1

1 γ2 γ2
2 . . . γn−1

2
1 γ3 γ2

3 . . . γn−1
3

...
...

...
. . .

...
1 γm γ2

m . . . γn−1
m


The determinant of V is

∏
i<j

(γj − γi).

It follows that our matrix is invertible. But then β = 0, done. Hence all 2k

initial conditions can be generated by the right choice of the multiplier β: our
description is perfectly general.



Fibonacci Feedback Shift-Registers 63

The feedback shift-registers we have considered so far are very natural since
they generate linear recurrent sequences according to

an =
k∑

i=1

cian−i = c1an−1 + c2an−2 + . . . + ckan−k

In other words, they generalize the classical Fibonacci sequence. Hence, these
FSR are called Fibonacci feedback shift-registers (FFSR).

There is a dual notion of Galois feedback shift-registers (GFSR), essentially
obtained by reversing all the arrows in the diagram.



Say Again? 64

Keeping our shift direction to go from left to right, the new device looks like so:

r3 r2 r1 r0

c4 c3 c2 c1

After shifting, the bits in the tapped registers are flipped, provided the bit in r0
was a 1. †

†We have changed the numbering system on the tap coefficients, this makes the algebra a bit
easier.



But Why? 65

In a Galois feedback-shift register, a single step corresponds ex-
actly to multiplication by x in F2[x]/(f).

As far as long cycles are concerned, there is no difference between Fibonacci
and Galois FSRs.

Here is a brief glimpse at why this is true.



Reciprocal Polynomials 66

Definition
The reciprocal of a polynomial f(x) of degree k is the polynomial
f⋆(x) = xk · f(1/x).

The map f 7→ f⋆ is not very well behaved (it is not a homomorphism), but we
have the following properties.

Proposition
Let f and g be two polynomials.

If f(0) ̸= 0 then (f⋆)⋆ = f .

(f · g)⋆ = f⋆ · g⋆.



Connection and Characteristic 67

By the last proposition, f is irreducible if, and only if, its reciprocal polynomial
f⋆ is so irreducible.

Moreover, in characteristic 2 we have (1 + xd)⋆ = 1 + xd, so the exponents of
an irreducible polynomial and its reciprocal are the same.

Hence, as far as irreducibility and exponent are concerned, there is no
difference between multiplication by and α and division by α.


	The GPS Challenge
	Feedback-Shift-Registers
	Generating Functions

